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“A wealth of information. Smart, yet very readable, and honestly made me
excited to read about packet analysis.”
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“Amazing grace, how sweet the sound
That saved a wretch like me.

I once was lost but now I’m found.
Was blind but now I see.”
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INTRODUCTION

This third edition of Practical Packet Analysis was
written and edited over the course of a year and a hallf,
from late 2015 to early 2017, approximately 6 years
after the second edition’s release and 10 years since
publication of the original. This book contains a

signiﬁcant amount of new content, with completely new capture files
and scenarios and an entirely new chapter covering packet analysis from the
command line with TShark and tcpdump. If you liked the first two editions,
then you’ll like this one. It’s written in the same tone and breaks down
explanations in a simple, understandable manner. If you were hesitant to try
out the last two editions because they didn’t include the latest information
on networking or Wireshark updates, you’ll want to read this one because of

the expanded content on new network protocols and updated information on
Wireshark 2.x.

Why This Book?

You may find yourself wondering why you should buy this book as opposed
to any other book about packet analysis. The answer lies in the title: Practical
Packet Analysis. Let’s face it—nothing beats real-world experience, and the



closest you can come to that experience in a book is through practical
examples with real-world scenarios.

The first half of this book gives you the knowledge you’ll need to
understand packet analysis and Wireshark. The second half of the book is
devoted entirely to practical cases that you could easily encounter in day-to-
day network management.

Whether you’re a network technician, a network administrator, a chief
information officer, a desktop technician, or even a network security analyst,
you will benefit greatly from understanding and using the packet analysis
techniques described in this book.

Concepts and Approach

I’'m generally a really laid-back guy, so when I teach a concept, I try to do so
in a really laid-back way. This holds true for the language used in this book.
It’s easy to get lost in technical jargon, but I've tried my best to keep things
as casual as possible. I've defined all the terms and concepts clearly and
without any added fluff. After all, I'm from the great state of Kentucky, so I
try to keep the big words to a minimum. (But you’ll have to forgive me for
some of the backwoods country verbiage you’ll find throughout the text.)

The first several chapters are integral to understanding the rest of the
book, so make it a point to master the concepts in these pages first. The
second half of the book is purely practical. You may not see these exact
scenarios in your workplace, but you will be able to apply the concepts they
teach in the situations you do encounter.

Here is a quick breakdown of this book’s contents:

Chapter 1: Packet Analysis and Network Basics

What is packet analysis? How does it work? How do you do it? This
chapter covers the basics of network communication and packet
analysis.

Chapter 2: Tapping into the Wire
This chapter covers the different techniques for placing a packet sniffer
on your network.

Chapter 3: Introduction to Wireshark



Here, we’ll look at the basics of Wireshark—where to get it, how to use
it, what it does, why it’s great, and all that good stuff. This edition
includes a new discussion about customizing Wireshark with
configuration profiles.

Chapter 4: Working with Captured Packets

After you have Wireshark up and running, you’ll want to know how to
interact with captured packets. This is where you’ll learn the basics,
including new, more detailed sections on following packet streams and
name resolution.

Chapter 5: Advanced Wireshark Features

Once you’ve learned to crawl, it’s time to take off running. This chapter
delves into the advanced Wireshark features, taking you under the hood
to show you some of the less apparent operations. This includes new,
more detailed sections on following packet streams and name resolution.

Chapter 6: Packet Analysis on the Command Line

Wireshark is great, but sometimes you need to leave the comfort of a
graphical interface and interact with a packet on the command line.
This new chapter shows you how to use TShark and tcpdump, the two
best command line packet analysis tools for the job.

Chapter 7: Network Layer Protocols

This chapter shows you what common network layer communication
looks like at the packet level by examining ARP, IPv4, IPv6, and ICMP.
To troubleshoot these protocols in real-life scenarios, you first need to
understand how they work.

Chapter 8: Transport Layer Protocols

Moving up the stack, this chapter discusses the two most common
transport protocols, TCP and UDP. The majority of packets you look
at will use one of these two protocols, so understanding what they look
like at the packet level and how they differ is important.

Chapter 9: Common Upper-Layer Protocols

Continuing with protocol coverage, this chapter shows you what four of
the most common upper-layer network communication protocols—



HTTP, DNS, DHCP, and SM'TP—Ilook like at the packet level.

Chapter 10: Basic Real-World Scenarios

This chapter contains breakdowns of some common traffic and the first
set of real-world scenarios. Each scenario is presented in an easy-to-
follow format, giving the problem, an analysis, and a solution. These
basic scenarios deal with only a few computers and involve a limited
amount of analysis—just enough to get your feet wet.

Chapter 11: Fighting a Slow Network
The most common problems network technicians hear about generally
involve slow network performance. This chapter is devoted to solving

these types of problems.

Chapter 12: Packet Analysis for Security
Network security is the biggest hot-button topic in the information
technology area. Chapter 12 shows you some scenarios related to
solving security-related issues with packet analysis techniques.

Chapter 13: Wireless Packet Analysis

This chapter is a primer on wireless packet analysis. It discusses the
differences between wireless analysis and wired analysis, and it includes
some examples of wireless network traffic.

Appendix A: Further Reading
The first appendix of this book suggests some other reference tools and
websites that you might find useful as you continue to use the packet
analysis techniques you've learned.

Appendix B: Navigating Packets

If you want to dig a little deeper into interpreting individual packets, the
second appendix provides an overview of how packet information is
stored in binary and how to convert binary into hexadecimal notation.
Then it shows you how to dissect packets that are presented in
hexadecimal notation with packet diagrams. This is handy if you’re
going to spend a lot of time analyzing custom protocols or using
command line analysis tools.



How to Use This Book

I have intended this book to be used in two ways:

*  Asan educational text. You’ll read chapter by chapter, paying particular
attention to the real-world scenarios in the later chapters, to gain an
understanding of packet analysis.

*  As a reference. There are some features of Wireshark that you won’t use
very often, so you may forget how they work. Practical Packet Analysis is a
great book to have on your bookshelf when you need a quick refresher
on how to use a specific feature. When doing packet analysis for your
job, you may want to reference the unique charts, diagrams, and
methodologies I've provided.

About the Sample Capture Files

All of the capture files used in this book are available from the book’s No
Starch Press page, hitps://www.nostarch.com/packetanalysis3/. To maximize the
potential of this book, download these files and use them as you follow along
with the examples.

The Rural Technology Fund

I couldn’t write an introduction without mentioning the best thing to come
from Practical Packet Analysis. Shortly after the release of the first edition of
this book, I founded a 501(c)(3) nonprofit organization—the Rural
Technology Fund (RTF).

Rural students, even those with excellent grades, often have fewer
opportunities for exposure to technology than their city or suburban
counterparts. Established in 2008, the RTF is the culmination of one of my
biggest dreams. It seeks to reduce the digital divide between rural
communities and their urban and suburban counterparts. The RTF does this
through targeted scholarship programs, community involvement, donations
of educational technology resources to classrooms, and general promotion
and advocacy of technology in rural and high-poverty areas.

In 2016, the RTF was able to put technology education resources into


https://www.nostarch.com/packetanalysis3/

the hands of more than 10,000 students in rural and high-poverty areas in
the United States. I'm pleased to announce that all of the author’s proceeds
from this book go directly to the RTF to support these goals. If you want to
learn more about the Rural Technology Fund or how you can contribute,
visit our website at http://www.ruraltechfund.org/ or follow us on Twitter

@Rural TechFund.

Contacting Me

I’'m always thrilled to get feedback from people who read my writing. If you
would like to contact me for any reason, you can send all questions,
comments, threats, and marriage proposals directly to me at
chris@chrissanders.org. 1 also blog regularly at bttp://www.chrissanders.org/ and
can be followed on Twitter at @chrissanders88.
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mailto:chris@chrissanders.org
http://www.chrissanders.org/
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1
PACKET ANALYSIS AND NETWORK BASICS

A million different things can go wrong with a
computer network on any given day—from a simple
spyware infection to a complex router configuration
error—and it’s impossible to solve every problem
immediately. The best we can hope for is to be fully
prepared with the knowledge and tools we need to

respond to these types of issues.

To truly understand network problems, we go to the packet level. All
network problems stem from this level, where even the prettiest-looking
applications can reveal their horrible implementations and seemingly
trustworthy protocols can prove malicious. Here, nothing is hidden from us.
Nothing is obscured by misleading menu structures, eye-catching graphics,
or untrustworthy employees—there are no true secrets (only encrypted
ones). The more we can do at the packet level, the more we can control our
network and solve problems. This is the world of packet analysis.

This book dives into this world headfirst. Through real-world scenarios,
you’ll learn how to tackle slow network communication, identify application
bottlenecks, and even track hackers. By the time you’ve finished reading this



book, you should be able to implement packet analysis techniques that will
help you solve even the most difficult problems in your own network.

In this chapter, we’ll begin with the basics, focusing on network
communication. The material here will help you gain the tools you’ll need to
examine different scenarios.

Packet Analysis and Packet Sniffers

Packet analysis, often referred to as packet sniffing or protocol analysis,
describes the process of capturing and interpreting live data as it flows across
a network in order to better understand what is happening on that network.
Packet analysis is typically performed by a packer sniffer, a tool used to
capture raw network data going across the wire.

Packet analysis can help with the following:

*  Understanding network characteristics

* Learning who is on a network

* Determining who or what is utilizing available bandwidth
* Identifying peak network usage times

* Identifying malicious activity

* Finding unsecured and bloated applications

There are various types of packet-sniffing programs, including both free
and commercial ones. Each program is designed with different goals in
mind. A few popular packet analysis programs are tcpdump, OmniPeek, and
Wireshark (we’ll primarily be using Wireshark in this book). OmniPeek and
Wireshark have graphical user interfaces (GUIs), while tcpdump is a
command line program.

Evaluating a Packet Sniffer

You need to consider a number of factors when selecting a packet sniffer,
including the following:

Supported protocols All packet sniffers can interpret various
protocols. Most can interpret common network protocols (such as IPv4

and ICMP), transport protocols (such as TCP and UDP), and even



application protocols (such as DNS and HTTP). However, they may
not support nontraditional, newer, or more complex protocols (such as
IPv6, SMBv2, and SIP). When choosing a sniffer, make sure that it

supports the protocols you’re going to use.

User friendliness  Consider the packet sniffer’s layout, ease of
installation, and general workflow. The program you choose should fit
your level of expertise. If you have very little packet analysis experience,
you may want to avoid the more advanced command line packet sniffers
like tcpdump. On the other hand, if you are a packet analysis veteran,
you may find an advanced program more useful. As you gain experience,
you may even find it useful to combine multiple packet-sniffing
programs to fit particular scenarios.

Cost The great thing about packet sniffers is that there are many free
ones that rival any commercial products. The most notable difference
between commercial products and their free alternatives is their
reporting engines. Commercial products typically include some form of
fancy report generation module, while free applications either lack this
capability or offer only very limited reporting.

Program support Even after you have mastered the basics of a
sniffing program, you may occasionally need support to solve new
problems as they arise. When evaluating available support, look for
developer documentation, public forums, and mailing lists. Although
there may be a lack of formalized commercial support for free packet-
sniffing programs like Wireshark, communities of wusers and
contributors often provide active discussion boards, wikis, and blogs to
help you get more out of your packet sniffer.

Source code access Some packet sniffers are open source software.
This means that you can view the source code of the program and, in
some cases, even suggest and make changes to that source code. If you
have a very specific or advanced use case for a sniffing application, this
might be an appealing feature. Most commercial applications don’t
provide source code access.

Operating system support Unfortunately, not all packet sniffers
support every operating system. Choose one that will work on all the
operating systems that you need to support. If you are a consultant, you
may be required to capture and analyze packets on a variety of operating



systems, so you’ll need a tool that runs on most of them. Also, keep in
mind that you’ll sometimes capture packets on one machine and review
them on another. Variations between operating systems may force you
to use a different application for each device.

How Packet Sniffers Work

The packet-sniffing process involves a cooperative effort between software
and hardware. This process can be broken down into three steps:

1. Collection: First, the packet sniffer collects raw binary data from the
wire. Typically this is done by switching the selected network interface
into promiscuous mode. In this mode, the network card can listen to all
traffic on a network segment, not only the traffic that is addressed to it.

2. Conversion: Next, the captured binary data is converted into a
readable form. This is as far as most advanced command line packet
sniffers can go. At this point, the network data can be interpreted only
on a very basic level, leaving the majority of the analysis to the end user.

3. Analysis: Finally, the packet sniffer conducts an analysis of the captured
and converted data. The sniffer verifies the protocol of the captured
network data based on the information extracted and begins its analysis
of that protocol’s specific features.

How Computers Communicate

To fully understand packet analysis, you must know exactly how computers
communicate with each other. In this section, we’ll examine the basics of
network protocols, the Open Systems Interconnections (OSI) model,
network data frames, and the hardware that supports it all.

Protocols

Modern networks are made up of a variety of systems running on many
different platforms. To communicate between systems, we use a set of
common languages called prorocols. Common protocols include Transmission
Control Protocol (TCP), Internet Protocol (IP), Address Resolution



Protocol (ARP), and Dynamic Host Configuration Protocol (DHCP). A
logical grouping of protocols that work together is called a protocol stack.

It might help to think of protocols as similar to the rules that govern
human language. Every language has rules such as how to conjugate verbs,
how to greet people, and even how to properly thank someone. Protocols
work in much the same fashion, allowing us to define how packets should be
routed, how to initiate a connection, and how to acknowledge the receipt of
data.

A protocol can be extremely simple or highly complex, depending on its
function. Although the various protocols can differ significantly, many
protocols address the following issues:

Connection initiation  Is it the client or server initiating the
connection? What information must be exchanged prior to
communication?

Negotiation of connection characteristics Is the communication of
the protocol encrypted? How are encryption keys transmitted between
communicating hosts?

Data formatting  How is the data contained within the packet
organized? In what order is the data processed by the devices receiving
it?

Error detection and correction What happens in the event that a
packet takes too long to reach its destination? How does a client recover
if it cannot establish communication with a server for a short duration?

Connection termination How does one host signify to the other that
communication has ended? What final information must be transmitted
in order to gracefully terminate communication?

The Seven-Layer 0S| Model

Protocols are separated according to their functions based on the industry-
standard OSI reference model. This hierarchical model, with seven distinct
layers, is very helpful for understanding network communications. In Figure
1-1, the layers of the OSI model are on the right, and the proper
terminology for data at each of these layers is on the left. The application
layer at the top represents the programs used to access network resources.
The bottom layer is the physical layer, through which the network data



travels. The protocols at each layer work together to ensure data is properly
handled by the protocols at layers directly above and below.

The OSI model was originally published in 1983 by the International
Organization for Standardization (ISO) as a document called ISO 7498. The
OSI model is no more than an industry-recommended standard. Protocol
developers are not required to follow it exactly. In fact, the OSI model is not
the only networking model; for example, some people prefer the Department of
Defense (DoD) model, also known as the TCP/IP model.

J/FEEERER N
Data Application
Y
Data Presentation
Data Se:«‘:ion
Segments Tran'sport
Packets Ne:m rk
Y
Frames Data Link
Y
Bits Physical

Figure 1-1: A hierarchical view of the seven layers of the OSI model

Each OSI model layer has a specific function, as follows:



Application layer (layer 7) The topmost layer of the OSI model
provides a means for users to access network resources. This is the only
layer typically seen by end users, as it provides the interface that is the
base for all of their network activities.

Presentation layer (layer 6) 'This layer transforms the data it receives
into a format that can be read by the application layer. The data
encoding and decoding done here depends on the application layer
protocol that is sending or receiving the data. The presentation layer
also handles several forms of encryption and decryption used to secure
data.

Session layer (layer 5) 'This layer manages the dialogue, or session,
between two computers. It establishes, manages, and terminates this
connection among all communicating devices. The session layer is also
responsible for establishing whether a connection is duplex (two-way) or
half-duplex (one-way) and for gracefully closing a connection between
hosts rather than dropping it abruptly.

Transport layer (layer 4) The primary purpose of the transport layer
is to provide reliable data transport services to lower layers. Through
flow control, segmentation/desegmentation, and error control, the
transport layer makes sure data gets from point to point error-free.
Because ensuring reliable data transportation can be extremely
cumbersome, the OSI model devotes an entire layer to it. The transport
layer utilizes both connection-oriented and connectionless protocols.
Certain firewalls and proxy servers operate at this layer.

Network layer (layer 3) This layer, one of the most complex of the
OSI layers, is responsible for routing data between physical networks. It
sees to the logical addressing of network hosts (for example, through an
IP address). It also handles splitting data streams into smaller fragments
and, in some cases, error detection. Routers operate at this layer.

Data link layer (layer 2) 'This layer provides a means of transporting
data across a physical network. Its primary purpose is to provide an
addressing scheme that can be used to identify physical devices (for
example, MAC addresses). Bridges and switches are physical devices that
operate at the data link layer.

Physical layer (layer 1) The layer at the bottom of the OSI model is
the physical medium through which network data is transferred. This



layer defines the physical and electrical nature of all hardware used,
including voltages, hubs, network adapters, repeaters, and cabling
specifications. 'The physical layer establishes and terminates
connections, provides a means of sharing communication resources, and
converts signals from digital to analog and vice versa.

A common mnemonic device for remembering the layers of the OSI model is
Please Do Not Throw Sausage Pizza Away. The first letter of each word
refers to each layer of the OSI model, starting with the first layer.

Table 1-1 lists some of the more common protocols used at each layer

of the OSI model.

Table 1-1: Typical Protocols Used at Each Layer of the OSI Model

Layer Protocols

Application HTTP, SMTP, FTP, Telnet
Presentation ASCII, MPEG, JPEG, MIDI

Session NetBIOS, SAP, SDP, NWLink
Transport TCP, UDP, SPX

Network IP, IPX

Datalink  Ethernet, Token Ring, FDDI, AppleTalk

Physical wired, wireless

Although the OSI model is no more than a recommended standard, you
should know it by heart as it provides a useful vocabulary for thinking about
and describing network problems. As we progress through this book, you
will find that router issues soon become “layer 3 problems” and software
issues are readily recognized as “layer 7 problems.”

A colleague once told me about a user who complained that bhe could not access a
network resource. The issue was the result of the user’s entering an incorrect



password. My colleague referred to this as a layer 8 issue. Layer 8 is the
unofficial user layer. This term is commonly used among those who live at the

packet level.

Data Flow Through the 0S| Model

The initial data transfer on a network begins at the application layer of the
transmitting system. Data works its way down the seven layers of the OSI
model until it reaches the physical layer, at which point the physical layer of
the transmitting system sends the data to the receiving system. The receiving
system picks up the data at its physical layer, and the data proceeds up the
layers of the receiving system to the application layer at the top.

Each layer in the OSI model is capable of communicating only with the
layers directly above and below it. For example, layer 2 can send and receive
data only from layers 1 and 3.

None of the services provided by various protocols at any given level of
the OSI is redundant. For example, if a protocol at one layer provides a
particular service, then no other protocol at any other layer will provide this
same service. Protocols at different levels may have features with similar
goals, but they will function a bit differently.

Protocols at corresponding layers on the sending and receiving devices
are complementary. So, for example, if a protocol at layer 7 of the sending
device is responsible for formatting the data being transmitted, the
corresponding protocol at layer 7 of the receiving device is expected to be
responsible for reading that formatted data.

Figure 1-2 is a graphical representation of the OSI model as it relates to
two communicating devices. You can see communication going from top to
bottom on one device and then reversing when it reaches the second device.
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Figure 1-2: Protocols working at the same layer on both the sending and receiving systems

Data Encapsulation

The protocols at different layers of the OSI model pass data between each
other with the aid of data encapsulation. Each layer in the stack is responsible
for adding a header or footer—extra bits of information that allow the layers
to communicate—to the data being transferred. For example, when the
transport layer receives data from the session layer, the transport layer adds
its own header information to that data before passing it to the network
layer.

The encapsulation process creates a protocol data unit (PDU), which
includes the data being sent and all header or footer information added to it.
As data moves down the OSI model and the various protocols add header
and footer information, the PDU changes and grows. The PDU is in its
final form when it reaches the physical layer, at which point it is sent to the



destination device. The receiving device strips the protocol headers and
footers from the PDU as the data climbs up the OSI layers in the reverse of
the order they were added. Once the PDU reaches the top layer of the OSI
model, only the original application layer data remains.

The OSI model uses specific terms to describe packaged data at each layer. The
physical layer contains bits, the data link layer contains frames, the network
layer contains packets, and the transport layer contains segments. The top three
layers simply use the term data. This nomenclature isn’t used much in
practice, so we’ll generally just use the term packet to refer to a complete or
partial PDU that includes header and footer information from a few or many
layers of the OSI model.

To illustrate how encapsulation of data works, we’ll look at a simplified
practical example of a packet being built, transmitted, and received in
relation to the OSI model. Keep in mind that as analysts, we don’t often talk
about the session or presentation layers, so those will be absent in this
example (and the rest of this book).

In this scenario, we are attempting to browse to http://www.google.com/.
First, we must generate a request packet that is transmitted from our source
client computer to the destination server computer. This scenario assumes
that a TCP/IP communication session has already been initiated. Figure 1-3
illustrates the data encapsulation process in this example.

We begin on our client computer at the application layer. We are
browsing to a website, so the application layer protocol being used is HT'TP;
the HI'TP protocol will issue a command to download the file index.btml
from google.com.

In practice, the browser will request the website document root first, signified
by a forward slash (/). When the web server receives this request, it will
redirect the browser to whatever file it is configured to serve upon receiving a
document root request. This is usually something like index.html or
index.php. We’ll cover this more in Chapter 9 when we discuss HT'TP.
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Once our application layer protocol has sent the command, our concern
is with getting the packet to its destination. The data in our packet is passed
down the OSI stack to the transport layer. HI'TP is an application layer
protocol that uses (or sits on) TCP, so TCP serves as the transport layer
protocol used to ensure reliable delivery of the packet. A TCP header is
generated and added to the PDU, as shown in the transport layer of Figure
1-3. This TCP header includes sequence numbers and other data that are
appended to the packet, ensuring that the packet is properly delivered.
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Figure 1-3: A graphical representation of encapsulation of data between client and server

We often say that one protocol “sits on” or “rides on” another protocol because
of the top-down design of the OSI model. An application protocol such as
HTTP provides a particular service and relies on TCP to ensure reliable
delivery of its service. Both of those services rely on the IP protocol at the
network level to address and deliver their data. Therefore, HI'TP sits on




TCP, which sits on IP.

Having done its job, TCP hands the packet off to IP, which is the layer
3 protocol responsible for the logical addressing of the packet. IP creates a
header containing logical addressing information, adds it to the PDU, and
passes the packet along to the Ethernet on the data link layer. Physical
Ethernet addresses are stored in the Ethernet header. The packet is now
fully assembled and passed to the physical layer, where it is transmitted as
zeros and ones across the network.

The completed packet traverses the network cabling system, eventually
reaching the Google web server. The web server begins by reading the
packet from the bottom up, meaning that it first reads the data link layer,
which contains the physical Ethernet addressing information that the
network card uses to determine that the packet is intended for a particular
server. Once this information is processed, the layer 2 information is
stripped away, and the layer 3 information is processed.

The layer 3 IP addressing information is read to ensure that the packet
is properly addressed and is not fragmented. This data is also stripped away
so that the next layer can be processed.

Layer 4 TCP information is now read to ensure that the packet has
arrived in sequence. Then the layer 4 header information is stripped away to
leave only the application layer data, which can be passed to the web server
application hosting the website. In response to this packet from the client,
the server should transmit a TCP acknowledgment packet so the client
knows its request was received, followed by the index.html file.

All packets are built and processed as described in this example,
regardless of which protocols are used. But at the same time, keep in mind
that not every packet on a network is generated from an application layer
protocol, so you will see packets that contain only information from layer 2,
3, or 4 protocols.

Network Hardware

Now it’s time to look at network hardware, where the dirty work is done.
We'll focus on just a few of the more common pieces of network hardware:
hubs, switches, and routers.



Hubs
A hub is generally a box with multiple RJ-45 ports, like the NETGEAR hub

shown in Figure 1-4. Hubs range from very small 4-port devices to larger
48-port devices designed for rack mounting in a corporate environment.

P Call

Figure 1-4: A typical 4-port Ethernet hub

Because hubs can generate a lot of unnecessary network traffic and are
capable of operating only in half-duplex mode (they cannot send and receive
data at the same time), you won’t typically see them used in most modern or
high-density networks; switches are used instead (discussed in the next
section). However, you should know how hubs work, since they will be very
important to packet analysis when using the “hubbing out” technique
discussed in Chapter 2.

A hub is no more than a repeating device that operates on the physical
layer of the OSI model. It takes packets sent from one port and transmits
(repeats) them to every other port on the device, and it’s up to the receiving
device to accept or reject each packet. For example, if a computer on port 1
of a 4-port hub needs to send data to a computer on port 2, the hub sends
those packets to ports 2, 3, and 4. The clients connected to ports 3 and 4
examine the destination Media Access Control (MAC) address field in the
Ethernet header of the packet and see that the packet is not for them, so they
drop (discard) the packet. Figure 1-5 illustrates an example in which
computer A is transmitting data to computer B. When computer A sends
this data, all computers connected to the hub receive it. However, only
computer B actually accepts the data; the other computers discard it.
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Figure 1-5: The flow of traffic when computer A transmits data to computer B through a hub

As an analogy, suppose that you sent an email with the subject line
“Attention all marketing staff” to every employee in your company, rather
than to only those people who work in the marketing department. The
marketing department employees see the email is for them and open it. The
other employees see it’s not for them and discard it. You can see how this
approach to communication would result in a lot of unnecessary traffic and
wasted time, yet this is exactly how a hub functions.

The best alternatives to hubs in production and high-density networks
are switches, which are full-duplex devices that can send and receive data
synchronously.

Switches

Like a hub, a switch is designed to repeat packets. However, unlike a hub,
rather than broadcasting data to every port, a switch sends data to only the
computer for which the data is intended. Switches look just like hubs, as
shown in Figure 1-6.



Figure 1-6: A rack-mountable 48-port Ethernet switch

Several larger switches on the market, such as Cisco-branded ones, are
managed via specialized, vendor-specific software or web interfaces. These
switches are commonly referred to as managed switches. Managed switches
provide several features that can be useful in network management,
including the ability to enable or disable specific ports, view port statistics,
make configuration changes, and remotely reboot.

Switches also offer advanced functionality for handling transmitted
packets. To be able to communicate directly with specific devices, switches
must be able to uniquely identify devices based on their MAC addresses,
which means that they must operate on the data link layer of the OSI model.

Switches store the layer 2 address of every connected device in a CAM
table, which acts as a kind of traffic cop. When a packet is transmitted, the
switch reads the layer 2 header information in the packet and, using the
CAM table as reference, determines to which port(s) to send the packet.
Switches send packets only to specific ports, thus greatly reducing network
traffic.

Figure 1-7 illustrates traffic flow through a switch. In this figure,
computer A is sending data to only the intended recipient: computer B.
Multiple conversations can happen on the network at the same time, but
information is communicated directly between the switch and intended
recipient, not between the switch and all connected computers.
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Figure 1-7: The flow of traffic when computer A transmits data to computer B through a switch

Routers

A router is an advanced network device with a much higher level of
functionality than a switch or a hub. A router can take many shapes and
forms, but most devices have several LED indicator lights on the front and a
few network ports on the back, depending on the size of the network. Figure
1-8 shows an example of a small router.

W 1T enterasys

Figure 1-8: A low-level Enterasys router suitable for use in a small to midsized network



Routers operate at layer 3 of the OSI model, where they are responsible
for forwarding packets between two or more networks. The process used by
routers to direct the flow of traffic among networks is called routing. Several
types of routing protocols dictate how different types of packets are routed
to other networks. Routers commonly use layer 3 addresses (such as IP
addresses) to uniquely identify devices on a network.

A good way to illustrate the concept of routing is to use the analogy of a
neighborhood with several streets. Think of the houses, with their addresses,
as computers. Then think of each street as a network segment. Figure 1-9
illustrates this comparison. From your house, you can easily go visit your
neighbors in the other houses on the same street by walking in a straight line
from your front door to theirs. In the same way, a switch allows
communication among all computers on a network segment.

However, communicating with a neighbor who lives on another street is
like communicating with a computer that is not on the same segment.
Referring to Figure 1-9, let’s say that you're sitting at 502 Vine Street and
need to get to 206 Dogwood Lane. In order to do this, you must first turn
onto Oak Street and then turn onto Dogwood Lane. Think of this as
crossing network segments. If the device at 192.168.0.3 needs to
communicate with the device at 192.168.0.54, it must cross a router to get to
the 10.100.1.x network and then cross the destination network segment’s
router before it can get to the destination network segment.

The size and number of routers on a network will typically depend on
the network’s size and function. Personal and home office networks may
have only a small router located at the edge of the network. A large
corporate network might have several routers spread throughout various
departments, all connecting to one large central router or layer 3 switch (an
advanced type of switch that also has built-in functionality to act as a router).
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Figure 1-9: Comparison of a routed network to neighborhood streets

As you look at more and more network diagrams, you will come to
understand how data flows through these various points. Figure 1-10 shows
the layout of a very common form of routed network. In this example, two
separate networks are connected via a single router. If a computer on
network A wishes to communicate with a computer on network B, the
transmitted data must go through the router.
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Figure 1-10: The flow of traffic when computer A on one network transmits data to computer X on
another network through a router

Traffic Classifications

Network traffic can be classified as one of three types: broadcast, multicast,
and unicast. Each classification has a distinct characteristic that determines
how packets in that class are handled by networking hardware.

Broadcast Traffic

A broadcast packet is a packet that’s sent to all ports on a network segment,
regardless of whether a given port is a hub or switch.

There are layer 2 and layer 3 forms of broadcast traffic. On layer 2, the
MAC address ff:Af:ff:ff:ff:ff is the reserved broadcast address, and any traffic
sent to this address is broadcast to the entire network segment. Layer 3 also
has a specific broadcast address, but it varies based on the network address
range in use.

The highest possible IP address in an IP network range is reserved for

use as the broadcast address. For example, if your computer has an address of
192.168.0.20 and a 255.255.255.0 subnet mask, then 192.168.0.255 is the



broadcast address (more on IP addressing in Chapter 7).

The extent to which broadcast packets can travel is called the broadcast
domain, which is the network segment where any computer can directly
transmit to another computer without going through a router. In larger
networks with multiple hubs or switches connected via different media,
broadcast packets transmitted from one switch reach all the ports on all the
other switches on the network, as the packets are repeated from switch to
switch. Figure 1-11 shows an example of two broadcast domains on a small
network. Because each broadcast domain extends until it reaches the router,
broadcast packets circulate only within this specified broadcast domain.
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Figure 1-11: A broadcast domain extends to everything behind the current routed segment.

Our earlier neighborhood analogy provides good insight into how
broadcast domains work, too. You can think of a broadcast domain as being
like a neighborhood street where all your neighbors are sitting on their front
porch. If you stand on your front porch and yell, the people on your street
will be able to hear you. However, if you want to talk to someone on a
different street, you need to find a way to speak to that person directly,
rather than broadcasting (yelling) from your front porch.

Multicast Traffic



Multicast is a means of transmitting a packet from a single source to multiple
destinations simultaneously. The goal of multicasting is to use as little
bandwidth as possible. The optimization of this traffic lies in that a stream of
data is replicated fewer times along its path to its destination. The exact
handling of multicast traffic is highly dependent on its implementation in
individual protocols.

The primary method of implementing multicast traffic is via an
addressing scheme that joins the packet recipients to a multicast group. This
is how IP multicast works. This addressing scheme ensures that the packets
cannot be transmitted to computers to which the packets are not destined. In
fact, IP devotes an entire range of addresses to multicast. If you see an IP
address in the 224.0.0.0 to 239.255.255.255 range, it is most likely handling
multicast traffic because these ranges are reserved for that purpose.

Unicast Traffic

A wunicast packet is transmitted from one computer directly to another. The
details of how unicast functions are dependent on the protocol using it. For
example, consider a device that wishes to communicate with a web server.
This is a one-to-one connection, so this communication process would begin
with the client device transmitting a packet to only the web server.

Final Thoughts

This chapter covered the basics of networking that you need as a foundation
for packet analysis. You must understand what is going on at this level of
network communication before you can begin troubleshooting network
issues. In Chapter 2, we will look at multiple techniques for capturing the
packets you want to analyze.



2
TAPPING INTO THE WIRE

A key decision for effective packet analysis is where to
physically position a packet sniffer to appropriately
capture the data. Packet analysts often refer to placing
the packet sniffer as smiffing the wire, tapping the

network, or tapping into the wire.

Unfortunately, sniffing packets isn’t as simple as plugging a laptop into a
network port and capturing traffic. In fact, it’s sometimes more difficult to
place a packet sniffer on a network than it is to actually analyze the packets.
Sniffer placement is challenging because devices can be connected using a
large variety of networking hardware. Figure 2-1 illustrates a typical
situation. Because the devices on a modern network (switches and routers)
each handle traffic differently, you must take into account the physical setup
of the network you are analyzing.

The goal of this chapter is to help you develop an understanding of
packet sniffer placement in a variety of different network topologies. But
first, let’s look at how we’re able to see all the packets that cross the wire
we’re tapping into.
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Figure 2-1: Placing your sniffer on the network can be challenging when there are many
connections, and getting the data you want can be tricky.

Living Promiscuously

Before you can sniff packets on a network, you need a network interface card
(NIC) that supports a promiscuous mode driver. Promiscuous mode is what
allows a NIC to view all packets crossing the wire.

As you learned in Chapter 1, with network broadcast traffic, it’s
common for devices to receive packets that are not actually destined for
them. For example, the Address Resolution Protocol (ARP), a crucial fixture
on any network that we’ll examine in depth in Chapter 7, is used to
determine which MAC address corresponds to a particular IP address. To
find the matching MAC address, a device sends an ARP broadcast packet to
every device on its broadcast domain in hopes that the correct one will
respond.

A broadcast domain (the network segment where any computer can
directly transmit to another computer without going through a router) can
consist of several devices, but only the correct recipient device on that
domain should be interested in the ARP broadcast packet that’s transmitted.
It would be terribly inefficient for every device on the network to process the
ARP broadcast packet. Instead, if the packet is not destined for the device
and therefore isn’t useful to it, the device’s NIC discards the packet rather
than passing it to the CPU for processing.

Discarding packets not destined for the receiving host improves



processing efficiency, but it’s not so great for packet analysts. As analysts, we
typically want to capture every packet sent across the wire so we don’t risk
missing some crucial piece of information.

We can ensure we capture all of the traffic by using the NIC’s
promiscuous mode. When operating in promiscuous mode, the NIC passes
every packet it sees to the host’s processor, regardless of addressing. Once
the packet makes it to the CPU, a packet-sniffing application can grab it for
analysis.

Most modern NICs support promiscuous mode, and Wireshark includes
the libpcap/WinPcap driver, which allows it to switch your NIC directly
into promiscuous mode from the Wireshark GUIL. (We’ll talk more about
libpcap/WinPcap in Chapter 3.)

For the purposes of this book, you must have a NIC and an operating
system that support the use of promiscuous mode. The only time you don’t
need to sniff in promiscuous mode is when you want to see only the traffic
sent directly to the MAC address of the interface from which you are
sniffing.

Most operating systems (including Windows) will not let you use a NIC in
promiscuous mode unless you have elevated user privileges. If you can’t legally
obtain these privileges on a system, chances are that you shouldn’t be
performing any type of packet sniffing on that particular network.

Sniffing Around Hubs

Sniffing on a network that has hubs installed is a dream for any packet
analyst. As you learned in Chapter 1, traffic sent through a hub goes through
every port connected to that hub. Therefore, to analyze the traffic running
through a computer connected to a hub, all you need to do is connect a
packet sniffer to an empty port on the hub. You’ll be able to see all
communication to and from that computer, as well as all communication
between any other devices plugged into that hub. As illustrated in Figure 2-
2, your visibility window is limitless when your sniffer is connected to a hub-
based network.
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Figure 2-2: Sniffing on a hub network provides a limitless visibility window.

The visibility window, as shown in various diagrams throughout this book,
represents the devices on the network whose traffic you can see with a packet

sniffer.

Unfortunately for us, hub-based networks are rare because of the
headaches they cause network administrators. Since only one device can
communicate through a hub at any one time, a connected device must
compete for bandwidth with all the other devices trying to communicate.
When two or more devices communicate at the same time, packets collide,
as shown in Figure 2-3. The result may be packet loss, and the
communicating devices may compensate for that loss by retransmitting
packets, increasing network congestion. As the level of traffic and number of
collisions increase, devices may need to transmit a packet three or four times,
and network performance decreases dramatically. It’s therefore easy to
understand why most modern networks of any size use switches. Although
you’ll rarely find hubs in use on modern networks, you’ll occasionally run
into them on networks that support legacy hardware or specialized devices,
such as industrial control system (ICS) networks.
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Figure 2-3: Collisions occur on a hub network when two or more devices transmit at the same time.

The easiest way to identify whether a hub is in use in a network is to lay
eyes on the server room or networking closet. Most hubs are labeled as such.
When all else fails, just look in the darkest corner of the server closet for the
network hardware with a few inches of dust on it.

Sniffing in a Switched Environment

Switches are the most common type of connection device used in modern
networks. They provide an efficient way to transport data via broadcast,
unicast, and multicast traffic. Switches allow full-duplex communication,
meaning that machines can send and receive data simultaneously.

Unfortunately for packet analysts, switches add complexity. When you
connect a sniffer to a port on a switch, you can see only broadcast traffic and
the traffic transmitted and received by the device the sniffer is installed on,
as shown in Figure 2-4. To capture traffic from a target device on a switched
network, you need to take an additional step.
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Figure 2-4: The visibility window on a switched network is limited to the port you are plugged into.

There are four primary ways to capture this traffic: port mirroring,
hubbing out, using a tap, and ARP cache poisoning.

Port Mirroring

Port mirroring, or port spanning, is perhaps the easiest way to capture the
traffic from a target device on a switched network. In this type of setup, you
must have access to the command line or web management interface of the
switch on which the target computer is located. Also, the switch must
support port mirroring and have an empty port into which you can plug
your sniffer.

To enable port mirroring, you issue a command that forces the switch to
copy all traffic on one port to another port. For instance, to capture all the
traffic transmitted and received from a device on port 3 of a switch, you
could plug your analyzer into port 4 and mirror port 3 to port 4. Figure 2-5
illustrates port mirroring.
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Figure 2-5: Port mirroring allows you to expand your visibility window on a switched network.

How you set up port mirroring depends on the manufacturer of your
switch. For most enterprise switches, you’ll need to log in to a command line
interface and configure port mirroring using a specific command. You’ll find
a list of example port-mirroring commands in Table 2-1.

Table 2-1: Commands Used to Enable Port Mirroring

Manufacturer Command

Cisco set span <source port> <destination ports>
Enterasys set port mirroring create <source ports <destination port-
Nortel port-mirroring mode mirror-port <Ssource ports monitor-port

<destination ports

Some enterprise switches provide web-based GUIs that offer port mirroring as
an option, but these aven’t common and aven’t standardized. However, if your
switch provides an effective way to configure port mirroring through a GUI,
by all means use it. Additionally, more small office and home office (SOHO)
switches are beginning to provide port-mirroring capabilities, and those are

typically configured with a GUL




When port mirroring, be aware of the throughput of the ports you are
mirroring. Some switch manufacturers allow you to mirror multiple ports to
one port, functionality that may be wuseful when analyzing the
communication between two or more devices on a single switch. However,
let’s consider what can happen using some basic math. If you have a 24-port
switch and you mirror 23 full-duplex 100Mbps ports to one port, you have
potentially 4,600Mbps flowing to that port. This is well beyond the physical
threshold of a single port, so you could cause packet loss or network
slowdowns if the traffic reaches a certain level. This is sometimes referred to
as oversubscription. In these situations, switches have been known to
completely drop excess packets or even “pause” their internal circuitry,
preventing communication altogether. Be sure that you don’t cause such
problems when performing your capture.

Port mirroring may seem like an attractive, low-cost solution for
enterprise networks and scenarios in which you need to consistently monitor
specific network segments, such as in network security monitoring.
However, this technique is usually not reliable enough for such an
application. Especially at high throughput levels, port mirroring can provide
inconsistent results and cause data loss that can be hard to track down. For
such scenarios, you are advised to use a tap, discussed in “Using a Tap” on
page 24.

Hubbing Out

Another way to capture the traffic through a target device on a switched
network is by hubbing out. With this technique, you place the target device
and your analyzer system on the same network segment by plugging them
both directly into a hub. Many people think of hubbing out as “cheating,”
but it’s really a valid solution when you can’t perform port mirroring but still
have physical access to the switch the target device is plugged into.

To hub out, all you need is a hub and a few network cables. Once you
have your hardware, connect it as follows:

1. Find the switch the target device resides on and unplug the target from
the network.

2. Plug the target’s network cable into your hub.



3. Plug in another cable that connects your analyzer to the hub.

4. Plug in a network cable from your hub to the network switch to connect
the hub to the network.

Now you have put the target device and your analyzer in the same
broadcast domain, and all traffic from your target device will be broadcast so
that the analyzer can capture those packets, as illustrated in Figure 2-6.
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Figure 2-6: Hubbing out isolates your target device and analyzer.

In most situations, hubbing out reduces the duplex of the target device
from full (bi-directional) to half (one-directional). While this method isn’t
the cleanest way to capture packets, it’s sometimes your only option when a
switch doesn’t support port mirroring. But keep in mind that your hub will
also require a power connection, which can be difficult to find.

As a reminder, it is usually a nice gesture to alert the user of the device that
you will be unplugging it, especially if that user happens to be the company
CEO!

FINDING “TRUE” HUBS

When hubbing out, be sure that you’re using a true hub and not a falsely




labeled switch. Several networking hardware vendors have a bad habit of
marketing and selling a device as a “hub” when it actually functions as a
low-level switch. If you aren’t working with a proven, tested hub, you’ll
see only your own traffic, not that of the target device.

When you find something you believe is a hub, test it to make sure.
The best way to determine whether a device is a true hub is to hook up a
pair of computers to it and see whether one computer can sniff traffic
between the other computer and various other devices on the network,
such as another computer or a printer. If so, you’ve got a keeper!

Since hubs are so antiquated, they’re not mass-produced much
anymore. [t’s almost impossible to buy a true hub off the shelf, so you’ll
need to be creative in order to find one. A great source is often a surplus
auction held by your local school district. Public schools are required to
attempt to auction surplus items before disposing of them, and they
often have older hardware sitting around. I've seen people walk away
from auctions with several hubs for less than the cost of a plate of white
beans and cornbread. Alternatively, eBay can be a good source of hubs,
but be wary, as you may run into the same issue with mislabeled
switches.
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Using a Tap

Everybody knows the expression “Why have chicken when you could have
steak?” (Or, if you are from the South, “Why have liver loaf when you could
have fried bologna?”) This choice also applies to hubbing out versus using a
tap.

A network #ap is a hardware device that you can place between two
points on your cabling system to capture the packets between those two
points. As with hubbing out, you place a piece of hardware on the network
that allows you to capture the packets you need. The difference is that rather
than using a hub, you use a specialized piece of hardware designed for
network analysis.

There are two primary types of network taps: aggregated and
nonaggregated. Both types of taps sit between two devices in order to sniff the
communications. The primary difference between an aggregated tap and a
nonaggregated tap is that the nonaggregated tap has four ports, as shown in



Figure 2-7, and requires separate interfaces for monitoring traffic
bidirectionally, while the aggregated tap has only three ports and can
monitor bidirectionally with only a single interface.

Figure 2-7: A Barracuda non-aggregated tap

Taps also typically require a power connection, although some include
batteries that allow brief stints of packet sniffing.

Aggregated Taps

The aggregated tap is the simplest to use. It has only one physical monitor
port for sniffing bidirectional traffic.

To capture all traffic to and from a single computer plugged into a
switch using an aggregated tap, follow these steps:

1. Unplug the computer from the switch.
2. Plug one end of a network cable into the computer and plug the other
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end into the tap’s “in” port.

3. Plug one end of another network cable into the tap’s “out” port and
plug the other end into the network switch.

4. Plug one end of a final cable into the tap’s “monitor” port and plug the
other end into the computer that is acting as your sniffer.

The aggregated tap should be connected as shown in Figure 2-8. At this
point, your sniffer should be capturing all traffic in and out of the computer
you've plugged into the tap.
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Figure 2-8: Using an aggregated tap to intercept network traffic

Nonaggregated Taps

The nonaggregated tap is slightly more complex than the aggregated type,
but it allows a bit more flexibility when capturing traffic. Instead of having a
single monitor port that can be wused to listen to bidirectional
communication, the nonaggregated type has two monitor ports. One
monitor port is used for sniffing traffic in one direction (from the computer
connected to the tap), and the other monitor port is used for sniffing traffic
in the other direction (to the computer connected to the tap).

To capture all traffic to and from a single computer plugged into a
switch, follow these steps:

1. Unplug the computer from the switch.

2. Plug one end of a network cable into the computer and plug the other
end into the tap’s “in” port.

3. Plug one end of another network cable into the tap’s “out” port and
plug the other end into the network switch.

4. Plug one end of a third network cable into the tap’s “monitor A” port
and plug the other end into one NIC on the computer that is acting as
your sniffer.

5. Plug one end of a final cable into the tap’s “monitor B” port and plug
the other end into a second NIC on the computer that is acting as your



sniffer.

The nonaggregated tap should be connected as shown in Figure 2-9.
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Figure 2-9: Using a nonaggregated tap to intercept network traffic

While these examples may make it appear as though you can monitor
only a single device using a tap, you can actually monitor many devices by
getting creative with your placement of the tap. For example, if you wanted
to monitor all the communication between an entire network segment and
the Internet, you could place the tap between the switch to which all of the
other devices are connected and the network’s upstream router. This
placement at a network choke point lets you collect the traffic you desire.
This strategy is commonly used in security monitoring.

Choosing a Network Tap

Which type of tap is better? In most situations, aggregated taps are preferred
because they require less cabling and don’t need two NICs on your sniffer
computer. However, if you need to capture a high volume of traffic or care
about traffic going in only one direction, a nonaggregated tap is a better
choice.

You can purchase taps of all sizes, ranging from simple Ethernet taps
that run about $150 to enterprise-grade fiber optic taps in the six-figure
range. I've used enterprise-grade taps from Ixia (formerly Net Optics),
Dualcomm, and Fluke Networks and have been very happy with them, but



there are many other great taps available as well. If you’re using a tap for an
enterprise application, you’ll want to be sure the tap has fail-open capability.
This means that if the tap malfunctions or dies, packets will still pass
through it and network connectivity for the tapped link won’t be
interrupted.

ARP Cache Poisoning

One of my favorite techniques for tapping into the wire is ARP cache
poisoning. We'll cover the ARP protocol in detail in Chapter 7, but a briet
explanation is necessary here so you can understand how this technique
works.

The ARP Process

Recall from Chapter 1 that the two main types of packet addressing are at
layers 2 and 3 of the OSI model. These layer 2 addresses, or MAC addresses,
are used in conjunction with whichever layer 3 addressing system you are
using. In this book, in accordance with industry-standard terminology, I
refer to the layer 3 addressing system as the IP addressing system.

All devices on a network communicate with each other on layer 3 using
IP addresses. Because switches operate on layer 2 of the OSI model, they are
cognizant of only layer 2 MAC addresses, so devices must be able to include
this information in packets they construct. When a MAC address is not
known, it must be obtained using the known layer 3 IP addresses so traffic
can be forwarded to the appropriate device. This translation process is done
through the layer 2 protocol ARP.

The ARP process, for computers connected to Ethernet networks,
begins when one computer wishes to communicate with another. The
transmitting computer first checks its ARP cache to see whether it already
has the MAC address associated with the IP address of the destination
computer. If it does not, it sends an ARP request to the data link layer
broadcast address ff:ff:f:Af:ff:ff, as discussed in Chapter 1. This broadcast
packet is received by every computer on that particular Ethernet segment.
The packet basically asks, “Which IP address owns the ax:ww:acac:vw:aco:xx

MAC address?”

Devices without the destination computer’s IP address simply discard



this ARP request. The destination machine replies to the packet with its
MAC address via an ARP reply. At this point, the original transmitting
computer now has the data link layer addressing information it needs to
communicate with the remote computer, and it stores that information in its
ARP cache for fast retrieval.

How ARP Cache Poisoning Works

ARP cache poisoning, sometimes called ARP spoofing, is an advanced form of
tapping into the wire on a switched network. It works by sending ARP
messages to an Ethernet switch or router with fake MAC (layer 2) addresses
in order to intercept the traffic of another computer. Figure 2-10 illustrates
this setup.

Normal Traffic Pattern Poisoned ARP Cache

Target Computer Target Computer
= Switch Router = Switch Router
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Sniffer Sniffer

Figure 2-10: ARP cache poisoning lets you intercept the traffic of your target computer.

This technique is commonly used by attackers to send falsely addressed
packets to client systems in order to intercept certain traffic or cause denial-
of-service (DoS) attacks on a target. However, it can also be a legitimate way
to capture the packets of a target machine on a switched network.

Using Cain & Abel

When attempting to poison the ARP cache, the first step is to acquire the
necessary tools and collect some information. For our demonstration, we’ll
use the popular security tool Cain & Abel from oxid.it (http://www.oxid.it/),
which supports Windows systems. Download and install it now, according to


http://www.oxid.it/

the directions on the website.

When you attempt to download Cain & Abel, there is a good chance that
antivirus software or your browser will flag the software as malicious or as a
“backer tool.” This tool has multiple uses, including several that could be
nefarious. For our purposes, it poses no threat to your system.

Before you can use Cain & Abel, you’ll need to collect certain
information, including the IP address of your analyzer system, the remote
system from which you wish to capture the traffic, and the router from
which the remote system is downstream.

When you first open Cain & Abel, you’ll notice a series of tabs near the
top of the window. (ARP cache poisoning is only one of Cain & Abel’s
features.) For our purposes, we’ll be working in the Sniffer tab. When you
click this tab, you should see an empty table, as shown in Figure 2-11.
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Figure 2-11: The Sniffer tab in the Cain & Abel main window

To complete this table, you’ll need to activate the program’s built-in
sniffer and scan your network for hosts. To do so, follow these steps:



1. Click the second icon from the left on the toolbar, which resembles a

NIC.

2. You’ll be asked to select the interface you wish to sniff. Choose the one
that is connected to the network on which you’ll be performing your
ARP cache poisoning. If this is your first time using Cain & Abel, select
this interface and click OK. Otherwise, if you've selected an interface in
Cain & Abel before, your selection will have been saved, and you’ll need
to press the NIC icon a second time to select the interface. (Ensure that
this button is depressed to activate Cain & Abel’s built-in sniffer.)

3. To build a list of available hosts on your network, click the plus (+)
button. The MAC Address Scanner dialog appears, as shown in Figure
2-12. The All hosts in my subnet radio button should be selected (or
you can specify an address range if necessary). Click OK to continue.
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Figure 2-12: Scanning for MAC addresses using the Cain & Abel network discovery tool

Some Windows 10 users report Cain & Abel is unable to determine the
IP address of their network interfaces, which prohibits the completion of this
process. If you have this problem, when configuring network interfaces



you’ll see that the IP address of your interfaces is 0.0.0.0. To remedy this,
take the following steps:

1. If Cain & Abel is open, close it.

2. On the desktop search bar, type ncpa.cpl to open the Network
Connections dialog.

3. Right-click the network interface you’ll be sniffing from and click
Properties.

4. Double-click Internet Protocol Version 4 (TCP/IPv4).
5. Click the Advanced button and choose the DNS tab.

6. Select the checkbox next to Use this connection’s DNS suffix in
DNS registration to activate it.

7. Click OK to exit the open dialogs and relaunch Cain & Abel.

The grid should now be filled with a list of all the hosts on your attached
network, along with their MAC addresses, IP addresses, and vendor
information. This is the list you’ll work from when setting up ARP cache
poisoning.

At the bottom of the program window, you should see a set of tabs that
will take you to other windows under the Sniffer heading. Now that you
have built your host list, you’ll be working from the APR (for ARP Poison
Routing) tab. Switch to the APR window now by clicking the tab.

Once in the APR window, you are presented with two empty tables.
After you’ve completed the setup steps, the upper table will show the devices
involved in your ARP cache poisoning, and the lower one will show all
communication between your poisoned machines.

To set up your poisoning, follow these steps:

1. Click in the blank area in the upper portion of the screen. Then click
the plus (+) button on the program’s standard toolbar.

2. The window that appears has two selection panes. On the left side,
you’ll see a list of all available hosts on your network. If you click the IP
address of the target computer, the pane on the right will show a list of
all hosts in the network, except for the target machine’s IP address.



3. In the right pane, click the IP address of the router that is directly
upstream from the target machine, as shown in Figure 2-13, and click

OK. The IP addresses of both devices should now be listed in the upper

table in the main application window.

4. 'To complete the process, click the yellow-and-black radiation symbol
on the standard toolbar. This will activate Cain & Abel’s ARP cache
poisoning features and allow your analyzing system to be the
middleman for all communications between the target system and its
upstream router.
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Figure 2-13: Selecting the devices for which you wish to enable ARP cache poisoning

You should now be able to fire up your packet sniffer and begin the
analysis process. When you have finished capturing traffic, simply click the
yellow-and-black radiation symbol again to stop ARP cache poisoning.

A Word of Caution About ARP Cache Poisoning

A final note on ARP cache poisoning: you should be very aware of the roles
of the systems for which you implement this process. For instance, don’t use
this technique when the target device is something with very high network



utilization, such as a file server with a 1Gbps link to the network (especially
if your analyzer system provides only a 100Mbps link).

When you reroute traffic using the technique shown in this example, all
traffic transmitted and received by the target system must first go through
your analyzer system, therefore making your analyzer the bottleneck in the
communication process. This rerouting can have a DoS-type effect on the
machine you are analyzing, resulting in degraded network performance and
faulty analysis data. Traffic congestion can also prohibit SSL-based
communication from working as expected.

You can avoid having all the traffic go through your analyzer system by using
a feature called asymmetric routing. For more information about this
technique, see the oxid.it user manual
(http://www.oxid.it/ca_um/topics/apr.htm).

Sniffing in a Routed Environment

All the techniques for tapping into the wire on a switched network are
available on routed networks as well. The only major consideration when
dealing with routed environments is the importance of sniffer placement
when you are troubleshooting a problem that spans multiple network
segments.

As you’ve learned, a device’s broadcast domain extends until it reaches a
router, at which point the traffic is handed off to the next upstream router.
When data must traverse multiple routers, it’s important to analyze the
traffic on all sides of the router.

For example, consider the problem you might encounter in a network
with several segments connected via multiple routers. In this network, each
segment communicates with an upstream segment to store and retrieve data.
In Figure 2-14, the problem we’re trying to solve is that a downstream
subnet, network D, can’t communicate with any devices on network A.
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Figure 2-14: A computer on network D can’t communicate with computers on network A.

If you sniff the traffic of a device on network D that is having trouble
communicating with devices on other networks, you may clearly see data
being transmitted to another segment, but you might not see data coming
back. If you rethink the positioning of your sniffer and begin sniffing the
traffic in the next upstream network segment (network B), you’ll have a
clearer picture of what is happening. At this point, you might find that traffic
is dropped or routed incorrectly by network B’s router. Eventually, this leads
you to a router configuration problem that, when corrected, solves your
larger dilemma. Although this scenario is a bit broad, the moral of the story
is that when dealing with multiple routers and network segments, you may
need to move your sniffer around a bit to get the entire picture and pinpoint
the problem.
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NETWORK MAPS

In our discussion of network placement, we have examined several
network maps. A network map, or network diagram, shows all technical
resources on a network and how they are connected.

There is no better way to determine the placement of your packet
sniffer than to visualize the network. If you have a network map
available, keep it handy, as it will be a valuable asset in the
troubleshooting and analysis process. You may even want to make a
detailed map of your own network. Remember that sometimes half the
battle in troubleshooting is ensuring you are collecting the right data.
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Sniffer Placement in Practice

We have looked at four ways to capture network traffic in a switched
environment. We can add one more if we simply consider installing a
packet-sniffing application on a single device from which we want to capture
traffic (the direct install method). Given these five methods, it can be a bit
confusing to determine which one is the most appropriate. Table 2-2
provides some general guidelines for each method.

As analysts, we need to be as stealthy as possible. In a perfect world, we
collect the data we need without leaving a footprint. Just as forensic
investigators don’t want to contaminate a crime scene, we don’t want to
contaminate our captured network traffic.

Table 2-2: Guidelines for Packet Sniffing in a Switched Environment

Technique Guidelines

Port * Leaves no network footprint and generates no additional
mirroring packets.
* Can be configured without taking the client offline, which
is convenient when mirroring router or server ports.

* Requires processing resources from the switch and can be
inconsistent at higher throughput levels.

Hubbing Works when you are not concerned about taking the host
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Using a tap

ARP cache
poisoning

Direct
install
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Ineffective when you must capture traffic from multiple
hosts, as collisions and dropped packets are likely.

Can result in lost packets on modern 100/1000Mbps hosts
because most true hubs are only 10Mbps.

Ideal when you are not concerned about taking the host
temporarily offline.

The only option when you need to sniff traffic from a
fiber-optic connection.

Preferred solution for enterprise packet capture and
continuous monitoring because taps are reliable and can
scale to high throughput links.

Since taps are made for the task at hand and are up to par
with modern network speeds, this method is superior to
hubbing out.

Can be expensive, especially at scale, and so may be cost
prohibitive.

Considered very sloppy, as it involves injecting packets
onto the network to reroute traffic through your sniffer.

When port mirroring is not an option, can be effective for
quickly capturing traffic from a device without taking it
offline.

Requires great care so as to not impact network
functionality.

Usually not recommended because if there is an issue with
a host, that issue could cause packets to be dropped or
manipulated in such a way that they are not represented
accurately.

The NIC of the host doesn’t need to be in promiscuous
mode.

Best for test environments, examining/baselining
performance, and examining capture files created
elsewhere.




As we step through practical scenarios in later chapters, we’ll discuss the
best ways to capture the data we require on a case-by-case basis. For the time
being, the flowchart in Figure 2-15 should help you choose the best method
for capturing traffic in a given situation. The chart takes different factors
into consideration, starting with whether you are capturing packets at home
or at work. Remember that this flowchart is simply a general reference and
doesn’t cover every possible scenario in which you might tap into the wire.

Tapping into
the wire
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throughput?
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switch support port
mirroring?

Port mirroring j=— Yes Home Enterprise Yes —] Tap
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Hub out No—#={  Hub out
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Figure 2-15: A diagram to help determine which method is best for tapping into the wire
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INTRODUCTION TO WIRESHARK

As mentioned in Chapter 1, several packet-sniffing
applications are available for performing network
analysis, but we’ll focus mostly on Wireshark in this

book. This chapter introduces Wireshark.

A Brief History of Wireshark

Wireshark has a very rich history. Gerald Combs, a computer science
graduate of the University of Missouri at Kansas City, originally developed it
out of necessity. The first version of Combs’s application, called Ethereal,

was released in 1998 under the GNU Public License (GPL).

Eight years after releasing Ethereal, Combs left his job to pursue other
career opportunities. Unfortunately, his employer at that time had full rights
to the Ethereal trademarks, and Combs was unable to reach an agreement
that would allow him to control the Ethereal brand. Instead, Combs and the

rest of the development team rebranded the project as Wireshark in mid-
2006.

Wireshark has grown dramatically in popularity, and its collaborative
development team now boasts more than 500 contributors. The program



that exists under the Ethereal name is no longer being developed.

The Benefits of Wireshark

Wireshark offers several benefits that make it appealing for everyday use.
Aimed at both the up-and-coming and the expert packet analyst, it offers a
variety of features to entice each. Let’s examine Wireshark according to the

criteria defined in Chapter 1 for selecting a packet-sniffing tool.

Supported protocols Wireshark excels in the number of protocols
that it supports—more than 1,000 as of this writing. These range from
common ones like IP and DHCP to more advanced proprietary

protocols like DNP3 and BitTorrent. And because Wireshark is
developed under an open source model, new protocol support is added

with each update.

In the unlikely event that Wireshark doesn’t support a protocol you need, you
can code that support yourself. Then you can submit your code to the
Wireshark developers for consideration for inclusion in the application. You
can learn about what is required to contribute code to the Wireshark project at
https://www.wireshark.org/develop.html.

User-friendliness The Wireshark interface is one of the easiest to
understand of any packet-sniffing application. It is GUI based, with
clearly written context menus and a straightforward layout. It also
provides several features designed to enhance wusability, such as
protocol-based color coding and detailed graphical representations of
raw data. Unlike some of the more complicated command line—driven
alternatives, like tcpdump, the Wireshark GUI is accessible to those just

entering the world of packet analysis.

Cost  Since it’s open source and released under the GNNU Public
License (GPL), Wireshark’s pricing can’t be beat: it’s absolutely free.
You can download and use Wireshark for any purpose, whether

personal or commercial.
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Although Wireshark may be free, some people have made the mistake of
paying for it by accident. If you search for packet sniffers on eBay, you may be
surprised by how many people would love to sell you a “professional enterprise
license” for Wireshark for the low, low price of $39.95. If you decide you really
want to buy it, give me a call, and we can talk about some oceanfront property
in Kentucky 1 have for sale!

Program support A software package’s level of support can make or
break it. Freely distributed software such as Wireshark may not come
with any formal support, so the open source community often relies on
its user base to provide assistance. Luckily for us, the Wireshark
community is one of the most active of any open source project. The
Wireshark website links directly to several forms of support, including
online documentation; a wiki; FAQs; and a place to sign up for the
Wireshark mailing list, which is monitored by most of the program’s
top developers. Paid support for Wireshark is also available from

Riverbed Technology.

Source code access Wireshark is open source software, so you can
access the code at any time. This can be useful for troubleshooting
application issues, understanding how protocol dissectors work, or

making your own contributions.

Operating system support Wireshark supports all major modern
operating systems, including Windows, Linux-based, and OS X
platforms. You can view a complete list of supported operating systems

on the Wireshark home page.

Installing Wireshark

The Wireshark installation process is surprisingly simple. However, before
you install Wireshark, make sure that your system meets the following

requirements:

*  Any modern 32-bit x86 or 64-bit CPU
*  400MB available RAM, but more for larger capture files



* Atleast 300MB of available storage space, plus space for capture files
* NIC that supports promiscuous mode
*  WinPcap/libpcap capture driver

The WinPcap capture driver is the Windows implementation of the
pcap packet-capturing application programming interface (API). Simply put,
this driver interacts with your operating system to capture raw packet data,
apply filters, and switch the NIC in and out of promiscuous mode.

Although you can download WinPcap separately (from
http:/fwww.winpcap.org/), it is typically better to install WinPcap from the
Wireshark installation package, because the included version of WinPcap
has been tested to work with Wireshark.

Installing on Windows Systems

The current version of Wireshark is tested to support versions of Windows
that are still within their extended support lifetime. As of the writing of this
book, that encompasses Windows Vista; Windows 7; Windows 8; Windows
10; and Windows Servers 2003, 2008, and 2012. While Wireshark will often
work on other versions of Windows (like Windows XP), those versions are
not officially supported.

The first step when installing Wireshark on Windows is to obtain the
latest installation build from the official Wireshark web page,
http://www.wireshark.org/. Navigate to the Download Wireshark section on
the website and choose a release mirror. Once you’ve downloaded the
package, follow these steps:

1. Double-click the .exe file to begin installation and then click Next in the
introductory window.

2. Read the licensing agreement and click I Agree if you agree.

3. Select the components of Wireshark you wish to install, as shown in
Figure 3-1. For our purposes, you can accept the defaults by clicking
Next.
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Figure 3-1: Choosing the Wireshark components you wish to install

4. Click Next in the Additional Tasks window.
5. Select the location where you wish to install Wireshark and click Next.

6. When the dialog asks whether you want to install WinPcap, first make
sure the Install WinPcap box is checked, as shown in Figure 3-2. Then
click Install. The installation process should begin.

7. About halfway through the Wireshark installation, the WinPcap
installation should start. When it does, click Next in the introductory
window, read the licensing agreement, and click I Agree.

8. You'll be given the option to install USBPcap, a utility for collecting
data from USB devices. Select the appropriate check box if you wish to
do so and click Next.
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Figure 3-2: Selecting the option to install the WinPcap driver

9. WinPcap and, if you selected it, USBPcap should install on your
computer. After this installation is complete, click Finish.

10. Wireshark should complete its installation. When it’s finished, click
Next.

11. In the installation confirmation window, click Finish.

Installing on Linux Systems

Wireshark works on most modern Unix-based platforms. It can be installed
either by using the distributions package manager of choice or by
downloading and installing the package appropriate for your distribution. It
isn’t realistic to cover installation procedures for everyone, so we’ll just look
at a few.

Typically, for system-wide software, root access is a requirement.
However, local software installations compiled from source can usually be
installed without root access.



RPM-Based Systems

If you’re using Red Hat Linux or a distribution based on it, like CentOS,
then it’s likely the OS has the Yum package management tool installed by
default. If that’s the case, you may be able to install Wireshark the quick way
by pulling it from the distribution’s software repository. To do this, open a
console window and enter the following command:

$ sudo yum install wireshark

If any dependencies are needed, you’ll be prompted to install them. If
everything completes successfully, then you should be able to run Wireshark
from the command line and access it via the GUI.

DEB-Based Systems

Most DEB-based distributions, such as Debian or Ubuntu, include the APT
package management tool, which allows you to install Wireshark from the
OS software repository. To install Wireshark with this tool, open a console
window and enter the following:

$ sudo apt-get install wireshark wireshark-qt

Once again, you’ll be prompted to install any required dependencies to
complete the installation.

Compiling from Source

Due to changes in operation system architecture and Wireshark features, the
instructions for compiling Wireshark from source might change over time.
That’s one reason it’s recommended to use your operating system package
manager to perform the installation. However, if your Linux distribution
doesn’t use an automated package management software or you require a
specialized installation, Wireshark can be installed manually by compiling it
from source. To do so, complete the following steps:

1. Download the source package from the Wireshark web page.

2. Extract the archive by entering the following (substituting the filename
of your downloaded package as appropriate):



$ tar -jxvf <file_name_here>.tar.bz2

3. Before configuring and installing Wireshark, a few dependencies may
be required depending on your chosen Linux flavor. For example,
Ubuntu 14.04 requires the installation of a few other packages for
Wireshark to work. These can be installed by issuing the following
command (you’ll need to do this as a root-level user or by invoking sudo
before the command):

$ sudo apt-get install pkg-config bison flex qt5-default libgtk-3-dev libpcap-
dev qttools5-dev-tools

4. After installing prerequisites, navigate to the directory where the
Wireshark files were extracted.

5. Configure the source so that it will build correctly for your distribution
of Linux by using the command . /configure. If you wish to deviate
from the default installation options, you can specify those options at
this point in the installation. If any dependencies are missing, you’ll
most likely receive an error. You must install and configure those
dependencies before proceeding. If configuration is successful, you
should see a message noting success, as shown in Figure 3-3.
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Figure 3-3: When the . /configure command is successful, a message is displayed with the

selected configurations.

. Enter the make command to build the source into a binary.

7. Initiate the final installation with sudo make install.

. Run sudo/sbin/ldconfig to complete the installation.




If you run into an error following these steps, you may bave to install an
additional package.

Installing on 0S X Systems
To install Wireshark on OS X, complete these steps:

1. Download the OS X package from the Wireshark web page.

2. Run the installation utility and proceed through its steps. Once you’ve
accepted the required end user license agreement, you’ll have the option
to select the installation location.

3. Complete the installation wizard.

Wireshark Fundamentals

Once you've successfully installed Wireshark on your system, you can begin
to familiarize yourself with it. Now you finally get to open your fully
functioning packet sniffer and see . . . absolutely nothing!

Okay, so Wireshark isn’t very interesting when you first open it. For
things to really get exciting, you need to get some data.

Your First Packet Capture

To get packet data into Wireshark, you’ll perform your first packet capture.
You may be thinking, “How am I going to capture packets when nothing is
wrong on the network?”

First, there is always something wrong on the network. If you don’t
believe me, then go ahead and send an email to all of your network users and
let them know that everything is working perfectly.

Secondly, there doesn’t need to be something wrong in order for you to
perform packet analysis. In fact, most packet analysts spend more time
analyzing problem-free traffic than traffic that they are troubleshooting.
After all, you need a baseline for comparison to effectively troubleshoot
network traffic. For example, if you ever hope to solve a problem with
DHCP by analyzing its traffic, you must understand what the flow of



working DHCP traffic looks like.

More broadly, to find anomalies in daily network activity, you must
know what normal daily network activity looks like. When your network is
running smoothly, your observations become a baseline representing what
traffic looks like in a normal state.

So, let’s capture some packets!

1. Open Wireshark.

2. From the main drop-down menu, select Capture and then Options.
You should see a dialog listing the various interfaces that can be used to
capture packets, along with some basic information about each one
(Figure 3-4). Take note of the Traffic heading, which shows a line
graph indicating the amount of traffic currently passing through that
interface. Peaks on a line tell you that you are actually capturing
packets. If you aren’t, the line will be flat. You can also expand each
interface by clicking the arrow to the left of it to see the addressing
information, such as the MAC address or IP address, tied to it.

3. Click the interface you wish to use and click Start. Data should begin
filling the window.

4. Wait about a minute or so, and when you are ready to stop the capture
and view your data, click the Stop button from the Capture drop-down

menu.
M Wireshark . Capture Interfaces [ X
Input Output Options
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Bluetooth Network Connection Ethernet enabled default 2
Ethernet Ethernet enabled default 2
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Ethemet 3 )_ Ethernet enabled default 2
Local Area Connection® 2 Ethernet enabled default 2
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USBPcapl USBPcap enabled default 2
USBPcapl USBPcap enabled default 2
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Figure 3-4: Selecting an interface on which to perform your packet capture



Once you have completed these steps and finished the capture process,
the Wireshark main window should be alive with data. As a matter of fact,
you might be overwhelmed by the amount of data that appears, but it will all
start to make sense quickly as we break down the main window of Wireshark
one piece at a time.

Wireshark’s Main Window

You’ll spend most of your time in the Wireshark main window. This is
where all of the packets you capture are displayed and broken down into a
more understandable format. Using the packet capture you just made, let’s
take a look at Wireshark’s main window, shown in Figure 3-5.
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Figure 3-5: The Wireshark main window uses a three-pane design.

The three panes in the main window—~Packet List, Packet Details, and
Packet Bytes from top to bottom—depend on one another. To view the
details of an individual packet in the Packet Details pane, you must first
select it in the Packet List pane. When you select a portion of the packet in
the Packet Details pane, the Packet Bytes pane displays the bytes that
correspond with that portion.



Notice that Figure 3-5 lists a few different protocols in the Packet List pane.
There is no visual separation of protocols on different layers (other than via
color coding); all packets are shown as they are received on the wire.

Here’s what each pane contains:

Packet List The top pane displays a table containing all packets in the
current capture file. It has columns containing the packet number, the
relative time the packet was captured, the source and destination of the
packet, the packet’s protocol, and some general information found in

the packet.

When I refer to tratfic, 'm referring to all packets displayed in the Packet
List pane. When I refer to DNS traffic specifically, I mean the DNS protocol
packets in the Packet List pane.

Packet Details The middle pane contains a hierarchical display of
information about a single packet and can be collapsed or expanded to
show all of the information collected about the individual packet.

Packet Bytes The lower pane—perhaps the most confusing—displays
a packet in its raw, unprocessed form; that is, it shows what the packet
looks like as it travels across the wire. This is raw information with
nothing warm or fuzzy to make it easier to follow. We’ll discuss
methods for interpreting this type of data in Appendix B.

Wireshark Preferences

Wireshark has several preferences that can be customized to meet your
needs. To access Wireshark’s preferences, select Edit from the main drop-
down menu and click Preferences. You'll see the Preferences dialog, which

contains several customizable options, as shown in Figure 3-6.

Wireshark’s preferences are divided into six major sections plus an

Advanced section:



Appearance These preferences determine how Wireshark presents
data. You can change most options here according to your personal
preferences, including whether to save window positions, the layout of
the three main panes, the placement of the scroll bar, the placement of
the Packet List pane columns, the fonts used to display the captured
data, and the background and foreground colors.

M Wireshark - Preferences ? *
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Columns Open filesin
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Protocols filter entries

Statistics

Advanced [1{1 recent files

[] Confirm unsaved capture files
[] Automatically scroll packet details

Packet detail scroll percentage: |0
Main toolbar style: Iconsonly

Language: |Use system setting ~
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Figure 3-6: You can customize Wireshark using the Preferences dialog options.

Capture These preferences allow you to specify options related to the
way packets are captured, including your default capture interface,
whether to use promiscuous mode by default, and whether to update the
Packet List pane in real time.

Filter Expressions Later we will discuss how Wireshark allows you to
filter traffic based on specific criteria. This section of the Preferences
dialog allows you to create and manage those filters.

Name Resolution  Through these preferences, you can activate
features of Wireshark that allow it to resolve addresses into more
recognizable names (including MAC, network, and transport name



resolution) and specify the maximum number of concurrent name
resolution requests.

Protocols 'This section allows you to manipulate options related to the
capture and display of the various packets Wireshark is capable of
decoding. Not every protocol has configurable preferences, but some
have several options that can be changed. These options are best left at
their defaults unless you have a specific reason to change them.

Statistics  'This section provides a few configurable options for
Wireshark’s statistical features, which will be covered in more depth in

Chapter 5.

Advanced  Settings that don’t fit neatly into any of the previous
categories can be found here. Editing these settings is something
typically only done by Wireshark power users.

Packet Color Coding

If you are anything like me, you enjoy shiny objects and pretty colors. If so,
you probably got excited when you saw all those different colors in the
Packet List pane, as in the example in Figure 3-7 (well, the figure is in black
and white if you’re reading this book in print, but you get the idea). It may
seem as if these colors are randomly assigned to each packet, but this isn’t
the case.

27 1.807280 172.16.16.128 172.16,16. 255 NBNS 92 Name query NB ISATAP<0O»
2B 2.557340 172.16.16.128 172.16.16.255 NBNS 92 Name query NB ISATAP<ODO>
29 3.009402 172.16.16.128 4.2.2.1 DNS 86 Standard query Oxb86a PTR 128.16.16.172.1in-addr.arpa

30 3.050866 4.2.2.1 172.16.16.128 DNS 163 standard query response Oxb86a No such name

31 3.180870 172.16.16.128 157.166.226.25 TCP 66 2918-80 [SYN] Seq=D win=8192 Len=0 M55=1460 wS=4 SACK_PERM=1
- 241650 157.166.226.25 172.16.16.128 TCP 66 80-2918 [SYN, ACK] Seq=0 Ack: i
. 241744 172.16.16.128 157.166.226.25 54 2918-80 [ACK] Seqg=1 Ack=1 wi

Len=0 M55=1406 SACK_PE
0

HTTP ai GET / H

Figure 3-7: Wireshark’s color coding allows for quick protocol identification.

Each packet is displayed in a certain color for a reason. The color can
reflect the packet’s protocol and specific field values. For example, all UDP
traffic is blue and all HT'TP traffic is green by default. The color coding
allows you to quickly differentiate between various protocols so that you
don’t need to read the protocol field in the Packet List pane for every packet.
You’ll find that this greatly speeds up the time it takes to browse through
large capture files.



Wireshark makes it easy to see which colors are assigned to each
protocol through the Coloring Rules window, shown in Figure 3-8. To open
this window, select View from the main drop-down menu and click
Coloring Rules.
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Figure 3-8: The Coloring Rules window lets you view and modify the coloring of packets.

Coloring rules are based on Wireshark filters, which we will look at in
Chapter 4. Using these filters, you can define your own coloring rules and
modify existing ones. For example, to change the background color used for
HTTP traffic from the default green to lavender, follow these steps:

1. Open Wireshark and access the Coloring Rules window (View p
Coloring Rules).

2. Find the HT'TP coloring rule in the coloring rules list and select it by
clicking it once.

3. You'll see the foreground and background colors at the bottom of the
screen, as shown in Figure 3-9.
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Figure 3-9: When editing a color filter, you can modify both the foreground and background
colors.

4. Click the Background button.
5. Select the color you wish to use on the color wheel and click OK.

6. Click OK once more to accept the changes and return to the main
window. The user interface should then reload itself to reflect the
updated color scheme.

As you work with Wireshark on your network, you’ll begin to notice
that you deal with certain protocols more than others. Here’s where color-
coded packets can make your life a lot easier. For example, if you think that
there is a rogue DHCP server on your network handing out IP leases, you
could modify the coloring rule for the DHCP protocol so that it shows up in
bright yellow (or some other easily identifiable color). This would allow you
to pick out all DHCP traffic much more quickly, making your packet
analysis more efficient.

Not too long ago, I was discussing Wireshark coloring rules during a
presentation to a local group of students. One student was relieved to find out
he could edit the coloring rules because be was color-blind and bad trouble




distinguishing certain protocols based on the default coloring. The ability to
modify the default coloving rules thus provides some degree of accessibility.

Configuration Files

It’s helpful to understand where Wireshark stores various configuration
settings should you ever need to modify those files directly. You can find the
location of the Wireshark configuration files by selecting Help from the
main drop-down menu, choosing About Wireshark, and clicking the
Folders tab. This window is shown in Figure 3-10.

M 2bout Wireshark ? x
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Figure 3-10: Locating Wireshark configuration files

The two most important locations in terms of Wireshark customization
are the personal and global configuration directories. The global
configuration directory contains all of the default settings for Wireshark and
is where the default profile stores its settings. The personal configuration
folder contains customized settings and profiles unique to your account. Any
new profiles you create will be stored in a subdirectory of the personal
configuration folder using whatever name you provide.

The difference between global and personal configuration directories is
an important one, because any changes made to the global configuration files



will affect every Wireshark user on a system.

Configuration Profiles

After learning about Wireshark’s preferences, you may find that sometimes
you want to use one set of preferences but then quickly switch to another set
to address a different scenario. Instead of making you manually reconfigure
your preferences every time this occurs, Wireshark introduced configuration
profiles, which allow users to create saved sets of preferences.

A configuration profile stores the following:

® Preferences

* Capture filters

* Display filters

* Coloring rules

* Disabled protocols
* Forced decodes

* Recent settings, such as pane sizes, view menu settings, and column
widths

*  Protocol-specific tables, such as SNMP users and custom HT'TP
headers

To view the list of profiles, click Edit in the main drop-down menu and
choose the Configuration Profiles option. Alternatively, you can right-click
the profiles section at the bottom-right side of the screen and select the
Manage Profiles option. When you arrive at the Configuration Profiles
window, you’ll see that Wireshark comes with a few standard profiles,
including the Default, Bluetooth, and Classic profiles shown in Figure 3-11.
The Latency Investigation profile is a custom profile I've added and is in
plaintext, while the global and default profiles are in italics.
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Figure 3-11: Viewing configuration profiles

The Configuration Profiles window allows you to create, copy, delete,
and apply configuration profiles. The process of creating a new profile is
very simple.

1. Configure Wireshark with the settings you’d like to save to a profile.

2. Proceed to the Configuration Profiles window by clicking Edit in the
main drop-down menu. Select the Configuration Profiles option.

3. Click the plus (+) button and give the profile a descriptive name.
4. Click OK.

When you’d like to switch profiles, you can go to the Configuration
Profile window, click the profile name, and click OK. You can do this more
quickly by clicking the Profile heading at the bottom right of the Wireshark
window and selecting the profile you’d like to use, as shown in Figure 3-12.
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Figure 3-12: Quickly switch between profiles through the Profile heading.

One of the most useful aspects of configuration profiles is that each
profile is stored in its own directory with a series of configuration files. This
means that you can back up your profiles and share them with others. The
folders tab shown in Figure 3-10 provides paths to personal and global
configuration file directories. T'o share a profile with a user on another
computer, just copy the folder matching the name of the profile you want to
share and paste it into the same directory for the appropriate user on another
computer.

While reading along in this book, you may find the need to create a few
high-level profiles for general troubleshooting, finding the source of
network latency, and investigating security issues. Don’t be afraid to use
profiles liberally. They are real time-savers when you want to quickly switch
a few preference options on or off. I've known people who have used dozens
of profiles to address different scenarios with great success.

Now that you have Wireshark up and running, you’re ready to do some
packet analysis. Chapter 4 describes how you can work with the packets
you've captured.



4
WORKING WITH CAPTURED PACKETS

Now that you’ve been introduced to Wireshark,
you’re ready to start capturing and analyzing packets.
In this chapter, you’ll learn how to work with capture
files, packets, and time-display formats. We’ll also
cover more advanced options for capturing packets
and dive into the world of filters.

Working with Capture Files

You'll find that a good portion of your packet analysis will happen after your
capture. Usually, you’ll perform several captures at various times, save them,
and analyze them all at once. Therefore, Wireshark allows you to save your
capture files to be analyzed later. You can also merge multiple capture files.

Saving and Exporting Capture Files

To save a packet capture, select File B Save As. You should see the Save file
as dialog, as shown in Figure 4-1. You’ll be asked for a location to save your
packet capture and for the file format you wish to use. If you don’t specify a



file format, Wireshark will use the default .pcapng file format.
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4- activeosfingerprinting 6/17/2017 &:33 AM Wiresh
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Libraries os arp_resolution 6/17/2017 8:33 AM  Wiresh
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Figure 4-1: The Save file as dialog allows you to save your packet captures.

In many cases, you may only want to save a subset of the packets in your
capture. To do so, select File p Export Specified Packets. The dialog that
appears is shown in Figure 4-2. This is a great way to thin bloated packet-
capture files. You can choose to save only packets in a specific number range,
marked packets, or packets visible as the result of a display filter (marked
packets and filters are discussed later in this chapter).

You can export your Wireshark capture data into several formats for
viewing in other media or for importing into other packet analysis tools.
Formats include plaintext, PostScript, comma-separated values (CSV), and
XML. To export your packet capture in one of these formats, choose File p
Export Packet Dissections and then select the format for the exported file.
You’ll see a Save As dialog containing options related to the format you’ve
chosen.
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Figure 4-2: The Export Specified Packets dialog allows you to have more granular control over the
packets you choose to save.

Merging Capture Files

Certain types of analysis require the ability to merge multiple capture files.
This is a common practice when comparing two data streams or combining
streams of the same traffic that were captured separately.

To merge capture files, open one of the files you want to merge and
choose File p Merge to bring up the Merge with capture file dialog, shown
in Figure 4-3. Select the new file you wish to merge into the already open



file and then select the method to use for merging the files. You can prepend
the selected file to the currently open one, append it, or merge the files
chronologically based on their timestamps.

‘ Wireshark: Merge with capture file x
Look jn: | ppadecaptures ~ | €} ; B T g
T
* MName Date modified Type
_ :'; dns_axfr 6/17/2017 8:33 AM  Wireshark capture...
Quick access £ dns_guery_response 6/17/2017 &:33 AM  Wireshark capture...
- 4- dns_recursivequery_client 6/17/2017 &:33 AM  Wireshark capture...
4 dns_recursivequery_senver 617/2017 8:33 AM  Wireshark capture...
Desktop ": download-fast 6/17/2017 8:34 AM  Wireshark capture...
b download-slow 6/17/2017 8:34 AM  Wireshark capture...
| ﬁ facebook_login 8M17/2017 &34 AM  Wireshark capture...
Libraries i - facebook_message B/17/2017 8:34 AM  Wireshark capture...
ﬁ http_espn 6/17/2017 &34 AM  Wireshark capture...
_ @ ?". http_google 6/17/2017 8:34 AM  Wireshark capture...
This PC b http_post 6/17/2017 &34 AM  Wireshark capture...
. < >
i File name: .facabouk_message i
Metwork
Files of type: Al Files e Cancel
 Hebp
Read filter: Format : WiresharkAcpdump/... - pcap
Size: 2390 bytes
(O Prepend packets to existing file Bt e 5
(®) Merge packets chronologically First Packet: 2010-04-05 15:23:25
(O Append packets to existing file Blapsed: 00:00:00

Figure 4-3: The Merge with capture file dialog allows you to merge two capture files.

Working with Packets

You will eventually encounter a situation involving a very large number of
packets. As the number of packets grows into the thousands and even
millions, you will need to navigate through packets more efficiently. For this
purpose, Wireshark allows you to find and mark packets that match certain
criteria. You can also print packets for easy reference.



Finding Packets

To find packets that match particular criteria, open the Find Packet bar,
shown circled in Figure 4-4, by pressing CTRL-F. This bar should appear
between the Filter bar and the Packet List pane.

Packet list darrow & Wide Case sitive Display filter | |tcp Find  Cancel
No. Time Source Destination Protocol Length Info o
10.. 172.16.16.128 74.125.95.184 TCP 66 1606 =+ 80 [SYN] Seq=2082691767 Win=8192 Len=8 MS55=14568 WS=4 SACK.
2 Buuwa 74.125.95.1084 172.16.16.128 TCP 66 88 » 1686 [SYN, ACK] Seq=2775577373 Ack=2082691768 Win=5720 Len=.
39.- 172.16.16.128 74.125.95.184 TCP 54 1686 + B8 :r‘.[_l'.] 5eq=2082691768 Ack=2775577374 Win=16872 Len=0
4 0... 172.16.16.128 74.125.95.184 HTTP 681 GET / HTTP/1.1

Figure 4-4: Finding packets in Wireshark based on specified criteria—in this case, packets
matching the display filter expression tcp

This pane offers three options for finding packets:

* The Display filter option allows you to enter an expression-based filter
that will find only those packets that satisty that expression. This option
is used in Figure 4-4.

* The Hex value option searches for packets with a hexadecimal value you
specify.

* The String option searches for packets with a text string you specify.
You can specify the pane the search is performed in or make the search
string case sensitive.

Table 4-1 shows examples of these search types.

Table 4-1: Search Types for Finding Packets

Search type Examples

Display filter not ip
ip.addr==192.168.0.1

arp

Hex value 00ff
FEFF

00ABB1f0O

Strhlg Workstation1
UserB
domain

Once you’ve decided which search type you will use, enter your search
criteria in the text box and click Find to find the first packet that meets your
criterion. To find the next matching packet, click Find again or press CTRL-



N; find the previous matching packet by pressing CTRL-B.

Marking Packets

After you have found packets that match your criterion, you can mark those
of particular interest. For example, marking packets will let you save only
these packets. Also, you can find your marked packets quickly by their black
background and white text, as shown in Figure 4-5.

21 0.836373 69.63.190. 22 172.16.0.122 TCP 1434 [TcP segment of a reassembled poOuU]
69.63.190.22 TCP 66 58637-B0 [ACK] Seq=628 Ack=3878 wWin=491 Len=0 TSval=301989922

Figure 4-5: A marked packet is highlighted on your screen. In this example, the second packet is
marked and appears darker.

To mark a packet, either right-click it in the Packet List pane and
choose Mark Packet from the pop-up or click a packet in the Packet List
pane and press CTRL-M. To unmark a packet, toggle this setting off by
pressing CTRL-M again. You can mark as many packets as you wish in a
capture. To jump forward and backward between marked packets, press
SHIFT-CTRL-N and SHIFT-CTRL-B, respectively.

Printing Packets

Although most analysis will take place on the computer screen, you may
need to print captured data. I occasionally print out packets and tape them to
my desk so I can quickly reference their contents while doing other analysis.
Being able to print packets to a PDF file is also very convenient, especially
when preparing reports.

To print captured packets, open the Print dialog by choosing File p
Print from the main menu, as shown in Figure 4-6.



M Wireshark . Print 7 X

Packet Format
[ summary line
k-] Details:
(O Al colapsed
®) As displayed
(O All expanded
[ Bytes

[] Print each packet on a new page

+ and - xoom. O resers

Packet Range
(O Captured (® Displayed
(® Al packets 12 12
(O selected packets only 1 1
Marked packets only 0 0
First to last marked 0 0
O Range: | | 0 0
Remove ignored packets 0 0
Page Setup.. [emnt. | conca || hep |

Figure 4-6: The Print dialog allows you to print the packets you specify.

As with the Export Specified Packets dialog, you can print a specific
packet range, marked packets only, or packets displayed as the result of a
filter. You can also select the level of detail you wish to print for each packet.
Once you have selected the options, click Print.

Setting Time Display Formats and References

Time is of the essence—especially in packet analysis. Everything that
happens on a network is time sensitive, and you will need to examine trends
and network latency in capture files frequently. Wireshark supplies several
configurable options related to time. In this section, we’ll look at time
display formats and references.



Time Display Formats

Each packet that Wireshark captures is given a timestamp, which is applied
to the packet by the operating system. Wireshark can show the absolute
timestamp, which indicates the exact moment when the packet was captured,
as well as the time in relation to the last captured packet and the beginning
and end of the capture.

Options related to time display are found under the View heading on
the main menu. The Time Display Format section, shown in Figure 4-7, lets
you configure the presentation format as well as the precision of the time

display.

M rtip_googlepcap . m] X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
d B 7 ¥ MainToolbar — (MR =
M 2oply o d ¥ Filter Toolbar 3 - |Expresson.. 4+ TOPRST
Padket ks Wireless Toolbar ithve Siring - | wp | Fnd | Cancel
No " Status Bar Protocol Length Info L
r 1 ) i 5.184 TCP 66 1686 = 38 [S‘\"N] Seq=2882691767 Win=8192 Len=8 MS55=1460 WS=4 SACK.
2 shEe s 6.128 Tcp 66 B8 + 1686 [SYN, ACK] Seq-2775577373 Ack-2082651768 Win-5720 Len-
3 ¥ Packet Details 5.184 TCP 54 1686 + 88 [ACK] Seq=2882691768 Ack=2775577374 Win=16872 Len=@
ARB packet Bytes 5.184 HTTP 681 GET / HTTR/1.1
- 6.128 TCP 68 B8 -+ 1686 [ACK] Seq=2775577374 Ack=2882692395 Win=6976 Len=0
& Time Display Format " Date and Time of Day (1970-01-01 01:02:03.123456) Meta+Alt+1  d POU]
7 d POU]
MName Resolubion ’ = i 02
a Year, Day of Year, and Time of Day {1970/001 01:02:03.123436) B T oo T T T LT
g — 0 Time of Day (01:02:03.123456) Meta+Alt=2 4 ppu]
18 Seconds Since 1970-01-01 Meta+ Alt+3 d POU]
.11 Expand Subtrees Shift+Right B e e Brcumaity u Cantiire Mekas Alted 85 Ack=2775581694 Win=16872 Len=8 5
> Frame = Eepand i S Seconds Since Previous Captured Packet Meta+Alt+5
1 il 5 2 2
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_Il_nternel Bl Colorize Packet List UTC Date and Time of Day (1970-01-01 01:02:03.123456) Meta+Alt+T
—— Coloring Rules... UTC Year, Day of Year, and Time of Day (19707001 01:02:03.123456)
Colorize Conversation r UTC Time of Day (01:02:03.123436) Meta+ Alt+ 8
KF  Resize Columns CtrleShift+R | ®  Automatic (from capture file)
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Internals ¢
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Show Packet in New Window Hundredths of a second
€ Reload Ctrl+R Millissconds
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80 21 63 5b 7d 4a @@ 85 Sd 21 99 4c 68 00 Display Seconds With Hours and Minutes
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Figure 4-7: Several time display formats are available.

The presentation format options let you choose various settings for time
display. These include date and time of day, UTC date and time of day,
seconds since epoch, seconds since beginning of capture (the default setting),
seconds since previous captured packet, and more.



The precision options allow you to set the time display precision to an
automatic setting, which takes the format from the capture file, or to a
manual setting, such as seconds, milliseconds, microseconds, and so on. We
will be changing these options later in the book, so you should familiarize
yourself with them now.

NOTE

When comparing packet data from multiple devices, be sure that the devices
are synchronized with the same time source, especially if you are performing
forensic analysis or troubleshooting. You can use the Network Time Protocol
(NTP) to ensure nerwork devices are synced. When examining packets from
devices spanning more than one time zone, consider analyzing packets in UTC
instead of local time to avoid confusion when reporting your findings.

Packet Time Referencing

Packet time referencing allows you to configure a certain packet so that all
subsequent time calculations are done in relation to that packet. This feature
is particularly handy when you are examining a series of sequential events
that are triggered at some point other than the start of the capture file.

To set a time reference to a packet, right-click the reference packet in
the Packet List pane and choose Set/Unset Time Reference. To toggle
this reference off, repeat the same action. You can also toggle a packet as a
time reference on and off by selecting the packet you wish to reference in
the Packet List pane and pressing CTRL-T..

When you enable a time reference on a packet, the Time column in the
Packet List pane will display *rer*, as shown in Figure 4-8.

Mo. Time Source Destination Protocol  Length  Info ~

1 9.000000 128 66 1686 =+ 80 [SYN] 5eq=2882691767 Win= 68 W5=4 S5ACK_PERM=1

2 8.838187 66 BO + 16085 [SYN, ACK] Seq= 373 in=5728 Len=@ MS55=1486..

3 8.838182 54 1686 = 88 [ACK | Seq= 269 8 7737 din=16872 Len=0

{4 *REF* 681 GET / HTTR/1.1)

5 8.848778 6@ 8O + 1606 [ACK] Seq=2775577374 Ack=2082692395 Win=6976 Len=8

6 B.079954
9.871217
8.671247

F/gure 4-8: Packet 4 W/th the packet time reference toggle enabled

1468 [TCP -'.r-g'rr—r.- of a reassembled PDU]
1468 [TCP segment of a reass c'rb]. ed PDU]
54 1686 + 8@ [A fl] Seqe2882692295 Ack=2775580186 Win=16872 Len=@

Setting a packet time reference is useful only when the time display
format of a capture is set to display the time in relation to the beginning of



the capture. Any other setting will produce no usable results and indeed will
generate a set of times that can be very confusing.

Time Shifting

In some cases, you might encounter packets from multiple sources that are
not synchronized to the same time source. This is especially common when
examining capture files taken from two locations that contain the same
stream of data. While most administrators desire a state in which every
device on their network is synced, it’s not uncommon for there to be a few
seconds of time skew between certain types of devices. Wireshark provides
the ability to shift the timestamp on packets to alleviate this problem during
your analysis.

To shift the timestamp on one or more packets, select Edit p Time
Shift or press CTRL-SHIFT-T. On the Time Shift screen that opens, you can
specify a time range to shift the entire capture file by, or you can specify a
time to set individual packets to. In the example shown in Figure 4-9, I've
chosen to shift the timestamp of every packet in the capture by adding two
minutes and five seconds to each packet.

M Wireshark . Time Shift ? X
@ shiftall packetsby | +00:02:05 | Elhcfmm: sl
O set the time for packet | to |
hen set paket
and extrapolate the time for all other packets [Y¥YE-MM-DO] hfvrmemess]. dod]
() Undo all shifts
Close Apply Help

Figure 4-9: The Time Shift dialog

Setting Capture Options



We looked at the Capture Interfaces dialog while walking through a very
basic packet capture in the last chapter. Wireshark offers quite a few
additional capture options that we didn’t address then. To access these
options, choose Capture p Options.

The Capture Interfaces dialog has a lot of bells and whistles, all designed
to give you more flexibility while capturing packets. It’s divided into three
tabs: Input, Output, and Options. We’ll examine each separately.

Input Tab

The main purpose of the Input tab (Figure 4-10) is to display all the
interfaces available for capturing packets and some basic information for
each interface. This includes the friendly name of the interface provided by
the operating system, a traffic graph showing the throughput on the
interface, and additional configuration options such as promiscuous mode
status and buffer size. At the far right (not pictured), there is also a column
for the applied capture filter, which we’ll talk about in “Capture Filters” on
page 65.

In this section, you can click most of these options and edit them inline.
For example, if you want to disable promiscuous mode on an interface, you
can click that field and change it from enabled to disabled via the provided
drop-down menu.



M Wireshark - Capture Interfaces ? >
Input Cutput Cptions
Interface Traffic Link-layer Header Promiscuous
» Bluetooth Network Connection Ethernet enabled
> Ethernet Ethernet enabled
Local Area Connection® 2 Ethernet enabled
USBPcapl USBPcap enabled
USBPcapl USBPcap enabled
USBPcap3 USBPcap enabled
v (Wi-Fi i Ethernet enabled i
Addresses: feBl:f4ee:89cafdc:789d, 172.16.16.172
Ethernet 2 Ethernet enabled i
» Ethernet 3 Ethernet enabled [
€ >
Enable promiscuous mode on all interfaces b\‘mnge Interfaces...
Capture Filter for selected Interfaces: | Enter a capture filter .. "] Currule BPF;_
. Start = Gnsg

Figure 4-10: The Capture Interfaces Input options tab

Output Tab

The Output tab (Figure 4-11) allows you to automatically store captured
packets in a file, rather than capturing them first and then saving the file.
Doing so offers you more flexibility in managing how packets are saved. You
can choose to save them as a single file or a file set or even use a ring buffer
(which we’ll cover in a moment) to manage the number of files created. To
enable this option, enter a complete file path and name in the File text box.
Alternatively, use the Browse... button to select a directory and provide a

filename.




M Wireshark - Capture Interfaces T b4

Input Qutput Options

Output format; @ pcap-ng D pcap

[] Capture to 3 permanent file

File: |C:,-"Lisers,."Chris Sanders/Desktop jpackets.pcap Browse...

Create a new fle automatically after...

O Megabytes ~
@' minutes B

[] use a ring buffer with files

Start Close Help

Figure 4-11: The Capture Interfaces Output options tab

When you are capturing a large amount of traffic or performing long-
term captures, file sets can prove particularly useful. A file set is a grouping of
multiple files separated by a particular condition. To save to a file set, check
the Create a new file automatically after... option.

Wireshark uses various triggers to manage saving to file sets based upon
a file size or time condition. To enable one of these triggers, select the radio
button next to the size- or time-based option and then specify the value and
unit on which to trigger. For instance, you can set a trigger that creates a
new file after every 1MB of traffic captured or, as shown in Figure 4-12,
after every minute of traffic captured.



MName B Date modified Type Size

|: intervalcapture_00001_20151009141804 10/9/2017 219 PM File 172 KB
I | intervalcapture_00002_20151009141904 10y9/2017 2:20 PM File 23 KB
i | intervalcapture_00003_20151009142004 10/9/2017 2:21 PM File 3,621 KB
| | intervalcapture_00004_20151009142104 10/9/2017 2:22 PM File 52 KB
[ intervalcapture_00005_20151009142204 10/9/2017223PM  File 47KB
|; intervalcapture_00006_20151009142304 10/9/2017 2:24 PM File 37 KB

Figure 4-12: A file set created by Wireshark at one-minute intervals

The Use a ring buffer option lets you specify a certain number of files
your file set will hold before Wireshark begins to overwrite files. Although
the term 7ing buffer has multiple meanings, for our purposes, it is essentially
a file set that specifies that once the last file it can hold has been written,
when more data must be saved, the first file is overwritten. In other words, it
establishes a first in, first out (FIFO) method of writing files. You can check
this option and specify the maximum number of files you wish to cycle
through. For example, say you choose to use multiple files for your capture
with a new file created every hour, and you set your ring buffer to 6. Once
the sixth file has been created, the ring buffer will cycle back around and
overwrite the first file rather than create a seventh file. This ensures that no
more than six files (or in this case, hours) of data will remain on your hard
drive, while still allowing new data to be written.

Lastly, the Output tab also lets you specify whether to use the .pcapng
file format. If you plan to interact with your saved packets using a tool that
isn’t capable of parsing .pcapng, you can select the traditional .pcap format.

Options Tab

The Options tab contains a number of other packet-capturing choices,
including display, name resolution, and capture termination options, shown
in Figure 4-13.



M Wireshark - Capture Interfaces ? x
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Display Options MName Resolution
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Automatically scroll during live capture [[] Resalve network names
[+] show extra capture information dialog [[] resolve transport names

Stop capture automatically after...
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O [1 v | files
Ll 3 kiobytes ¥
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Start Close Help

Figure 4-13: The Capture Interfaces Options tab

Display Options

The Display Options section controls how packets are shown as they are
being captured. The Update list of packets in real-time option is self-
explanatory and can be paired with the Automatically scroll during live
capture option. When both of these options are enabled, all captured packets
are displayed on the screen, with the most recently captured ones shown
instantly.

When pairved, the Update list of packets in real-time and Automatically scroll
during live capture options can be processor intensive, even when you are
capturing a modest amount of data. Unless you have a specific need to see the
packets in real time, it’s best to deselect both options.




The Show extra capture information dialog option lets you enable or
suppress the display of a small window that shows the number and
percentage of packets that have been captured, sorted by their protocol. 1
like to show the capture info dialog since 1 typically don’t allow for the live
scrolling of packets during capture.

Name Resolution Settings

The Name Resolution section options allow you to enable automatic MAC
(layer 2), network (layer 3), and transport (layer 4) name resolution for your
capture. We’ll discuss name resolution as a general topic in more depth,
including its drawbacks, in Chapter 5.

Stop Capture Settings

The Stop capture automatically after... section lets you stop the running
capture when certain conditions are met. As with multiple file sets, you can
trigger the capture to stop based on file size and time interval, but you can
also trigger on number of packets. These options can be used with the
multiple-file options on the Output tab.

Using Filters

Filters allow you to specify which packets you have available for analysis.
Simply stated, a filter is an expression that defines criteria for the inclusion
or exclusion of packets. If there are packets you don’t want to see, you can
write a filter that gets rid of them. If there are packets you want to see
exclusively, you can write a filter that shows only those packets.

Wireshark offers two main types of filters:

*  Capture filters are specified when packets are being captured and will
capture only those packets that are specified for inclusion/exclusion in
the given expression.

*  Display filters are applied to an existing set of captured packets in order
to hide unwanted packets or show desired packets based on the specified
expression.

Let’s look at capture filters first.



Capture Filters

Capture filters are applied during the packet-capturing process to limit the
packets delivered to the analyst from the start. One primary reason for using
a capture filter is performance. If you know that you do not need to analyze a
particular form of traffic, you can simply filter it out with a capture filter and
save the processing power that would typically be used in capturing those
packets.

The ability to create custom capture filters comes in handy when you’re
dealing with large amounts of data. The analysis can be sped up by ensuring
that you are looking at only the packet relevant to the issue at hand.

As an example, suppose you are troubleshooting an issue with a service
running on port 262, but the server you are analyzing runs several different
services on a variety of ports. Finding and analyzing only the traffic on one
port would be quite a job in itself. To capture only the traffic on a specific
port, you could use a capture filter. To do so, use the Capture Interfaces
dialog as follows:

1. Choose the Capture p Options button next to the interface on which
you want to capture packets. This will open the Capture Interfaces
dialog.

2. Find the interface you wish to use and scroll to the Capture Filter
option in the far-right column.

3. You can apply the capture filter by clicking in this column to enter an
expression. We want our filter to show only traffic inbound and
outbound to port 262, so enter port 262, as shown in Figure 4-14.
(We'll discuss expressions in more detail in the next section.) The color
of the cell should turn green, indicating that you’ve entered a valid
expression; it will turn red if the expression is invalid.
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Figure 4-14: Creating a capture filter in the Capture Interfaces dialog

4. Once you have set your filter, click Start to begin the capture.

You should now see only port 262 traffic and be able to more efficiently

analyze this particular data.

Capture/BPF Syntax

Capture filters are applied by libpcap/WinPcap and use the Berkeley Packet
Filter (BPF) syntax. This syntax is common in several packet-sniffing
applications, mostly because packet-sniffing applications tend to rely on the
libpcap/WinPcap libraries, which allow for the use of BPFs. A knowledge of
BPF syntax will be crucial as you dig deeper into networks at the packet

level.

A filter created using the BPF syntax is called an expression, and each

expression consists of one or more primitives. Primitives consist of one or
more qualifiers (as listed in Table 4-2), followed by an ID name or number,

as shown in Figure 4-15.

Table 4-2: The BPF Qualifiers

Qualifier Description

Examples

Type Identifies what the ID name or number

refers to

host, net, port




Dir Specifies a transfer direction to or from the  src, dst
ID name or number

Proto Restricts the match to a particular protocol Eifger:ép, tcp, udp,
p, ftp
o o o
2 o 2
E g =
(= O [
8 Y

Q__-\‘

st host 192.168.0.10&& tcp port
0
&

Qualifier C
Qualifier {
D {8

Qualifier
Qualifier

Figure 4-15: A sample capture filter

Given the components of an expression, a qualifier of dst host and an 1D
of 192.168.0.10 would combine to form a primitive. This primitive alone is
an expression that would capture traffic only with a destination IP address of

192.168.0.10.
You can use logical operators to combine primitives to create more
advanced expressions. Three logical operators are available:
® Concatenation operator AND (s&)
* Alternation operator OR (||)
* Negation operator NOT (1)

For example, the following expression will capture only traffic with a
source IP address of 192.168.0.10 and a source or destination port of 80:

src host 192.168.0.10 && port 80

Hostname and Addressing Filters

Most filters you create will center on a particular network device or
grouping of devices. Depending on the circumstances, filtering can be based



on a device’s MAC address, IPv4 address, IPv6 address, or DNS hostname.

For example, say you’re curious about the traffic of a particular host that
is interacting with a server on your network. From the server, you can create

a filter using the host qualifier that captures all traffic associated with that
host’s IPv4 address:

host 172.16.16.149

If you are on an IPv6 network, you would filter based on an IPv6 address
using the host qualifier, as shown here:

host 2001:db8:85a3::8a2e:370:7334

You can also filter based on a device’s hostname with the host qualifier,
like so:

host testserver2

Or, if you're concerned that the IP address for a host might change, you
can filter based on its MAC address as well by adding the ether protocol
qualifier:

ether host 00-1a-a0-52-e2-a0

The transfer direction qualifiers are often used in conjunction with
filters, such as the ones in the previous examples, to capture traffic based on
whether it’s going to or coming from a host. For example, to capture only
traffic coming from a particular host, add the src qualifier:

src host 172.16.16.149

To capture only data destined for 172.16.16.149, use the dst qualifier:

dst host 172.16.16.149

When you don’t use a type qualifier (host, net, or port) with a primitive,
the host qualifier is assumed. Therefore, this expression, which excludes that
qualifier, is the equivalent of the preceding example:

dst 172.16.16.149




Port Filters

In addition to filtering on hosts, you can filter based on the ports used in
each packet. Port filtering can be used to filter for services and applications
that use known service ports. For example, here’s a simple filter to capture
traffic only to or from port 8080:

port 8080

To capture all traffic except that on port 8080, this would work:

Iport 8080

The port filters can be combined with transfer direction qualifiers. For
example, to capture only traffic going to the web server listening on the
standard H'T'T'P port 80, use the dst qualifier:

dst port 80

Protocol Filters

Protocol filters let you filter packets based on certain protocols. They are
used to match non—application layer protocols that can’t simply be defined
by the use of a certain port. Thus, if you want to see only ICMP traffic, you
could use this filter:

icmp

To see everything but IPv6 traffic, this will do the trick:

11p6

Protocol Field Filters

One of the real strengths of the BPF syntax is the ability that it gives us to
examine every byte of a protocol header in order to create very specific
filters based on that data. The advanced filters that we’ll discuss in this
section will allow you to retrieve a specific number of bytes from a packet
beginning at a particular location.

For example, suppose that we want to filter based on the type field of an



ICMP header. The type field is located at the very beginning of a packet,
which puts it at offset 0. To identify the location to examine within a packet,
specify the byte offset in square brackets next to the protocol qualifier
—icmp[e] in this example. This specification will return a 1-byte integer value
that we can compare against. For instance, to get only ICMP packets that
represent destination unreachable (type 3) messages, we use the equal to
operator in our filter expression:

icmp[0] == 3

To examine only ICMP packets that represent an echo request (type 8)
or echo reply (type 0), use two primitives with the OR operator:

icmp[0] == 8 || icmp[0] == O

These filters work great, but they filter based on only 1 byte of
information within a packet header. You can also specify the length of the
data to be returned in your filter expression by appending the byte length
after the offset number within the square brackets, separated by a colon.

For example, say we want to create a filter that captures all ICMP
destination-unreachable, host-unreachable packets, identified by type 3, code
1. These are 1-byte fields, located next to each other at offset 0 of the packet
header. To do this, we create a filter that checks 2 bytes of data beginning at
offset 0 of the packet header, and we compare that data against the hex value

0301 (type 3, code 1), like this:

icmp[0:2] == 0x0301

A common scenario is to capture only TCP packets with the RST flag
set. We will cover TCP extensively in Chapter 8. For now, you just need to
know that the flags of a TCP packet are located at offset 13. This is an
interesting field because it is collectively 1 byte in size as the flags field, but
each particular flag is identified by a single bit within this byte. As I will
discuss further in Appendix B, each bit in a byte represents some base 2
number. The bit the flag is stored in is specified by the number the bit
represents, so the first bit would represent 1, the second 2, the third 4, and
so on. Multiple flags can be set simultaneously in a TCP packet. Therefore,
we can’t efficiently filter by using a single tcp[13] value because several values
may represent the RS'T bit being set.



Instead, we must specify the location within the byte that we wish to
examine by appending a single ampersand (&), followed by the number that
represents where the flag is stored. The RST flag is at the bit representing
the number 4 within this byte, and the fact that this bit is set to 4 tells us that
the RST flag is set. The filter looks like this:

tcp[13] & 4 == 4

To see all packets with the PSH flag set, which is identified by the bit
location representing the number 8 in the TCP flags at offset 13, our filter
would use that location instead:

tcp[13] & 8 == 8

Sample Capture Filter Expressions

You will often find that the success or failure of your analysis depends on
your ability to create filters appropriate for your current situation. Table 4-3
shows a few common capture filters that you might use frequently.

Table 4-3: Commonly Used Capture Filters

Filter Description

tcp[13] & 32 == 32 TCP packets with the URG flag set
tcp[13] & 16 == 16 TCP packets with the ACK flag set
tcp[13] & 8 == 8 TCP packets with the PSH flag set
tcp[13] & 4 == 4 TCP packets with the RST flag set
tcp[13] & 2 == 2 TCP packets with the SYN flag set
tcp[13] & 1 == 1 TCP packets with the FIN flag set

tcp[13] == 18 TCP SYN-ACK packets

'z)taheér)@hogg 00:0000 Traffic to or from your MAC address
tether host Traffic not to or from your MAC address

00:00:00:00:00:00

broadcast Broadcast traffic only



icmp 1CMP trattic

icmp[0:2] == 0x0301 ICMP destination unreachable, host
unreachable

ip IPv4 traffic only

ip6 IPv6 traffic only

udp UDP traffic only

Display Filters

A display filter is one that, when applied to a capture file, tells Wireshark to
display only packets that match that filter. You can enter a display filter in
the Filter text box above the Packet List pane.

Display filters are used more often than capture filters because they
allow you to filter the packet data you see without actually omitting the rest
of the data in the capture file. That way, if you need to revert to the original
capture, you can simply clear the filter expression. They are also a lot more
powerful thanks to Wireshark’s extensive library of packet dissectors.

As an example, in some situations, you might use a display filter to clear
irrelevant broadcast traffic from a capture file by filtering out ARP
broadcasts from the Packet List pane when those packets don’t relate to the
current problem being analyzed. However, because those ARP broadcast
packets may be useful later, it’s better to filter them temporarily than it is to
delete them.

To filter out all ARP packets in the capture window, place your cursor
in the Filter text box at the top of the Packet List pane and enter !arp to
remove all ARP packets from the list (Figure 4-16). To remove the filter,
click the X button, and to save the filter for later, click the plus (+) button.

M http_google.pcap - O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am @ AE Re==Z¢ &5 = QAQQH

A | rarp EIED - Expression.. | +

Figure 4-16: Creating a display filter using the Filter text box above the Packet List pane

There are two ways to apply display filters. One is to apply them directly



using the appropriate syntax, as we did in this example. Another is to use the
Display Filter Expression dialog to build your filter iteratively; this is the
easier method when you are first starting to use filters. Let’s explore both
methods, starting with the easier first.

The Display Filter Expression Dialog

The Display Filter Expression dialog, shown in Figure 4-17, makes it easy
for novice Wireshark users to create capture and display filters. To access
this dialog, click the Expression button on the Filter toolbar.

M VWireshark - Display Filter Expression ? X

Field Name Relation

¥ |Pvd . Internet Protocol Version 4 # | | is present
ip.addr - Source or Destination Address ==
ip.bogus_ip_length - Expert Info
ip.bogus_ip_version - Expert Info
ip.checksum : Header checksum
ip.checksum_bad . Bad

VoA W

ip.checksum_bad.expert . Expert Info

ip.checksum_good - Good
ip.cipso.categories - Categories
ip.cipso.doi - DOI

ip.cipso.malformed - Bxpert Info
ip.cipso.sensitivity_level . Sensitivity Level
ip.cipso.tag_data - Tag data
ip.cipsotag_type - Tag Type

ip.cur_rt - Current Route

ip.cur_rt_host - Current Route Host
ip.dsfield . Differentiated Services Field

ip.dst - Destination
ip.dst_host - Destination Host
ip.empty_rt - Empty Route

ip.checksum_calculated . Calculated Check...

ip.dsfield.dscp - Differentiated Services Cod..,
ip.dsfield.ecn - Explict Congestion Motifica...

Search: [IP

o=
contains
matches

VYalue (Character string)

|192.168.1.1

Predefined Values

¥ | Range (offeet:length)

ip.dst_host == "192,168.1.1"

Click O to insert this fiter

[ ok || cancel || Heb

Figure 4-17: The Display Filter Expression dialog allows for the easy creation of filters in
Wireshark.




The left side of the dialog lists all possible protocol fields, and these
fields specity all possible filter criteria. To create a filter, follow these steps:

1. To view the criteria fields associated with a protocol, expand that
protocol by clicking the arrow symbol next to it. Once you find the
criterion you want to base your filter on, click to select it.

2. Choose how your selected field will relate to the criterion value you
supply. This relation is specified as equal to, greater than, less than, and
so on.

3. Create your filter expression by specifying a criterion value that will
relate to your selected field. You can define this value or select it from
predefined ones programmed into Wireshark.

4. Your complete filter will be displayed at the bottom of the screen.
When you’ve finished, click OK to insert it into the filter bar.

The Display Filter Expression dialog is great for novice users, but once
you get the hang of things, you’ll find that manually entering filter
expressions greatly increases your efficiency. The display filter expression
syntax structure is simple, yet extremely powerful.

The Filter Expression Syntax Structure

When you begin using Wireshark more, you will want to start using the
display filter syntax directly in the main window to save time. Fortunately,
the syntax used for display filters follows a standard scheme and is easy to
navigate. In most cases, this scheme is protocol-centric and follows the
format protocol.feature.subfeature, as you saw when looking at the
Display Filter Expression dialog. Now we will look at a few examples.

You will most often use a capture or display filter to see packets based
on a specific protocol alone. For example, say you are troubleshooting a
TCP problem and you want to see only TCP traffic in a capture file. If so, a
simple tcp filter will do the job.

Now let’s look at things from the other side of the fence. Imagine that in
the course of troubleshooting your TCP problem, you have used the ping
utility quite a bit, thereby generating a lot of ICMP traffic. You could
remove this ICMP traffic from your capture file with the filter expression



Iicmp.

Comparison operators allow you to compare values. For example, when
troubleshooting "TCP/IP networks, you will often need to view all packets
that reference a particular IP address. The equal to comparison operator (==)

will allow you to create a filter showing all packets with an IP address of
192.168.0.1:

ip.addr==192.168.0.1

Now suppose that you need to view only packets that are less than 128
bytes. You can use the less than or equal to operator (<=) to accomplish this
goal:

frame.len<=128

Table 4-4 shows Wireshark’s comparison operators.

Table 4-4: Wireshark Filter Expression Comparison Operators

Operator Description

== Equal to

= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Logical operators allow you to combine multiple filter expressions into
one statement, dramatically increasing the effectiveness of your filters. For
example, say that you’re interested in displaying only packets to two IP
addresses. You can use the or operator to create one expression that will
display packets containing either IP address, like this:

ip.addr==192.168.0.1 or ip.addr==192.168.0.2

Table 4-5 lists Wireshark’s logical operators.

Table 4-5: Wireshark Filter Expression Logical Operators



Operator Description

and Both conditions must be true.

or Either one of the conditions must be true.
xor One and only one condition must be true.
not Neither one of the conditions is true.

Sample Display Filter Expressions

Although the concepts related to creating filter expressions are fairly simple,
you will need to use several specific keywords and operators when creating
new filters for various problems. Table 4-6 shows some of the display filters
that I use most often. For a complete list, see the Wireshark display filter
reference at hetp://www.wireshark.org/docs/dfref/.

Table 4-6: Commonly Used Display Filters

Filter Description

!tcp.port==3389 Filter out RDP traffic

tcp. flags.syn==1 TCP packets with the SYN flag set
tcp. flags.reset==1 TCP packets with the RST flag set
tarp Clear ARP traffic

http All HTTP traffic

tep.port==23 || tcp.port==21 T'elnet or F'TP traffic

smtp || pop || imap Email traffic (SMTP, POP, or IMAP)
Saving Filters

Once you begin creating a lot of capture and display filters, you will find that
you use certain ones frequently. Fortunately, you don’t need to type these in
each time you want to use them, because Wireshark lets you save your filters
for later use. To save a custom capture filter, follow these steps:


http://www.wireshark.org/docs/dfref/

1. Select Capture p Capture Filters to open the Capture Filter dialog.

of the dialog.

3. Enter a name for your filter in the Filter Name box.

Enter the actual filter expression in the Filter String box.

5. Click the OK button to save your filter expression in the list.

To save a custom display filter, follow these steps:

. Create a new filter by clicking the plus (+) button on the lower left side

1. Type your filter into the Filter bar above the Packet List pane in the
main window and click the ribbon button on the left side of the bar.

. Click the Save this Filter option, and a list of saved display filters will

be presented in a separate dialog. There you can provide a name for
your filter before clicking OK to save it (Figure 4-18).

M Wireshark . Display Filters ? X
Name Filter

Ethernet address 00:00:5e:00:33:00 eth.addr == 00:00:5e:00:53:00

Ethernet type (0806 (ARP) eth.type == (x0806

Ethernet broadcast eth.addr == .6 :FFFfFF . Ff

No ARP not arp

IPv4 only ip

1Pv4 address 192.0.2.1 ip.addr == 182.0.2.1

IPv4 address isn't 192.0.2.1 (don't use |= for this!) !ip.addr == 192.0.2.1)

IPv6 only ipvb

IPvE address 2001:db8:1 ipv.addr == 2001:db8:1

IPX only ipx

TCP only tcp

UDP only udp

Non-DNS udp.port == 53 || tep.port == 53)

TCP or UDP port is 80 (HTTF) tcp.port == 80 || udp.port == 80

HTTP http

No ARP and no DNS not arp and |(udp.port == 53)

MNon-HTTP and non-SMTP to/from 192.0.2.1 ip.addr == 192.0.2.1 and not tcp.port in {80 25}
DINS Server ip.addr==1.2.3.4

+| [=] @

o] o ] e

Figure 4-18: You can save display filters directly from the main toolbar.




Adding Display Filters to a Toolbar

If you have filters that you find yourself flipping on and off frequently, one
of the easiest ways to interact with them is to add filter toggles to the Filter
bar just above the Packet List pane. To do this, complete the following steps:

1. Type your filter into the Filter bar above the Packet List pane in the
main window and click the plus (+) button on the right side of the bar.

2. A new bar will display below the Filter bar where you can provide a
name for your filter in the Label field (Figure 4-19). 'This is the label
that will be used to represent the filter on the toolbar. Once you’ve
input something in this field, click OK to create a shortcut to this
expression in the Filter toolbar.

M nritp_google.peap = O X
File Edit Yiew Go Capture Analyze Statistics Telephony Wireless Tools Help

Am:® REQRes=2=2F2 5 =_QQa4anr

(W [ tcp. flags.reset == 1 EED -] Expression... | +
Filter Expression Preferences... Label: |TCPRST | Filter: top.flags.reset==1 OK | | Cancel

Figure 4-19: Adding a filter expression shortcut to the Filter toolbar

As you can see in Figure 4-20, we’ve created a shortcut to a filter that
will quickly show any TCP packets with the RST flag enabled. Additions to
the filtering toolbar are saved to your configuration profile (as discussed in
Chapter 3), making them a powerful way to enhance your ability to identify
problems in packet captures in various scenarios.

M tcp_refuseconnection.peap - O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Toels Help

d m & RERe=2=2F 45 =E QB

N | tep. flags.reset == 1 ] | Expression.. + TCPRST
Ma. Time Source Destination Protocol Length Info

Figure 4-20: Filtering using a toolbar shortcut

Wireshark includes several built-in filters that are great examples of
what a filter should look like. You’ll want to use them (together with the
Wireshark help pages) when creating your own filters. We’'ll use filters in
examples throughout this book.



5]
ADVANCED WIRESHARK FEATURES

Once you master the basics of Wireshark, the next
step is to delve into its analysis and graphing
capabilities. In this chapter, we’ll look at some of these
powerful features, including the Endpoints and
Conversations windows, the finer points of name
resolution, protocol dissection, stream interpretation,

10 gr aphing, and more. These features, which are unique to
Wireshark as a graphical analysis tool, are useful at multiple stages in the
analysis process. Make sure to at least attempt to use all the features listed
here before moving on, because we’ll revisit them frequently as we look at
practical analysis scenarios throughout the rest of the book.

Endpoints and Network Conversations

For network communication to take place, data must be flowing between at
least two devices. Each device sending or receiving data on the network
represents what Wireshark calls an endpoint. The communication between
two endpoints is called a conversation. Wireshark describes endpoints and



conversations based on the attributes of the communication, specifically in
terms of the addresses used within various protocols.

Endpoints are identified by multiple addresses, which are assigned at
different layers of the OSI model. For example, at the data link layer, an
endpoint will have a MAC address, which is a unique address built into the
device (although it can be modified, potentially making it no longer
required). At the network layer, however, the endpoint will have an IP
address, which can be changed at any point. We’ll discuss in the next few
chapters how these types of addresses are used.

Figure 5-1 shows two examples of how addresses are used to identify
endpoints in conversations. Conversation A in the figure consists of two
endpoints communicating at the data link (MAC) layer. Endpoint A has a
MAC address of 00:ff:ac:ce:0b:de, and Endpoint B has a MAC address of
00:ff:ac:e0:dc:0f. Conversation B is defined by two devices communicating at
the network (IP) layer. Endpoint A has an IP address of 192.168.1.25, and
Endpoint B has an address of 192.168.1.30.

= Conversation A =

Endpoint A - - Endpoint B

i ol Y i
00:ff:ac:ce:0b:de 00:ff:ac:e0:dc:0f

P Conversation B

Endpoint A e o

i | i

192.168.1.25 192.168.1.30
Figure 5-1: Endpoints and conversations on a network

Endpoint B

Let’s look at how Wireshark can provide information about network
communication on a per endpoint or conversation basis.

Viewing Endpoint Statistics

lotsofweb.pcapng



When analyzing traffic, you may find that you can pinpoint a problem as
being at a specific endpoint on a network. For example, open the capture file
lotsofweb.pcapng and open Wireshark’s Endpoints window (Statistics p
Endpoints). This window shows several helpful statistics for each endpoint,
as shown in Figure 5-2, including the address, number of packets, and bytes
transmitted and received.

M Wireshark . Endpoints - lotsofweb s O X

TCP - 358 Ethernet - 12 IPvw4 - 95 PG+ 5 UDP - 106

Addres; Packets Bytes PackeisA—B BytesA—B PackeisB—A BytesB—A Latitude Longitude *
0.0.0.0 1 342 1 342 0 0 -

4.2.2.1 103 11k 51 1275 52 4151 -

4222 2 28 1 174 1 87 -

4.23.40.126 451 38k 234 291k 217 26k - -

8.18.91.65 9 124 3 387 6 854 - -

8.18.95.169 13 3328 7 1321 1 2007 - -

12.120.63.24 13 4733 b 3737 7 1016 -

12.129.199.110 20 3383 8 3332 12 2051 -

63.215.202.16 7 2069 2 724 5 1345 -

64.4.22 46 16 10k 10 Q347 6 1241 -

64.191.203.30 18 7061 b 2643 12 4118 - -

64.208.21.17 0 273 5 1295 5 1486 - -

64.208.21.43 351 357k 309 280 k 242 Tk - -

65.173.218.96 473 331k 203 303 k 210 29k - -

66.35.45.201 1,106 807k 296 T02 k 510 104k -

66.227.17.18 % 12k 28 8377 28 3990 -

66.235.142.3 10 2285 4 853 6 1432 -

56.235.143.54 16 5217 7 1573 9 3644 -

£6.235.143.121 0 3234 5 1490 5 1744 -

167.192.23282 15 8056 7 6436 g 1600 - - Y
[] Mame resolution [] Limit to display filter Endpoint Types

Copy Map Close Help

Figure 5-2: The Endpoints window lets you view each endpoint in a capture file.

The tabs at the top of the window (T'CP, Ethernet, IPv4, IPv6, and
UDP) show the number of endpoints organized by protocol. To display only
endpoints for a specific protocol, click one of these tabs. You can add
additional protocol-filtering tabs by clicking the Endpoint Types box at the
bottom right of the screen and selecting the protocol to add. If you would
like to use name resolution to view endpoint addresses (see “Name
Resolution” on page 84), check the Name resolution checkbox. If you’re
dealing with a large capture and want to filter the endpoints displayed, you



can apply a display filter in the main Wireshark window and select the Limit
to display filter option in the Endpoints window. This option will make the
window show only the endpoints matching the display filter.

Another handy feature of the Endpoints window is the ability to filter
out specific packets for display in the Packet List pane. This is a quick way to
drill down into the packets of an individual endpoint. Right-click an end-
point to select the available filtering options. The dialog that appears will let
you show or exclude packets related to the selected input. You can also
choose the Colorize option in this dialog to export the endpoint address
directly into a colorization rule (coloring rules are discussed in Chapter 4).
In this way, you can quickly highlight packets related to a given endpoint so
you can spot them quickly during analysis.

Viewing Network Conversations

lotsofweb.pcapng

With lotsofweb.pcapng still open, access the Wireshark Conversations window
Statistics B Conversations (Figure 5-3) to display all the conversations in
the capture file. The Conversations window is similar to the Endpoints
window, but the Conversations window shows two addresses per line to
represent a conversation, as well as the packets and bytes transmitted to and
from each device. The column Address A is the origin endpoint, and Address
B is the destination.



M \Wireshark . Conversations . lotsofweb - [m] x
Ethernet - 13 Pv4 - 103 IPvE - 4 TCP - 279 uop =93
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Figure 5-3: The Conversations window lets you dissect each conversation in a capture file.

The Conversation window is organized by protocol. To see only
conversations using a particular protocol, click one of the tabs at the top of
the window (as with the Endpoints window) or add other protocol types by
clicking the Conversation Types button at the lower right. As with the
Endpoints window, you can use name resolution, limit the visible
conversations using a display filter, and right-click a specific conversation to
create filters based on specific conversations. Conversation-based filters are
useful for digging into the details of interesting communication sequences.

Identifying Top Talkers with Endpoints and Conversations

lotsofweb.pcapng

The Endpoints and Conversations windows are helpful in network
troubleshooting, especially when you’re trying to locate the source of a
significant amount of traffic on the network.

As an example, let’s look again at lotsofweb.pcapng. As the name implies,
this capture file contains HTTP traffic generated by multiple clients
browsing the internet. Figure 5-4 shows a list of endpoints in this capture
file sorted by number of bytes.



Notice that the endpoint responsible for the most traffic (by bytes) is the
address 172.16.16.128. 'This is an internal network address (we’ll cover how
that is determined in Chapter 7), and, as the device responsible for the most
communication in this capture, it is given the designation top talker.

M Wireshark . Endpoints - lotsofweb E O 4
IPv4 - 95 Ethernet - 12 IPvE * 5 TCP ' 358 UDP - 106

Address Packets Bytes Packets A—DB BytesA—B PacketsB—A BytesB—A Latitude Longitude £y
172.16.16.128 8324 7387k 2790 507k 5334 6879k - -

74.125.103.163 3,927 4232 k 2882 4173k 1045 58k -

172.16.16.136 2,349 1455k 137 213k 1212 1241k -

172.16.16.197 2,157 1073 k 1107 21k 1050 851k - -

66.35.45.201 1,106 807 k 506 702 k 510 104k - -

74.125.103.147 008 B33k 435 620 k 173 12k - -

74.125,166.28 353 332k 382 519k 17 13k -

74.125.95.149 M3 409k 336 365k 207 43k -

64.208.21.43 331 357k 309 280 k 242 Tk -

65.173.218.96 473 331k 263 305k 210 25k -

4.23.40.126 451 318k 234 291k 217 26k - -

209.85.225.165 204 202 k 21 282k 83 10k - -

203.203.140.65 363 251k 235 179k 128 T2k - -
204.160.126.126 449 185k 206 M8k 243 66k - -
204.160.104.126 327 149k 166 B5k 161 64k - -

7232924 387 130k 190 97 k 197 32k - - v

(] Name resolution (] Limit to display filter
Copy ¥ | Map | Cose || Hep

Figure 5-4: The Endpoints window shows which hosts are talking the most.

The address with the second highest amount of traffic is 74.125.103.163,
an external (internet) address. When you encounter external addresses that
you don’t know anything about, you can search the WHOIS registry to find
the registered owner. In this case, the American Registry for Internet
Numbers (bttps://whois.arin.net/ui/) reveals that Google owns this IP address,
as seen in Figure 5-5.


https://whois.arin.net/ui/

Network

MNet Range 74.125.0.0 - 74.125.255.255

CIDR 74.125.0.0M186

Name GOOGLE

Handle MNET-74-125-0-0-1

Parent NET74 (NET-74-0-0-0-0)

MNet Type Direct Allocation

Origin AS

Organization Google Inc. (GOGL)

Registration Date 2007-03-13

Last Updated 2012-02-24

Comments

RESTiul Link hittps fwhois. arin.netrest/net/NET-74-125-0-0-1
See Also Related organization's POC records.
See Also Related delegations.

Figure 5-5: Viewing WHOIS results for 74.125.103.163 points to a Google IP.

( )
DETERMING IP ADDRESS OWNERSHIP WITH WHOIS

IP address assignments are managed by different entities based on their
geographic location. ARIN is responsible for IP address assignment in
the United States and some surrounding areas, while AfriNIC manages
those in Africa, RIPE handles Europe, and APNIC manages
Asia/Pacific. Generally, you would perform a WHOIS for an IP at the
website of the registry responsible for that IP. Of course, just by looking
at an address, you are unlikely to know which regional registry is
responsible for it. Websites like Robtex (bztp://robtex.com/) will do the
hard work for you and query the correct registry to provide results.
However, if you at first query the wrong registry, you will typically be
pointed to the correct one.
- J
Given this information, you could assume either that 172.16.16.128 and
74.125.103.163 are communicating a lot with multiple other devices on their
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own or that both endpoints are communicating with each other. In fact, as is
often the case with top-talking endpoint pairs, the endpoints are
communicating with each other. To confirm this, open the Conversations
window, select the IPv4 tab, and sort the list by bytes. You should see that
these two endpoints comprise the conversation with the highest number of
transferred bytes. The pattern of transfer suggests a large download, because
the number of bytes transmitted from external Address A (74.125.103.163) is
much greater than the number of bytes transmitted from internal Address B
(172.16.16.128), as shown in Figure 5-6.

M Vireshark - Conversations - lotsofweb — O X
Ethernet * 13 IPw4 -+ 103 IPv6 " 4 TCP * 279 UCP - 93

Address A Address B Packets Bytes Packets A—B BytesA —B PacketsB — A BytesB — A Rel Start Duration | ™
74,125.103.163 172.16.16.128 3,927 4232 k 28az 4173k 1045 58 k 39.247091000 54.307799
66.35.45.201 172.16.16.136 1,106 807 k 596 702 k 510 104 k 10.306330000 83.442116
174,125.103.147 172.16.16.128 G0 633k 435 620 k 173 12k 9966132000 7.539890
74.125.1060.28 172.16.16.128 553 532k 382 319k m 13k 3242850000 38430937

| 64.208.21.43 172.16.16.128 551 357k 309 280 k 242 77k 6085472000 72.329769
65.173.21896 172.16.16.136 473 331k 263 05k 210 25k 59.432328000 27.290208
7412595149  172.16.16.128 1415 323k mn 289 k 144 33k 3.243502000 B0.884280
4,23.40,126 172.16.16.197 451 318k 234 201k 217 26k 73.085870000 13.245934
172.16.16.128  209.85.225.165 274 288k 71 2345 203 280k 4.385238000 48.369102
[172.16.16.128  205.203.140.65 363 251k 128 T2k 235 179k 1,709231000 76.713264
|1?’2.16.16.197 204,160.126.126 449 185k 243 66 k 206 118 k 16497808000 69.835435
172.16.16.128  204.160.104.126 327 149k 161 64 k 166 85k 3.317446000 11.191162

| 72.32.924 172.16.16.136 387 130k 180 9Tk 197 32 k 14.245523000 36.732188 w
1< 2]

] Mame resclution ] vimit to display filter Conversation Types

Copy ™| Follow Stream.. Graph. Close Help

Figure 5-6: The Conversations window confirms that the two top talkers are communicating with
each other.

You can examine this conversation by applying this display filter:

ip.addr == 74.125.103.163 && ip.addr == 172.16.16.128

If you scroll through the list of packets, you’ll see several DNS requests
to the youtube.com domain in the Info column of the Packet List window.
This is consistent with our finding that 74.125.103.163 is a Google-owned
IP address, because Google owns YouTube.

You’ll see how to use the Endpoints and Conversations windows in
practical scenarios throughout the remaining chapters of this book.
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Protocol Hierarchy Statistics

lotsofweb.pcapng

When dealing with unfamiliar capture files, you’ll sometimes need to
determine the distribution of traffic by protocol. That is, what percentage of
a capture is TCP, IP, DHCP, and so on? Rather than counting packets and
totaling the results, Wireshark’s Protocol Hierarchy Statistics window can

provide this information for you.

For example, with the lotsofweb.pcapng file still open and any previously
applied filters cleared, open the Protocol Hierarchy Statistics window, as

shown in Figure 5-7, by choosing Statistics » Protocol Hierarchy.

M Wireshark . Protocol Hierarchy Statistics - lotsofweb - [m]
Protocol Percent Packets Packets Percent Bytes Bytes  Bits/s EndPackets EndBytes End Bits/s
v Frame 1000 12899 1000 9931436 84Tk 0 0 0

v Ethernet 100.0 12899 100.0 9931436 84Tk 0 0 0
v Intemet Protocol Version 6 0.2 32 0.1 5020 428 0 0 0
~ User Datagram Protocol 0.2 32 01 5020 28 0 0 0
Link-local Multicast Name Resolution 02 28 0.0 2408 205 28 2408 205
DHCPvE 0.0 2 0.0 308 26 2 308 26
Data 0.0 2 0.0 2304 196 2 2304 196
* |Intemet Protocol Version 4 2.7 12861 9299 9926164 847k 0 0 0
¥ User Datagram Protocol 1.7 214 03 28932 2468 0 0 0
Simple Network Management Protocol 0.0 4 0.0 476 40 4 476 40
Service Location Pretocol 0.0 1 0.0 26 7 1 g6 7
NetBIOS Mame Service 0.3 43 0.0 3936 337 43 3956 337
Multicast Domain Name System 0.0 6 0.0 800 68 6 800 68
Link-lecal Multicast Name Resalution 0.2 28 0.0 1848 157 28 1848 157
Hypertext Transfer Protocol 0.2 25 0.1 9395 8 25 9395 an
Daornain Name System 0.8 105 0.1 11687 997 105 11687 997
Bootstrap Protocol 0.0 2 0.0 684 58 2 6824 38
 Transmission Control Protocol 93.0 12645 9.7 9897140 844k 10905 8908786 760k
Secure Sockets Layer 0.0 1 0.0 103 ] 1 103 8
Malformed Packet 0.0 3 0.0 4330 33 3 4380 i
v Hypertext Transfer Protocol 13.5 1736 9.9 083871 B3k 1364 723402 61k
¥ Portable Network Graphics 0.1 17 0.1 10816 922 16 10469 893
Malformed Packet 0.0 1 0.0 347 29 1 47 29
Media Type 02 28 0.2 19284 1645 28 19284 1645
Malformed Packet 0.0 1 0.0 314 26 1 314 26
Line-based text data 11 145 1.0 103728 8851 145 103728 8831
JPEG File Interchange Format 0.6 n 0.6 62036 5203 72 62036 5203
JavaScript Object Notation 00 3 0.0 2843 242 3 2843 242
eXtensible Markup Language 01 1 0.1 5846 507 1N 5946 507
Compuserve GIF 0.7 95 0.6 55302 47386 95 55502 4736
Internet Group Management Protocol 00 2 0.0 92 7 2 92 7
Address Resolution Protocol 0.0 6 0.0 252 21 6 252 21
No dlisplay fiker
cow ] [ com ][ neb

Figure 5-7: The Protocol Hierarchy Statistics window shows the distribution of traffic by protocol.

The Protocol Hierarchy Statistics window gives you a snapshot of the
type of activity occurring on a network. In Figure 5-7, 100 percent is
Ethernet traffic, 99.7 percent is IPv4, 98 percent is TCP, and 13.5 percent is




HTTP from web browsing. This information provides a great way to
benchmark your network, especially once you have a mental picture of what
your network traffic usually looks like. For instance, if you know that 10
percent of your network traffic is normally ARP traffic, but you see 50
percent ARP traffic in a recent capture, then something might be wrong. In
some cases, the mere existence of a protocol could be of interest. If you don’t
have any devices configured to use Spanning Tree Protocol (STP), seeing it
in a protocol hierarchy might mean that a device is misconfigured.

Over time, you'll find that you can use the Protocol Hierarchy Statistics
window to profile the users and devices on a network simply by looking at
the distribution of protocols in use. For example, a higher amount of HT'TP
traffic will tell you that there’s a lot of web browsing going on. You may also
find that you can identify specific devices on the network simply by looking
at the traffic from a network segment belonging to a business unit. For
example, the I'T department might use more administrative protocols such as
ICMP or SNMP, customer service might be responsible for a high volume
of SMTP (email) traffic, and the pesky intern in the corner might be
flooding the network with World of Warcraft traffic!

Name Resolution

Network data is sent between endpoints with the help of wvarious
alphanumeric addressing systems that are often too long or complicated to
remember, such as MAC address 00:16:ce:6e:8b:24, IPv4 address
192.168.47.122, or IPv6 address 2001:db8:a0b:1210::1. Name resolution (also
called name lookup) converts one identifying address into another, mostly for
the sake of making the address easier to remember. For example, it’s much
easier to remember google.comm than to remember 216.58.217.238. By
associating easy-to-read names with these cryptic addresses, we make them
easier to remember and identify.

Enabling Name Resolution

Wireshark can use name resolution when it displays packet data to make
analysis easier. To have Wireshark use name resolution, choose Edit p
Preferences B Name Resolution. This window is shown in Figure 5-8.
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Here are the primary options available in Wireshark for name resolution:

Resolve MAC addresses  Uses the ARP protocol to attempt to
convert layer 2 MAC addresses, such as 00:09:5b:01:02:03, into layer 3
addresses, such as 10.100.12.1. If attempts at these conversions fail,
Wireshark will use the ethers file in its program directory to attempt
conversion. Wireshark’s last resort is to convert the first 3 bytes of the
MAC address into the device’s IEEE-specified manufacturer name, such

as Netgear_01:02:03.

Resolve transport names Attempts to convert a port number into a
name associated with it, for example, to display port 80 as hztp. This is
handy when you encounter an uncommon port and don’t know what

service is typically associated with it.

Resolve network (IP) addresses  Attempts to convert a layer 3
address, such as 192.168.1.50, into an easy-to-read DNS name, such as
MarketingPC1.domain.com. This is helpful for identifying the purpose or

owner of a system, assuming it has a descriptive name.

M Wireshark - Preferences ?

v Appearance
Layout
Columns
Font and Colors| [_] Resolve transport names

[[] Resolve network (IP) addresses
(] Use captured DNS packet data for address resolution

Name Resolution
[~] Resclve MAC addresses

Capture

Filter Expressions
Protocols E] Use an external network name resolver
Statistics
Advanced

MName Resolution |
[

] Enable concurrent DNS name resolution

Maximum concurrent requests | 500
[] only use the profile "hosts" file
[[] enable CID resolution

I:] Suppress SMI errors

SMI (MIB and PIE) paths Edit...
SMI (MIE and PIB) modules Edit...

GeolP database directories Edit...
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Figure 5-8: Enabling name resolution in the Preferences dialog. Only Resolve MAC addresses is
selected amongst the first three checkboxes pertaining to types of name resolution.

The Name Resolution preferences dialog in Figure 5-8 includes a few
other useful options:

Use captured DNS packet data for address resolution Parses DNS
data from captured DNS packets to resolve IP addresses to DNS names.

Use an external network name resolver  Allows Wireshark to
generate queries to the DNS server used by your analysis machine in
order to resolve IP addresses to DNS names. This is helpful if you want
to use DNS name resolution but the capture you are analyzing doesn’t
contain the relevant DNS packets.

Maximum concurrent requests Rate limits the number of
concurrent DNS queries that can be outstanding at once. Use this
option if your capture will generate a lot of DNS requests and you’re

concerned about taking up too much bandwidth on your network or
DNS server.

Only use the profile “hosts” file Limits DNS resolution to the host
file associated with the active Wireshark profile. I’ll describe how to use
this file later in this section.

The changes made in the Preferences screen will persist after Wireshark
is closed and reopened. To make name resolution changes on the fly without
them being persistent, toggle name resolution settings on or off by clicking
View p Name Resolution on the main drop-down menu. You have the
option of enabling or disabling name resolution for physical, transport, and
network addresses.

You can leverage the various name resolution tools to make your capture
files more readable and to save a lot of time in certain situations. For
example, you can use DNS name resolution to help readily identify the name
of a computer you are trying to pinpoint as the source of a particular packet.

Potential Drawbacks to Name Resolution

Given its benefits, using name resolution may seem like a no-brainer, but
there are some potential drawbacks. First, network name resolution can fail
if there is no DNS server available to provide the name associated with an IP



address. Name resolution information is not saved with the capture file, so
the resolution process must take place every time you open a file. If you
capture packets on one network and then open the capture on another
network, then your system might not be able to access the DNS servers from
the source network and name resolution will fail.

In addition, name resolution requires additional processing overhead.
When dealing with a very large capture file, you may want to forgo name
resolution to conserve system resources. If you try to open a large capture
and find your system struggling to load it or Wireshark crashes, disabling
name resolution might help.

One further issue is that network name resolution’s reliance on DNS
may generate unwanted packets that will cloud your capture file as traffic is
sent to DNS servers to resolve addresses. Complicating things further, if the
capture file you are analyzing contains malicious IP addresses, attempting to
resolve them could generate queries to attacker-controlled infrastructure
that could tip off an attacker that you are aware of their actions, possibly
making you a target. To reduce the risk of clouding your packet file or of
unwittingly communicating with an attacker, disable the Use an external
network name resolver option in the Name Resolution Preferences dialog.

Using a Custom hosts File

It can be tedious to keep track of traffic from multiple hosts in large capture
files, especially when external host resolution isn’t available. One way to help
is to manually label systems based on their IP addresses with a Wireshark
hosts file, which is a text file with a list of IP address to name mappings. You
can use a hosts file to label addresses in Wireshark with names for quick
reference. These names will be shown in the Packet List pane.

To use a hosts file, follow these steps:

1. Choose Edit p Preferences » Name Resolution and select Only use
the profile “hosts” file.

2. Create a new file using Windows Notepad or a similar text editor. The
file should contain one entry per line with an IP address and the name
to resolve to, as shown in Figure 5-9. The name you choose on the right
will be what is shown in the packet list window whenever Wireshark



encounters the IP address on the left.

_| hosts - Notepad = O X
File Edit Format View Help

172.16.16.128 Workstation
74.125.95.104 foogle

Figure 5-9: Creating a Wireshark hosts file

3. Save the file as a plaintext file with the name hosts to the appropriate
directory, as listed below. Be sure that the file has no extension!

*  Windows: <USERPROFILE>\Application Data\Wireshark \hosts
o OS X: /Users/<username>/.wireshark/hosts
o Linux: /home/<username>/.wireshark/bosts

Now open a capture, and any IP addresses in your hosts file should
resolve to the specified names, as shown in Figure 5-10. Instead of IP
addresses in the Source and Destination columns of the packet list window,
more meaningful names are shown.

M ritp_googlepeap — m} ®
Eile Edt Yiew Go Capture Analyze Statistics  Telephony Wireless Tools  Help
am:® mBsec=FeEEaaan
-.lé:E—?G?:Z-“'C' Cir =3 ‘]" n... | + TCPRST
Mo, Time Source Destnation Protoool Length Info
r 1 @.220008 Workstation 500812 TP 66 1686 + 3@ [S\'N] 5eq=2882691767 Win=8192 Len=8 M55=146@ WS=4 SACK_PERM=1
2 9.838187 Google Workstation TCP 665 BB - 1686 [SYN, ACK] Seqe=2775577373 Ack=2882691768 Win=5728 Len=@ MSS=1486 SACK_PERM=1 L.
3 @.838182  wWorkstation Google TcP 54 1686 + 58 [ACK] Seq=2882691766 Ack=2775577374 Win=16872 Len=@
4 8.838248 Workstation Google HTTR 681 GET / HTTR/1.1

Figure 5-10: Name resolution from a hosts file in Wireshark

Using hosts files in this way can dramatically improve your ability to
recognize certain hosts during analysis. When working with a team of
analysts, consider sharing a hosts file of known assets among your networking
staff. This will help your team quickly recognize systems with static
addresses, such as servers and routers.

If your hosts file doesn’t appear to be working, make sure that you haven’t
accidentally added a file extension to the filename. The file’s name should

simply be hosts.




Manually Initiated Name Resolution

Wireshark also has the ability to force name resolution on a temporary, on-
demand basis. This is done by right-clicking a packet in the Packet List pane
and choosing the Edit Resolved Name option. The window that pops up will
allow you to specify a name for an address, like a label. This resolution will
be lost once the capture file is closed, making this a quick way to label an
address without making any permanent changes that would have to be
reverted later. I use this technique often because it is a little easier than
manually editing a hosts file for every packet capture I look at.

Protocol Dissection

One of Wireshark’s biggest strengths is its support for the analysis of over a
thousand protocols. Wireshark has this capability because it is open source,
thus providing a framework for creating protocol dissectors. These allow
Wireshark to recognize and decode a protocol into various fields so the
protocol can be displayed in the user interface. Wireshark uses several
dissectors in unison to interpret each packet. For example, the ICMP
protocol dissector allows Wireshark to recognize that an IP packet contains
ICMP data, pull out the ICMP type and code, and format those fields for
display in the Info column of the Packet List pane.

You can think of a dissector as the translator between raw data and the
Wireshark program. For a protocol to be supported by Wireshark, it must
have a dissector (or you can write your own).

Changing the Dissector

wrongdissector.pcapng

Wireshark uses dissectors to detect individual protocols and decide how to
display network information. Unfortunately, Wireshark doesn’t always make
the right choices when selecting the dissector to use on a packet. This is
especially true when a protocol on the network is using a nonstandard
configuration, such as a non-default port (which is often configured by



network administrators as a security precaution or by employees trying to
circumvent access controls).

When Wireshark incorrectly applies dissectors, it’s possible to override
this selection. For example, open the trace file wrongdissector.pcapng. This file
contains a bunch of SSL communication between two computers. SSL is the
Secure Socket Layer protocol, which is used for encrypted communication
between hosts. Under most normal circumstances, viewing SSL traffic in
Wireshark won’t yield much usable information due to its encrypted nature.
However, there is something definitely wrong here. If you peruse the
contents of several of these packets by clicking them and examining the
Packet Bytes pane, you will find plaintext traffic. In fact, if you look at packet
4, you will find mention of the FileZilla FI'P server application. The next
few packets clearly display a request and response for both a username and a
password.

If this were actually SSL traffic, you wouldn’t be able to read any of the
data contained in the packets, and you certainly wouldn’t see all the user-
names and passwords transmitted in clear text, as in Figure 5-11. Given the
information shown here, it’s safe to assume that this is probably F TP traffic,
rather than SSL traffic. Wireshark is likely interpreting this traffic as SSL
because it is using port 443, as seen under the Info column, and port 443 is

the standard port used for HT'TPS (HTT'P over SSL).



Ml wiongdissector.peap = O X
File Edit View Go Capture Anslyze Statistics Telephony Wireless Tools Help

dm @ FRE Re=EFT LS =Eaaan

R | Appty a display fiter . <Cirl-f> 3 -| Expresson.. | + TCOPRST
Mo, Time Source Destination Protoool Length Infa el
7 8.881345 192.168.8.53 192.168.8.82 TCP 115 443 -+ 1492 [F‘SH, A'CK] 5eq=180275832 Ack=253948672 Win=64248..
8 8.836853 192.168.68.82 192.168.8.53 TCP 66 1492 - 443 [PSH, ACK] Seq=253948672 Ack=189275893 Win=65536..
9 8.837776 192.168.8.53 192.168.8.82 TCP 87 443 = 1492 [PSH, ACK] Seq=189275893 Ack=253948684 Win=564228..
18 @.838371 192.168.8.82 192.168.8.53 TCP 66 1492 + 443 [PSH, ACK] Seq=25394B684 Ack=189275126 Win=652580.. —
11 @.838876 192.168.8.53 192.168.8.82 TCP 69 443 + 1492 [PSH, ACK] Seq=189275126 Ack=253348626 Win=64216.. E
12 8.848879 192.168.8.82 192.168.8.53 TCP 60 14492 =+ 443 [PSH, ACK] Seq=253948696 Ack=-189275141 Win=65286.. _v

> Frame 1@: 66 bytes on wire (528 bits), &6 bytes captured (528 bits)
» Ethernet IT, Src: HewlettP bf:91:ee (08:25:b3:bf:91:ee), Dst: Vieware 25:82:5e (0@:8c:29:25:82:5e)
» Internet Protocol Version 4, Sre: 192.168.8.82 (192.168.8.82), Dst: 192.1685.8.53 (192.168.8.53)
Transmission Control Protocol, Src Port: 1492 (1492), Dst Port: 443 (443), Seq: 253948684, Ack: 182275126, Len: 12
v Data (12 bytes)

Data: 584153532861646d696e8daa

[Length: 12]

W
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0816 8@ 34 37 60 40 OB BA 85 9D DO cO =B BB 52 cB B .ATI@... ..... R..
3826 0@ 35 65 d4 81 bb OF 22 3 6c @b 48 1b f6 58 18  .5....." ...H..P.
CEECI G SR R g5 41 53 53 20 61 64 60 60 GoflYR PA 55 admin|
ooso IR o
@ 7 Dpots (data), 12 bytes Packets: 52 + Displayed: 52 (100.0%) * Load time: 0:0.1 || Profile: Default

Figure 5-11: Plaintext usernames and passwords? This looks more like FTP than SSL!

To fix this problem, you can apply a forced decode to Wireshark to use the
FTP protocol dissector on these packets. Here are the steps:

1. Right-click an SSL packet (such as packet 30) in the Protocol column
and select Decode As, which opens a new dialog.

2. Tell Wireshark to decode all TCP port 443 traffic as FI'P by selecting
TCP port in the Field column, entering 443 in the Value column, and
selecting FTP from the drop-down menu in the Current column, as
shown in Figure 5-12.

M Wireshark . Decode As... ? X
Field Value Type Default Current
TCPport  ~ 443 v |Integer, base 10 SSL FTP ¥

[+] [=] [m]
| oK | Save Cancel Help

Figure 5-12: The Decode As... dialog allows you to create forced decodes.




3. Click OK to see the changes immediately applied to the capture file.

The data will be decoded as FTP traffic so you can analyze it from the
Packet List pane without needing to dig deep into individual bytes (Figure
5-13).

M wrongdissector.pcap - m} b4
File Edit View Go (Capture Analyze Statistics Telephony Wireless Tools Help
dm @ CREBReER IS EQAQAAH
(W] ooy = display fiter __ <Cirl/= B3 ~|Expression..  + TCPRST
No. Time Source Destination Protocol Length Info L]
3 0.808135 192.168.8.82 192.168.8.53 TCP 54 1492 » 443 [ACK] Seq=2539485672 Ack=189274945 Win=65536 Len=8
4 8.081189 192.168.8.53 192.168.8.82 FTP 96 Response: 228-File7illa Server version ©.9.33 beta
5 @.801358 192.168.0.53 192.168.8.82 FTP 99 Response: 228-written by Tim Kosse (Tim.Kossefigmx.de)
6 8.881392 192.168.6.82 192.168.8.53 TCP 54 1492 + 443 [ACK] 5eq=253948672 Ack=189275032 Win=65536 Len=0
7 @.881545 192.168.6.53 192.168.8.82 FTP 115 Response: 228 Please visit http://sourceforge.net/projects/filezilla/
B 8.836853 192.168.8.82 192.168.8.53 FTP 66 Request: USER admin
9 8.837776 192.168.8.53 192.168.8.82 FTP 87 Response: 331 Password required for admin I
18 8.838371 192.168.8.82 192.168.8.53 FTP 66 Request: PASS admin
11 8.838876 192.168.8.53 192.168.8.82 FTP 69 Response: 238 Logged on
12 8.848679 192.168.8.82 192.168.8.53 FTP 68 Request: SYST
13 @.e48538  192.168.0.53 192.168.0.82 FTP 86 Response: 215 UNIX emulated by FileZilla
14 @.841629 192.168.8.82 192.168.8.53 FTP 6@ Request: FEAT
15 @.054737 192.168.6.53 192.168.8.82 FTP €9 Response: 211-Features:
16 8.854987 192.168.8.53 192.168.8.82 FTP 61 Response: MDTM W

Figure 5-13: Viewing properly decoded FTP traffic

The forced decode feature can be used multiple times in the same
capture file. Wireshark will keep track of your forced decodes for you in the
Decode As... dialog, where you can view and edit all of the forced decodes
you have created so far.

By default, forced decodes are not saved when you close a capture. You
can remedy this by clicking the Save button in the Decode As... dialog. This
will save the protocol-decoding rules to your current Wireshark user profile;
they will be applied when you open any capture using that profile. Saved
decode rules can be removed by clicking the minus button in the dialog.

It’s very easy to save decoding rules and forget about them. This can
lead to a lot of confusion when you aren’t prepared for it, so be mindful of
forced decodes. To prevent myself from falling victim to this oversight, I
generally avoid saving forced decodes to my primary Wireshark profile.

Viewing Dissector Source Code

The beauty of working with an open source application is that, if you are
confused about why something is happening, you can look at the source code
and find out why. This really comes in handy when you are trying to



determine why a particular protocol has been interpreted incorrectly,
because you can examine individual protocol dissectors.

Examining the source code of protocol dissectors can be done directly
from the Wireshark website by clicking the Develop link and clicking
Browse the Code. This link will send you to the Wireshark code repository,
where you can view the release code for recent Wireshark versions. The
protocol dissectors are in the epan/dissectors folder, and each dissector is
labeled packets-<protocolnames.c.

These files can be rather complex, but they all follow a standard
template and tend to be commented very well. You don’t need to be an
expert C programmer to understand the basic function of each dissector. If
you want to get a deep understanding of what you are seeing in Wireshark, I
recommend taking a look at dissectors for some of the simpler protocols.

Following Streams

bttp_google.pcapng

One of Wireshark’s most satisfying analysis features is its ability to
reassemble data from multiple packets into a consolidated, easily readable
format, often called a packet transcript. So you don’t have to view data being
sent from client to server in a bunch of small chunks while clicking from
packet to packet, stream following sorts the data to make it easier to view.

Four types of streams are available to follow:

TCP stream Assembles data from protocols that utilize 'TCP, such as
HTTP and FTP.

UDP stream Assembles data from protocols that utilize UDP, such as
DNS.

SSL stream Assembles data from protocols that are encrypted, such as
HTTPS. You must supply keys to decrypt the traffic.

HTTP stream Assembles and decompresses data from the HT'TP
protocol. This is useful when following HT'TP data via TCP stream
doesn’t decode the HT'I'P payload fully.

As an example, consider a simple HTTP transaction in the file



http_google.pcapng. Click any of the TCP or HI'TP packets in the file, right-
click the packet, and choose Follow TCP Stream. This will consolidate the
TCP stream and open the conversation transcript in a separate window, as in
Figure 5-14.

The text displayed in this window is in two colors, with red text (shown
here with the lighter gray shading) signifying traffic from source to
destination and blue text (shown here with the darker gray shading)
identifying traffic in the opposite direction, from destination to source. The
color relates to which side initiated the communication. In our example, the
client initiated the connection to the web server, so it’s displayed in red.

The communication in the 'TCP stream begins with an initial et request
for the web root directory (/) and a response from the server that the request
was successful in the form of an HrTP/1.1 200 OK. A similar pattern is repeated
throughout other streams in the packet capture as the client requests
individual files and the server responds with them. You are seeing a user
browsing to the Google home page, but instead of having to step through
every packet, you're able to scroll through the transcript with ease. You're
actually seeing what the end user is seeing, but from the inside out.
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Figure 5-14: The Follow TCP Stream window reassembles the communication in an easily readable
format.

In addition to viewing the raw data in this window, you can search
within the text; save it as a file; print it; or choose to view the data in ASCII,
EBCDIC, hex, or C array format. These options, which make digging
through larger sets of data easier, can be found at the bottom of the Follow
Stream window.

Following SSL Streams

Following TCP and UDP streams is a simple two-click operation, but
viewing SSL streams in a readable format requires a few additional steps.
Because the traffic is encrypted, you are required to supply the private key
associated with the server responsible for the encrypted traffic. The method
you will use to retrieve this key varies depending on the server technology in
use and is beyond the scope of this book, but once you have it, you will have
to load it into Wireshark using the following process:



1. Access your Wireshark preferences by clicking Edit p Preferences.

2. Expand the Protocols section and click the SSL protocol heading
(shown in Figure 5-15). Click the Edit button next to the RSA keys list
label.

3. Click the plus (+) button.

4. Supply the required information. This includes the IP address of the
server responsible for the encryption, the port, the protocol, the
location of the key file, and a password for the key file if one was used.

5. Restart Wireshark.
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Figure 5-15: Adding SSL decryption information

Once this process is complete, you should be able to capture encrypted
traffic between a client and server. Right-click an HT'I'PS packet and click
Follow SSL Stream to see the clear text transcript.

The ability to view packet transcripts is one of the most commonly used



analysis features in Wireshark, and you will come to rely on it to quickly
determine what specific protocols are being used to do. We’ll cover several
additional scenarios in later chapters that rely on viewing packet transcripts.

Packet Lengths

download-slow.pcapng

The size of a single packet or group of packets can tell you a lot about a
situation. Under normal circumstances, the maximum size of a frame on an
Ethernet network is 1,518 bytes. When you subtract the Ethernet, IP, and
TCP headers from this number, you are left with 1,460 bytes that can be
used for the transmission of a layer 7 protocol header or for data. If you
know the minimum requirements for packet transmission, you can begin to
look at the distribution of packet lengths in a capture to make educated
guesses about the makeup of the traffic. This is immensely helpful for
attempting to understand the composition of large capture files. Wireshark
provides the Packet Lengths dialog for you to view the distribution of
packets based on length.

Let’s look at an example by opening the file download-slow.pcapng. Once
it is open, select Statistics p Packet Lengths. The result is the Packet
Lengths dialog shown in Figure 5-16.
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Figure 5-16: The Packet Lengths dialog helps you make educated guesses about the traffic in the
capture file.

Pay special attention to the row showing statistics for packets ranging
from 1,280 to 2,559 bytes. Larger packets like these typically indicate the
transfer of data, whereas smaller packets indicate protocol control sequences.
In this case, we have a large percentage of bigger packets (66.43 percent).
Without seeing the packets in the file, we can make the educated guess that
the capture contains one or more transfers of data. This could be in the form
of an HT'TP download, an FTP upload, or any other type of network
communication in which data is transferred between hosts.

Most of the remaining packets (33.44 percent) are in the 40- to 79-byte
range. Packets in this range are usually TCP control packets that don’t carry
data. Let’s consider the typical size of protocol headers. The Ethernet
header is 14 bytes (plus a 4-byte CRC), the IP header is a minimum of 20
bytes, and a "TCP packet with no data or options is also 20 bytes. This means
that standard TCP control packets—such as SYN, ACK, RST, and FIN
packets—will be around 54 bytes and fall in this range. Of course, the
addition of IP or TCP options will increase this size. We’ll dig into IP and
TCP in Chapters 7 and 8, respectively.

Examining packet lengths is a great way to get a bird’s-eye view of a
large capture. If there are a lot of large packets, it may be safe to assume that
data is being transferred. If the majority of packets are small, indicating that



not much data is being passed, you may assume that the capture consists of
protocol control commands. These are not hard-and-fast rules, but making
such assumptions is helpful before diving deeper.

Graphing

Graphs are the bread and butter of analysis and one of the best ways to get a
summary overview of a data set. Wireshark includes several graphing
features to assist in understanding capture data, the first of which are its 1O
graphing capabilities.

Viewing 10 Graphs

download-fast.pcapng, download-slow.pcapng, bttp_espn.pcapng

Wireshark’s IO Graph window allows you to graph the throughput of data
on a network. You can use such graphs to find spikes and lulls in data
throughput, discover performance lags in individual protocols, and compare
simultaneous data streams.

To view an example of the IO graph of a computer as it downloads a file
from the internet, open download-fast.pcapng. Click any TCP packet to
highlight it and then select Statistics p IO Graph.

The IO Graph window shows a graphical view of the flow of data over
time. In the example in Figure 5-17, you can see that the download this
graph represents averages around 500 packets per second and stays
somewhat consistent throughout its duration before tapering off at the end.
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Figure 5-17: The 10 graph of the fast download is mostly consistent.

Let’s compare this to an example of a slower download. Leaving the
current file open, open download-slow.pcapng in another instance of
Wireshark. Bring up the IO graph of this download, and you’ll see a much
different story, as shown in Figure 5-18.
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Figure 5-18: The 10 graph of the slow download is not consistent at all.

This download has a transfer rate between 0 and 100 packets per second,
and its rate is far from consistent, sometimes nearing 0 packets per second.
You can see these inconsistencies more clearly if you place the IO graphs of
the two files next to each other (see Figure 5-19). When comparing two
graphs, pay attention to the x-and y-axis values to ensure that you’re
comparing apples to apples. The scale will automatically adjust based on the
number of packets and/or data transmitted, which is a key difference
between the two graphs in Figure 5-19. The slower download shows a scale
between 0 and 100 packets per second, while the faster download’s scale has
a range of 0 to 700 packets per second.
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Figure 5-19: Viewing multiple 10 graphs side by side can be helpful in spotting variance.

The configurable options at the bottom of this window allow you to use
multiple unique filters (using the same syntax as for a display or capture
filter) and specify display colors for those filters. For instance, you can create
filters for specific IP addresses and assign unique colors to them to view the
variance in throughput for each device. Let’s try that out.

Open http_espn.pcapng, which was captured while a device was visiting
the ESPN home page. If you look at the Conversations window, you’ll see
that the top-talking external IP address is 205.234.218.129. From this, we
can deduce that this host is likely the primary content provider we are
receiving data from when visiting espn.com. However, there are also several
other IPs participating in conversations, likely because additional content is
being downloaded from external content providers and advertisers. We can
show the disparity between the direct and third-party content delivery using
the IO graph shown in Figure 5-20.
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Figure 5-20: An 10 graph showing 10 of two separate devices.

The two filters applied in this chart are represented by the rows on the
bottom of the IO Graph window. The filter named Top Talker shows IO
only for the IP address 205.234.218.129, our primary content provider. It
will graph this value in black using the stacked-bar style. The second filter,
named Everything FElse, will show 1O for everything in the capture file
except for the 205.234.218.129 address and thus includes all of the third-
party content providers. This value will be graphed in red (shown here as the
lighter gray) using the stacked bar. Notice that we’ve changed the y-axis unit
to bytes per second. With these changes applied, it’s very easy to see the
difference between primary and third-party content providers and just how
much content is actually from a third-party source. This is a fun exercise to
repeat on your frequently visited websites and a useful strategy for
comparing the IO of different network hosts.



Round-Trip Time Graphing

download-fast.pcapng

Another graphing feature of Wireshark is the ability to view a plot of round-
trip times for a given capture file. The round-trip time (RTT) is the time it
takes for an acknowledgment to be received for a packet. Effectively, this is
the time it took your packet to get to its destination and for the
acknowledgment of that packet to be sent back to you. Analysis of RTTs is
often done to find slow points or bottlenecks in communication and to
determine whether there is any latency.

Let’s try out this feature. Open the file download-fast.pcapng. View the
RTT graph of this file by selecting a TCP packet and then choosing
Statistics > T'CP Stream Graphs p Round Trip Time Graph. The RTT
graph for download-fast.pcapng is shown in Figure 5-21.
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Figure 5-21: The RTT graph of the fast download appears mostly consistent, with only a few stray
values.




Each point in the graph represents the RTT of a packet. The default
view shows these values sorted by sequence number. You can click a plotted
point within the graph to be taken directly to that packet in the Packet List

pane.

The RTT graph is unidirectional, so it’s important to select the proper
direction of the traffic you’d like to analyze. If your graph doesn’t look like the
one in Figure 5-21, you might need to click the Switch Direction button twice.

It appears as though the RTT graph for the fast download has RTT
values mostly under 0.05 seconds, with a few slower points between 0.10 and
0.25 seconds. Although there are quite a few higher values, the majority of
the RTT values are okay, so this would be considered an acceptable RT'T
for a file download. When examining the RTT graph for throughput issues,
you want to look for high latency times, which are indicated by multiple
points plotted at higher y-axis values.

Flow Graphing

dns_recursivequery_server.pcapng

The flow graph feature is useful for visualizing connections and showing the
flow of data over time, information that makes it easier to understand how
devices are communicating. A flow graph contains a column-based view of a
connection between hosts and organizes the traffic so you can interpret it
visually.

To create a flow graph, open the file dns_recursivequery_server.pcapng and

select Statistics B Flow Graph. The resulting graph is shown in Figure 5-
22.



M Wireshark . Flow - dns_recursivequery_server e O s

£e135 :E:an:a': e icy

§2570 :Ste"n:ia"c Sgioy

[ 62570 m 53
seioc (grandard qu.. | ey

Packar 2: DNS: Standad gueny Ox'4d A www.nostsrch.com
Show: | All packets ¥ | Flow type: |AlFows ™ | Addresses: Any -

Reset

Save As... Close Help

Figure 5-22: The TCP flow graph allows us to visualize the connection much better.

This flow graph is a recursive DNS query, which is a DNS query that is
received by one host and forwarded to another (we’ll cover DNS in Chapter
9). Each vertical line in the graph represents an individual host. The flow
graph is a great way to visualize back-and-forth communication between two
devices or, as in this example, the relationship between the communication
of multiple devices. It’s also useful for understanding the normal flow of
communication with protocols that you are less experienced with.

Expert Information

download-slow.pcapng

The dissectors for each protocol in Wireshark define expert info that can be
used to alert you about particular states within packets of that protocol.
These states are separated into four categories.

Chat Basic information about the communication
Note Unusual packets that may be part of normal communication

Warning Unusual packets that are most likely not part of normal
communication

Error An error in a packet or the dissector interpreting it



For example, open the file download-slow.pcapng. Then click Analyze and
select Expert Information to bring up the Expert Information window.
Once there, deselect Group by summary to organize the output by severity
(see Figure 5-23).
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Figure 5-23: The Expert Information window shows information from the expert system

programmed within the protocol dissectors.

The window has sections for each classification of information. Here

there are no errors, 3 warnings, 19 notes, and 3 chats.

Most of the messages within this capture file are TCP related, simply
because the expert information system has traditionally been most used with
that protocol. At this time, there are 29 expert info messages configured for



TCP, and they will be useful when you are troubleshooting capture files.
These messages will flag an individual packet when it meets certain criteria,
as listed below. (The meaning of these messages will become clearer as we
study T'CP in Chapter 8 and troubleshooting slow networks in Chapter 11.)

Chat Messages

Window Update Sent by a receiver to notify a sender that the size of the
TCP receive window has changed.

Note Messages
TCP Retransmission Results from packet loss. Occurs when a duplicate
ACK is received or the retransmission timer of a packet expires.

Duplicate ACK When a host doesn’t receive the next sequence number
it is expecting, it generates a duplicate ACK of the last data it received.

Zero Window Probe Monitors the status of the TCP receive window

after a zero window packet has been transmitted (covered in Chapter
11).

Keep Alive ACK Sent in response to keep-alive packets.

Zero Window Probe ACK  Sent in response to zero-window-probe
packets.

Window Is Full Notifies a transmitting host that the receiver’s TCP
receive window is full.

Warning Messages

Previous Segment Lost Indicates packet loss. Occurs when an expected
sequence number in a data stream is skipped.

ACKed Lost Packet Occurs when an ACK packet is seen but the packet
it is acknowledging is not.

Keep Alive 'Triggered when a connection keep-alive packet is seen.

Zero Window Seen when the size of the TCP receive window is reached
and a zero window notice is sent out, requesting that the sender stop
sending data.

Out-of-Order  Utilizes sequence numbers to detect when packets are
received out of sequence.



Fast Retransmission A retransmission that occurs within 20 milliseconds
of a duplicate ACK.

Error Messages
No Error Messages

Although some of the features discussed in this chapter may seem as if
they would be used only in obscure situations, you will probably find
yourself using them more than you might expect. It’s important that you
familiarize yourself with these windows and options; I will be referencing
them a lot in the next few chapters.



6
PACKET ANALYSIS ON THE COMMAND LINE

While many scenarios can be addressed using a GUI,
in some cases, using command line tools—such as
T'Shark or tcpdump—is necessary or preferable. Here
are some situations in which a command line tool
might be used instead of Wireshark:

Wireshark provides a lot of information at once. By using a command
line tool, you can limit displayed information to only pertinent data,
such as a single line showing IP addresses.

Command line tools are best suited for filtering a packet capture file and
providing the results directly to another tool using Unix pipes.

Dealing with a very large capture file can often overwhelm Wireshark
because the entire file must be loaded into RAM. Stream processing of

large capture files with command line tools can allow you to quickly
filter the file down to the relevant packets.

If you are dealing with a server and don’t have access to a graphical tool,
you may be forced to rely on command line tools.

In this chapter, I'll demonstrate the features of two common command

line packet analysis tools, TShark and tcpdump. I think it’s helpful to be



familiar with both, but I generally find myself using 'I'Shark on Windows
systems and tcpdump on Unix systems. If you exclusively use Windows, you
may want to skip the parts on tcpdump.

Installing TShark

Terminal-based Wireshark, or T'Shark, is a packet analysis application that
provides a lot of the same functionality as Wireshark but exclusively from a
command line interface with no GUL If you've installed Wireshark, then
you likely have TShark as well unless you explicitly chose not to install it
during Wireshark installation. You can verify that I'Shark is installed by
following these steps:

1. Open a command prompt. Click the Start Menu, enter cmd, and click
Command Prompt.

2. Browse to the directory where Wireshark is installed. If you installed it
to the default location, you can go there by entering c¢d C:\Program
Files\ Wireshark in the command prompt.

3. Run TShark and print its version information by entering tshark -v. If
T'Shark isn’t installed, you’ll get an error saying the command is not
recognized. If T'Shark is installed on your system, you’ll get an output
with the T'Shark version information:

C:\Program Files\Wireshark>tshark -v
TShark (Wireshark) 2.0.0 (v2.0.0-0-g9a73b82 from master-2.0
--snip--

If you didn’t install 'T'Shark and would like to use it now, you can simply

rerun the Wireshark installation and make sure TShark is selected. (It is by
default.)

If you'd like to immediately start learning more about TShark’s
capabilities, you can print the available commands with the -h argument.
We'll cover some of these commands in this chapter.

C:\Program Files\Wireshark>tshark -h

Like Wireshark, T'Shark can run on multiple operating systems, but



since it’s not dependent on OS-specific graphics libraries, the user
experience is more consistent across different OS platforms. Because of this,
TShark operates very similarly on Windows, Linux, and OS X. However,
there are still some differences in how T'Shark runs on each platform. In this
book, we’ll focus on running T'Shark on Windows because that is the
primary operating system it was designed to work with.

Installing tcpdump

While Wireshark is the most popular graphical packet analysis application in
the world, tcpdump is by far the most popular command line packet analysis
application. Designed to work on Unix-based operating systems, tcpdump is
very easy to install via popular package management applications and even
comes preinstalled on many flavors of Linux.

Even though the majority of this book is Windows focused, sections on
tcpdump are included for Unix users. Specifically, we’ll be using Ubuntu
14.04 L'TS. If you would like to use tcpdump on a Windows device, then
you can download and install its Windows counterpart, WinDump, from
http:/fwww.winpcap.org/windump/. While the experience of tcpdump and that
of WinDump aren’t entirely the same, these packet analyzers function
similarly. Note, however, that WinDump isn’t nearly as actively maintained
as tcpdump. As a result, a few newer features might be missing, and security
vulnerabilities may exist. (We won’t be covering WinDump in this book.)

Ubuntu doesn’t come with tcpdump preinstalled, but installing it is very
easy thanks to the APT package management system. To install tcpdump,
follow these steps:

1. Open a terminal window and run the command sudo apt-get update
to ensure that your package repositories are up-to-date with the latest
package versions.

2. Run the command sudo apt-get install tcpdump.

3. You'll be asked to install a number of prerequisites that are needed to
run tcpdump. Allow these installations by typing Y and pressing enter
when prompted.

4. Once the installation has completed, run the command tcpdump -h to


http://www.winpcap.org/windump/

execute tcpdump and print its version information. You're ready to start
using tcpdump if the command is successful and you see text like this in
the terminal window:

sanders@ppa:~$ tcpdump -h

tcpdump version 4.5.1

1ibpcap version 1.5.3

Usage: tcpdump [-aAbdDefhHIJKLLNNOpgRStuUvxX#] [ -B size ] [ -c count ]
[ -C file_size ] [ -E algo:secret ] [ -F file ] [ -G seconds ]
[ -1 interface ] [ -j tstamptype ] [ -M secret ]
[ -Q metadata-filter-expression ]
[ -r file ] [ -s snaplen ] [ -T type ] [ --version ] [ -V file ]
[ -w file ] [ -W filecount ] [ -y datalinktype ] [ -z command ]
[ -Z user ] [ expression ]

You can print all of tcpdump’s available commands by invoking the man
tcpdump command, like this:

sanders@ppa:~$ man tcpdump

We’ll talk about how to use several of these commands.

Capturing and Saving Packets

The first order of business is to capture packets from the wire and display
them on the screen. To start a capture in T'Shark, simply execute the
command tshark. This command will start the process of capturing packets
from a network interface and dumping them on screen in your terminal
window, which will look something like this:

C:\Program Files\Wireshark>tshark

1 0.000000 172.16.16.128 -> 74.125.95.104 TCP 66 1606 80 [SYN]
Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1

2 0.030107 74.125.95.104 -> 172.16.16.128 TCP 66 80 1606 [SYN, ACK]
Seq=0 Ack=1 Win=5720 Len=0 MSS=1406 SACK_PERM=1 WS=64

3 0.030182 172.16.16.128 -> 74.125.95.104 TCP 54 1606 80 [ACK]

Seq=1 Ack=1 Win=16872 Len=0

4 0.030248 172.16.16.128 -> 74.125.95.104 HTTP 681 GET / HTTP/1.1

5 0.079026 74.125.95.104 -> 172.16.16.128 TCP 60 80 1606 [ACK]
Seq=1 Ack=628 Win=6976 Len=0

To start a capture in tcpdump, execute the command tcpdump. After you
run this command, your terminal window should look something like this:

sanders@ppa:~$ tcpdump



tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth®, link-type EN10OMB (Ethernet), capture size 65535 bytes
21:18:39.618072 IP 172.16.16.128.slm-api > 74.125.95.104.http: Flags [S],
seq 2082691767, win 8192, options [mss 1460,nop,wscale 2,nop,nop,sackOK],
length 0

21:18:39.648179 IP 74.125.95.104.http > 172.16.16.128.slm-api:

Flags [S.], seq 2775577373, ack 2082691768, win 5720, options [mss

1406 ,nop,nop,sackOK,nop,wscale 6], length 0

21:18:39.648254 IP 172.16.16.128.slm-api > 74.125.95.104.http: Flags [.],
ack 1, win 4218, length 0

21:18:39.648320 IP 172.16.16.128.slm-api > 74.125.95.104.http: Flags [P.],
seq 1:628, ack 1, win 4218, length 627: HTTP: GET / HTTP/1.1
21:18:39.697098 IP 74.125.95.104.http > 172.16.16.128.slm-apil: Flags [.],
ack 628, win 109, length 0

Since administrative privileges are required to capture packets on Unix
systems, you’ll likely either have to execute tcpdump as the root user or use the
sudo command in front of the commands listed in this book. In many cases,
you’lf probably be accessing your Unix-based system as a user with limited
privileges. If you encounter a permissions ervor while following along, this is
probably the reason why.

Depending on how your system is configured, 'I'Shark or tcpdump may
not default to the network interface you want to capture traffic from. If that
happens, you will need to specify it. You can list the interfaces available to
TShark by using the -pb argument, which outputs the interfaces as a
numbered list, as shown here:

C:\Program Files\Wireshark>tshark -D

1. \Device\NPF_{1DE095C2-346D-47E6-B855-11917B74603A} (Local Area Connection*
2)

2. \Device\NPF_{1A494418-97D3-42E8-8COB-78D79A1F7545} (Ethernet 2)

To use a specific interface, use the -i argument with the interface’s
assigned number from the interface list, like this:

C:\Program Files\Wireshark>tshark -1 1

This command will capture packets exclusively from the interface named
Local Area Connection 2, which is assigned the number 1 in the interface
list. I recommend always specifying which interface you are capturing from.
It’s common for virtual machine tools or VPNs to add interfaces, and you



want to be certain that the packets you are capturing are coming from the
correct source.

On a Linux or OS X system running tcpdump, use the ifconfig command
to list the available interfaces:

sanders@ppa:~$ ifconfig
etho Link encap:Ethernet HWaddr 00:0c:29:1f:a7:55
inet addr:172.16.16.139 Bcast:172.16.16.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fel1f:a755/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:5119 errors:0 dropped:0 overruns:0 frame:0
TX packets:3088 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:876746 (876.7 KB) TX bytes:538083 (538.0 KB)

Specifying the interface is also done by using the -t argument:

sanders@ppa:~$ tcpdump -1 eth0

This command will capture packets exclusively from the ethO interface.

Once you have everything properly configured, you can start capturing
packets. If the device you're capturing traffic from is even remotely busy on
the network, then you’ll probably notice that lines representing individual
packets are flying by rather quickly—potentially too quickly for you to read.
We can remedy this by saving the packets to a file and then reading only a
few of them from that file.

To save collected packets to a file in both tools, use the -w argument
along with the name of the file. The capture will continue running until you
stop it by pressing CTRL-C. The file will be saved to whatever directory the
program was executed from, unless otherwise specified.

Here’s an example of this command in T'Shark:

C:\Program Files\Wireshark>tshark -i 1 -w packets.pcap

This command will write all of the packets captured from the first
interface in the interface list to packets.pcap.

In tcpdump, the same command would look like this:

sanders@ppa:~$ tcpdump -1 eth® -w packets.pcap

To read packets back from a saved file, use the -r argument along with



the name of the file:

C:\Program Files\Wireshark>tshark -r packets.pcap

This command will read all the packets from packets.pcap onto the
screen.

The tcpdump command is nearly identical:

sanders@ppa:~$ tcpdump -r packets.pcap

You may notice that if the file you are attempting to read from contains
a lot of packets, you’ll encounter a situation similar to the one just described,
with the packets scrolling across your screen too fast for you to read. You
can limit the number of packets displayed when reading from a file by using
the -c argument.

For example, the following command will show only the first 10 packets

of the capture file in TShark:

C:\Program Files\Wireshark>tshark -r packets.pcap -c10

In tcpdump, the same argument can be used:

sanders@ppa:~$ tcpdump -r packets.pcap -c10

The -c argument can also be used at capture time. Executing this
command will capture only the first 10 packets that are observed. They can
also be saved when -c is combined with the -w argument.

Here’s what this command looks like in 'T'Shark:

C:\Program Files\Wireshark>tshark -i 1 -w packets.pcap -c10

And in tepdump:

sanders@ppa:~$ tcpdump -1 eth® -w packets.pcap -c10

Manipulating Output

A Dbenefit of using command line tools is that the output is usually
considered more carefully. A GUI typically shows you everything and it’s up



to you to find what you want. Command line tools typically only show the
bare minimum and force you to use additional commands to dig deeper.
TShark and tcpdump are no different. They both show a single line of
output for each packet, requiring you to use additional commands to view
information such as protocol details or individual bytes.

In the TShark output, each line represents a single packet, and the
format of the line depends on the protocols used in that packet. T'Shark uses
the same dissectors as Wireshark and analyzes packet data in the same way,
so T'Shark output will mirror Wireshark’s Packet List pane when the two are
run side by side. Because T'Shark has dissectors for layer 7 protocols, it can
provide a lot more information about packets containing headers than can
tcpdump.

In tcpdump, each line also represents one packet, which is formatted
differently based on the protocol being used. Since tcpdump doesn’t use
Wireshark’s  protocol dissectors, layer 7 protocol information isn’t
interpreted by the tool. This is one of tcpdump’s biggest limitations. Instead,
single-line packets are formatted based on their transport layer protocol,
which is either TCP or UDP (we’ll learn more about these in Chapter 8).

TCP packets use this format:

[Timestamp] [Layer 3 Protocol] [Source IP].[Source Port] > [Destination IP].
[Destination Port]: [TCP Flags], [TCP Sequence Number], [TCP Acknowledgement
Number], [TCP Windows Size], [Data Length]

While UDP packets use this format:

[Timestamp] [Layer 3 Protocol] [Source IP].[Source Port] > [Destination IP].
[Destination Port]: [Layer 4 Protocol], [Data Length]

These basic one-line summaries are great for quick analysis, but you’ll
eventually need to perform a deep dive into a packet. In Wireshark, you
would do this by clicking a packet in the Packet List pane, which would
display information in the Packet Details and Packet Bytes panes. You can
access the same information on the command line using a few options.

The simplest way to gain more information about each packet is to
increase the verbosity of the output.

In T'Shark, a capital v is used to increase verbosity:

C:\Program Files\Wireshark>tshark -r packets.pcap -V



This will provide an output similar to Wireshark’s Packet Details pane
for packets read from the packets.pcap capture file. Examples of a packet with
normal verbosity (a basic summary) and expanded verbosity (more detailed
summaries obtained through the -v argument) are shown here.

First the standard output:

C:\Program Files\Wireshark>tshark -r packets.pcap -ci
1 0.000000 172.16.16.172 -> 4.2.2.1 ICMP Echo (ping) request
1d=0x0001, seq=17/4352, ttl=128

And now a portion of the more in-depth information produced with
expanded verbosity:

C:\Program Files\Wireshark>tshark -r packets.pcap -V -ci
Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on
interface 0
Interface id: 0 (\Device\NPF_{C30671C1-579D-4F33-9CCO-73EFFFE85A54})
Encapsulation type: Ethernet (1)
Arrival Time: Dec 21, 2015 12:52:43.116551000 Eastern Standard Time

[Time shift for this packet: 0.000000000 seconds]
--snip--

In tecpdump, the lowercase v is used to increase verbosity. Unlike
TShark, tcpdump allows multiple levels of verbosity to be displayed for each

packet. You can add up to three levels of verbosity by appending additional
vs, as seen here:

sanders@ppa:~$ tcpdump -r packets.pcap -vvv

An example of the same packet displayed with normal verbosity and one
level of expanded verbosity is shown below. Even with full verbosity, this
output isn’t nearly as verbose as what T'Shark produces.

sanders@ppa:~$ tcpdump -r packets.pcap -ci
reading from file packets.pcap, link-type EN10OMB (Ethernet)
13:26:25.265937 IP 172.16.16.139 > a.resolvers.level3.net: ICMP echo request,
id 1759, seq 150, length 64
sanders@ppa:~$ tcpdump -r packets.pcap -cl -v
reading from file packets.pcap, link-type EN10OMB (Ethernet)
13:26:25.265937 IP (tos Ox0, ttl 64, id 37322, offset 0, flags [DF], proto
ICMP (1), length 84)

172.16.16.139 > a.resolvers.level3.net: ICMP echo request, id 1759, seq
150, length 64

The levels of verbosity available will depend on the protocol of the



packet you're examining. While expanded verbosity is useful, it still doesn’t
show us everything there is to see. TShark and tcpdump store the entire
contents of each packet, which can also be viewed in hexadecimal or ASCII
form.

In "T'Shark, you can view the hex and ASCII representation of packets by
using the -x argument, which can be combined with the r argument to read
and display a packet from file:

C:\Program Files\Wireshark>tshark -xr packets.pcap

This view, which is similar to Wireshark’s Packet Bytes pane, is shown
in Figure 6-1.
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C:\Program Files\wWireshark:tshark -xr packets.pcap -ci
ce cl c@ 17 Bc e8 T8 16 54 T8 91 ac 83 8@ 45 @8 canssaasTiennsBa
@0 3c 37 d7 00 90 B0 91 4@ 2Zb ac 10 18 ac &4 a2 kT anansBFeanana

82 91 BE 28 4d 43 8@ 81 B8 11 61 62 63 B4 65 66 +eseM3, .. 2bcdef
67 63 60 63 6b 6c 6d 62 6F 78 71 72 73 74 75 76 ghijklmnopgrstuy
T7 61 62 63 64 65 66 67 68 69 wabcdefghi

Figure 6-1: Viewing raw packets in hex and ASCI| in TShark

In tcpdump, you can view the hex and ASCII representation by using
the -x switch. You can also combine -x with the r argument to read from a

packet file, like this:

sanders@ppa:~$ tcpdump -Xr packets.pcap

The output from this command is shown in Figure 6-2.

@ 1. sanders@ppa: ~ (ssh)

sanders@ppa:~3 tcpdump -Xr packets.pcap -cl

reading from file packets.pcap, link-type EN1@MB {Ethernet)

13:26:25.265937 IP 172.16.16.139 » a.resolvers.level3.net: ICWP echo request, id 1759, seq 158, length 64

exeeee: 4500 2054 91ca 42€0Q 4891 e648 acle 1e8b
@xP0l8: e492 9201 °8E@ abBe B6df @096 5144 FBES6 ....cvvveunn
@xgeze: ©00e ooee b9e 480 Gece edee 1e11 1213
@xee3a: 1415 1617 1819 1alb 1cld 1elf 2821 2223
@x0e40: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
exee58: 3435 3637 4567

Figure 6-2: Viewing raw packets in hex and ASCI| in tcpdump

tcpdump also lets you get a bit more granular if you need to. You can
view only the hexadecimal output using the -x (lowercase) argument or only
the ASCII output using the -a argument.



It’s easy to become overwhelmed with data when you start
experimenting with these data output options. I find it most efficient to use
the least amount of information needed when doing analysis from the
command line. Start by viewing packets in their default list view and use
more verbose output when you narrow your analysis down to a few
interesting packets. This approach will keep you from being overwhelmed
with data.

Name Resolution

Like Wireshark, TShark and tcpdump will attempt to perform name
resolution to convert addresses and port numbers to names. If you followed
along with any of the earlier examples, you may have noticed that this occurs
by default. As mentioned previously, I typically prefer to disable this
functionality to prevent the possibility of my analysis generating more
packets on the wire.

You can disable name resolution in TShark by using the -n argument.
This argument, like many others, can be combined with other commands to
enhance readability:

C:\Program Files\Wireshark>tshark -ni 1

You can enable or disable certain aspects of name resolution with the -n
argument. If you use the -n argument, all name resolution will be disabled
except for any you explicitly enable using the appropriate values. For
instance, the following command will enable only transport layer (port
name) resolution:

C:\Program Files\Wireshark>tshark -i 1 -Nt

You can combine multiple values. This command will enable transport
layer and MAC resolution:

C:\Program Files\Wireshark>tshark -i 1 -Ntm

The following values are available when using this option:
m MAC address resolution
n Network address resolution



t T'ransport layer (port name) resolution
N Use external resolvers
C Concurrent DNS lookups

In tepdump, using -n will disable IP name resolution, and using -nn will
disable port name resolution as well.

This argument can also be combined with other commands, like this:

sanders@ppa:~$ tcpdump -nni ethl

The following examples show a packet capture first with port resolution

enabled and then with it disabled (-n).

sanders@ppa:~$ tcpdump -r tcp_ports.pcap -ci

reading from file tcp_ports.pcap, link-type EN1OMB (Ethernet)

14:38:34.341715 IP 172.16.16.128.2826 > 212.58.226.142. ©http: Flags [S], seq
3691127924, win 8192, options [mss 1460,nop,wscale 2,nop,nop,sackOK], length 0
sanders@ppa:~$ tcpdump -nr tcp_ports.pcap -cl

reading from file tcp_ports.pcap, link-type EN1OMB (Ethernet)

14:38:34.341715 IP 172.16.16.128.2826 > 212.58.226.142. @®80: Flags [S], seq
3691127924, win 8192, options [mss 1460,nop,wscale 2,nop,nop,sackOK], length 0

Both of these commands read just the first packet from the capture file
tep_ports.pcap. With the first command, port name resolution is on and

resolves port 80 to http @, but with the second command, the port is just
displayed by number @.

Applying Filters

Filtering in 'TShark and tcpdump is very flexible because both allow the use
of BPF capture filters. T'Shark can also use Wireshark display filters. Just as
with Wireshark, capture filters in T'Shark can be used only at capture time,
and display filters can be used at capture time or while displaying already
captured packets. We'll start by looking at "I'Shark filters.

Capture filters can be applied using the -f argument, followed by the
BPF syntax you wish to use in quotation marks. This command will only
capture and save packets with a destination of port 80 and using the TCP
protocol:

C:\Program Files\Wireshark>tshark -ni 1 -w packets.pcap -f "tcp port 80"



Display filters can be applied using the -v argument, followed by the
Wireshark filter syntax you wish to use in quotation marks. This can be
applied at capture time like this:

C:\Program Files\Wireshark>tshark -ni 1 -w packets.pcap -Y "tcp.dstport == 80"

Display filters can be applied on already captured packets using the same
argument. This command will display only packets from packets.pcap that
match the filter:

C:\Program Files\Wireshark>tshark -r packets.pcap -Y "tcp.dstport == 80"

With tcpdump, you specify filters inline at the end of a command within
single quotes. This command will also capture and save only packets

destined to T'CP port 80:

sanders@ppa:~$ tcpdump -nni eth® -w packets.pcap "tcp dst port 80"

You can specify a filter when reading packets as well. This command
will display only packets from packets.pcap that match the filter:

sanders@ppa:~$ tcpdump -r packets.pcap 'tcp dst port 80'

It’s important to keep in mind that if the original capture file was
created without a filter, then it still contains other packets; you are just
limiting what is shown on the screen when reading from an existing file.

What if you have a capture file that contains a large variety of packets,
but you want to filter out a subset of them and save that subset to a separate
file? You can do this by combining the -w and -r arguments:

sanders@ppa:~$ tcpdump -r packets.pcap 'tcp dst port 80' -w http_packets.pcap

This command will read the file packets.pcap, filter out only the traffic
destined for TCP port 80 (which is used for http), and write those packets to
a new file called http_packets.pcap. This is a very common technique to use
when you want to maintain a larger source .pcap file but only analyze a small
portion of it at a time. I frequently use this technique to whittle down very
large capture files with tcpdump so that I can analyze a subset of the packets
in Wireshark. Smaller capture files are much easier to wrangle.



In addition to specifying a filter inline, tcpdump allows you to reference
a BPF file containing a series of filters. This is handy when you’d like to
apply an extremely large or complex filter that might otherwise be unwieldy
to edit and maintain inline with the tcpdump command. You can specify a
filter file using the -F argument, like this:

sanders@ppa:~$ tcpdump -nni eth® -F dns_servers.bpf

If your file gets too large, you might be tempted to add notes or
comments to it to keep track of what each part of the filter does. Keep in
mind that a BPF filter file does not allow for comments and will generate an
error if anything other than a filtering statement is encountered. Since
comments are very helpful for deciphering large filter files, I usually
maintain two copies of every file: one for use with tcpdump that doesn’t
contain comments and one that contains comments for reference.

Time Display Formats in TShark

One thing that often confuses new analysts is the default timestamp used by
TShark. It shows packet timestamps in relation to the start of the packet
capture. There are times when such timestamping is preferable, but in many
cases you may want to see the time the packet was captured, as is the default
for tcpdump timestamps. You can get this same output from TShark by
using the -t argument with the value ad for absolute date:

C:\Program Files\Wireshark>tshark -r packets.pcap -t ad

Here’s a comparison of the same packets as before with the default

relative timestamps @ and absolute timestamps @:

@ C:\Program Files\Wireshark>tshark -r packets.pcap -c2

1 0.000000 172.16.16.172 -> 4.2.2.1 ICMP Echo (ping)
request 1d=0x0001, seq=17/4352, ttl=128
2 0.024500 4.2.2.1 -> 172.16.16.172 ICMP Echo (ping)

reply 1d=0x0001, seq=17/4352, ttl=54 (request in 1)

® C:\Program Files\Wireshark>tshark -r packets.pcap -t ad -c2

1 2015-12-21 12:52:43.116551 172.16.16.172 -> 4.2.2.1 ICMP Echo (ping)
request 1d=0x0001, seq=17/4352, ttl=128
2 2015-12-21 12:52:43.141051 4.2.2.1 -> 172.16.16.172 ICMP Echo (ping)

reply 1d=0x0001, seq=17/4352, ttl=54 (request in 1)




By using the -t argument, you can specify any time display format you
would find in Wireshark. These formats are shown in Table 6-1.

Table 6-1: Time Display Formats Available in TShark

Value Timestamp Example

a Absolute time the packet was captured (in your 15:47:58.004669
time zone)

ad Absolute time the packet was captured with date =~ 2015-10-9

: . 15:47:58.004669
(in your time zone)

d Delta (time difference) since previous captured 0.000140
packet

dd Delta since previous displayed packet 0.000140

e Epoch time (seconds since January 1, 1970, UTC) 1444420078.004669

r Elapsed time between the first packet and the 0.000140
current packet

u Absolute time the packet was captured (UTC) 19:47:58.004669

ud Absolute time the packet was captured with date = 2015-10-09

19:47:58.004669

(UTC)

Unfortunately, tcpdump doesn’t provide this level of control for
manipulating how timestamps are shown.

Summary Statistics in TShark

Another useful TShark feature (and one that sets it apart from tcpdump) is
its ability to generate a subset of statistics from a capture file. These statistics
mirror many of the capabilities found in Wireshark but provide easy
command line access. Statistics are generated by using the -z argument and
specifying the name of the output you would like to generate. You can view a
full listing of available statistics by using this command:

C:\Program Files\Wireshark>tshark -z help

Many of the features we’ve already covered are available using the -z



argument. They include the ability to output endpoint and conversation
statistics using this command:

C:\Program Files\Wireshark>tshark -r packets.pcap -z conv,ip

This command prints a table of statistics with information about the IP
conversations in the file packets.pcap, as shown in Figure 6-3.

You can also use this argument to view protocol-specific information. As
shown in Figure 6-4, you can use the http,tree option to see a breakdown of
HTTP requests and responses in table form.

C:\Program Files\Wireshark>tshark -r packets.pcap -z http,tree
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C:\Program Files\Wiresharkstshark -r . pc conv,ip
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Figure 6-3: Using TShark to view conversation statistics
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Figure 6-4: Using TShark to view HTTP request and response statistics
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Another useful feature is the ability to view reassembled stream output,
similar to what we did earlier by right-clicking packets in Wireshark and
choosing the Follow TCP Stream option. To get this output, we have to use
the follow option and specify the type of stream, the output mode, and which

stream we want to display. You can identify a stream with the number

assigned to it in the leftmost column when outputting conversation statistics
(as seen in Figure 6-3). A command might look like this:

C:\Program Files\Wireshark>tshark -r http_google.pcap -z follow,tcp,ascii,0

This command will print TCP stream 0 to the screen in ASCII format

from the file h#tp_google.pcap. The output for this command looks like this:

C:\Program Files\Wireshark>tshark -r http_google.pcap -z

--snip--

Follow: tcp,ascii

Filter: tcp.stream eq 0
Node 0: 172.16.16.128:1606
Node 1: 74.125.95.104:80
627

GET / HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.7)

Gecko/20091221 Firefox/3.5.7

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;q9=0.7,*;q0=0.7
Keep-Alive: 300



Connection: keep-alive

Cookie: PREF=ID=257913a938e6c248:U=267c896b5f39fb0Ob:FF=4:LD=e
n:NR=10:TM=1260730654:1LM=1265479336:GM=1:S=h1UBGonTuWU3D23L ;
NID=31=Z-nhwMjUP63e0tYMTp-3T11gMSPnNS1eM1kN1_DUrn02zW1cPM4JE3AJec9b_
vG-YFibFXszOApfbhBA1BOX4dKx4L8ZDde1KwgekgP5_kzELtC2mUHX7RHx3PIttcuzZ

1406
HTTP/1.1 200 OK
Date: Tue, 09 Feb 2010 01:18:37 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Server: gws
Content-Length: 4633
X-XSS-Protection: 0

You can also specify which stream you’d like to view by providing the
address details. For example, the following command will retrieve a UDP
stream for the specified endpoints and ports:

C:\Program Files\Wireshark>tshark -r packets.pcap -z follow,udp,ascii,192.168.
1.5:234290,4.2.2.1:530

This command will print the UDP stream for the endpoints 192.168.1.5
on port 23429 @ and 4.2.2.1 on port 53 @ from packets.pcap.
Here are some of my favorite statistical options:

ip_hosts,tree Displays every IP address in a capture, along with the
rate and percentage of traffic each address is responsible for

io,phs  Displays a protocol hierarchy showing all protocols found
within the capture file

http,tree Displays statistics related to HTTP requests and responses
http_req,tree Displays statistics for every HT'TP request

smb,srt  Displays statistics related to SMB commands for analyzing
Windows communication

endpoints,wlan Displays wireless endpoints

expert Displays expert information (chats, errors, and so on) from the
capture

There are a lot of useful options available using the -z argument. It
would take far too many pages to cover them all here, but if you plan to use
TShark frequently, you should invest time in reviewing the official



documentation to learn more about everything that is available. You can find
that documentation here: https://www.wireshark.org/docs/man-
pages/tshark.btml.

Comparing TShark and tcpdump

Both command line packet analysis applications we’ve examined in this
chapter are well suited to their respective tasks, and either of them will allow
you to accomplish whatever task is at hand with varying degrees of effort.
There are a few differences worth highlighting so you can choose the best
tool for the job:

Operating system tcpdump is only available for Unix-based operating
systems, while TShark can function on Windows and Unix-based
systems.

Protocol support Both tools support common layer 3 and 4 protocols,
but tcpdump has limited layer 7 protocol support. T'Shark provides a
rich level of layer 7 protocol support because it has access to
Wireshark’s protocol dissectors.

Analysis features  Both tools rely heavily on human analysis to
produce meaningful results, but TShark also provides a robust set of
analytical and statistical features, similar to those in Wireshark, that can
aid analysis when a GUI isn’t available.

Tool availability and personal preference are usually the ultimate
deciders of which application to use. Fortunately, the tools are similar
enough that learning one will inherently teach you something about the
other, making you more versatile and increasing the size of your tool kit.


https://www.wireshark.org/docs/man-pages/tshark.html

7
NETWORK LAYER PROTOCOLS

Whether you’re troubleshooting latency issues,
identifying malfunctioning applications, or zeroing in
on security threats in order to spot abnormal traffic,
you must first understand normal traffic. In the next
couple of chapters, you’ll learn how normal network

traffic works at the packet level as we journey from the bottom of the

OSI model all the way to the top. Each protocol section has at least one
associated capture file, which you can download and work with directly.

In this chapter, we’ll specifically focus on the network layer protocols
that are the workhorses of network communication: ARP, IPv4, IPvo6,
ICMP, and ICMPve6.

The next three chapters on network protocols are arguably the most
important chapters in this book. Skipping this discussion would be like
making Thanksgiving dinner without preheating the oven. Even if you
already have a good grasp of how each protocol functions, give these
chapters at least a quick read in order to review the packet structure of each.

Address Resolution Protocol (ARP)



Both logical and physical addresses are used for communication on a
network. Logical addresses allow for communication among multiple
networks and indirectly connected devices. Physical addresses facilitate
communication on a single network segment for devices that are directly
connected to each other with a switch. In most cases, these two types of
addressing must work together in order for communication to occur.

Consider a scenario in which you wish to communicate with a device on
your network. This device may be a server of some sort or just another
workstation you need to share files with. The application you are using to
initiate the communication is already aware of the remote host’s IP address
(via DNS, covered in Chapter 9), meaning the system should have all it
needs to build the layer 3 through 7 information of the packet it wants to
transmit. The only piece of information it needs at this point is the layer 2
data link information containing the MAC address of the target host.

MAC addresses are needed because a switch that interconnects devices
on a network uses a Content Addressable Memory (CAM) table, which lists the
MAC addresses of all devices plugged into each of its ports. When the
switch receives traffic destined for a particular MAC address, it uses this
table to know which port to send the traffic through. If the destination MAC
address is unknown, the transmitting device will first check for the address in
its cache; if the address isn’t there, then it must be resolved through
additional communication on the network.

The resolution process that TCP/IP networking (with IPv4) uses to
resolve an IP address to a MAC address is called the Address Resolution

Protocol (ARP), which is defined in RFC 826. The ARP resolution process
uses only two packets: an ARP request and an ARP response (see Figure 7-

0.

An RFC, or Request for Comments, is a technical publication from the
Internet Engineering Task Force (IETF) and Internet Society (ISOC) and is
the mechanism used to define the implementation standards for protocols. You
can search for RFC documentation at the REC Editor home page,
http://www.rfc-editor.org/.

The transmitting computer sends out an ARP request that basically says,



“Howdy, everybody. My IP address is 192.168.0.101, and my MAC address
is £2:£2:£2:£2:£2:f2. T need to send something to whoever has the IP address
192.168.0.1, but I don’t know the hardware address. Will whoever has this
IP address please respond with your MAC address?”

This packet is broadcast to every device on the network segment. Any
device that doesn’t have this IP address simply discards the packet. The
device that does have the address sends an ARP reply with an answer such as

“Hey, transmitting device, I’'m the one you’re looking for with the IP
address 192.168.0.1. My MAC address is 02:£2:02:£2:02:£2.”

Once this resolution process is completed, the transmitting device
updates its cache with the MAC-to-IP address association of the receiving
device and can begin sending data.
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Source IP: 192.168.0.1

Source MAC: 02:f2:02:f2:02:f2
Target IP: 192.168.0.101
Target MAC: f2:f2:f2:f2:f2:12




Figure 7-1: The ARP resolution process

You can view the ARP table of a Windows host by typing arp -a from a
command prompt.

Seeing this process in action will help you understand how it works. But
before we look at some examples, let’s examine the ARP packet header.

ARP Packet Structure

As shown in Figure 7-2, the ARP header includes the following fields:

Hardware Type  The layer 2 type used—in most cases, this is
Ethernet (type 1)

Protocol Type The higher-layer protocol for which the ARP request
is being used

Hardware Address Length  The length (in octets/bytes) of the
hardware address in use (6 for Ethernet)

Protocol Address Length The length (in octets/bytes) of the logical
address of the specified protocol type

Operation The function of the ARP packet: either 1 for a request or 2
for a reply

Address Resolution Protocol {ARP)
Offsets| Octet 0 1 3 4
Octet | Bit 0-7 8-15 0-7 8-15
0 0 Hardware Type Protocol Type
4 32 Adg?;f;ﬁ%ih Protocol Address Length Operation
8 64 Sender Hardware Address
12 96 Sender Hardware Address Sender Protocol Address
16 128 Sender Protocol Address Target Hardware Address
20 | 160 Target Hardware Address
24+ | 192+ Target Protocol Address

Figure 7-2: The ARP packet structure



Sender Hardware Address The hardware address of the sender
Sender Protocol Address The sender’s upper-layer protocol address

Target Hardware Address The intended receiver’s hardware address
(all zeroes in ARP requests)

Target Protocol Address The intended receiver’s upper-layer
protocol address

arp_resolution.pcapng

Now open the file arp_resolution.pcapng to see this resolution process in
action. We'll focus on each packet individually as we walk through this
process.

Packet 1: ARP Request

The first packet is the ARP request, as shown in Figure 7-3. We can confirm
that this packet is a true broadcast packet by examining the Ethernet header
in Wireshark’s Packet Details pane. The packet’s destination address is

tt:Af:tf:ff:tf:Af @. This is the Ethernet broadcast address, and anything sent to

it will be broadcast to all devices on the current network segment. The
source address of this packet in the Ethernet header is listed as our MAC

address 0.

Given this structure, we can discern that this is indeed an ARP request
on an Ethernet network using IPv4. The sender’s IP address (192.168.0.114)

and MAC address (00:16:ce:6e:8b:24) are listed @, as is the IP address of the

target (192.168.0.1) ©. The MAC address of the target—the information we
are trying to get—is unknown, so the target MAC is listed as

00:00:00:00:00:00 @.



M Wireshark - Packet 1 arp_resolution - O X

Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
% Ethernet II, Src: HonHaiPr_6e:8b:24 (@©:16:ce:6=:8b:24), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Destination: Broadcast (ff:ff:ff:ff:ff:7F) @
Source: HonHaiPr_6e:8b:24 (@@:l6:ce:6e:5b:24)@
Type: ARP (Bx8306)
v Address Resolution Protocol (request)
Hardware type: Ethernet (1)
Protocol type: IPv4 (@x@80@)
Hardware sire: 6
Protocol size: 4
Opcode: request (1)
Sender MAC address: HonHaiPr_6e:8b:24 (00:16:ce:6e:8b:24)
Sender IP address: 192.168.8.114
Target MAC address: ©0:00:00_00:00:00 (W:GG:W:BG:BB:@B}O
Target IP address: 192.163.0.1 @

No.: 1+ Time: 0.000000 + Source: HonHaiPr_ Sa:85:24 < Dastination: Broactast + Protocol: ARP - Langth: 42 + Infor Who has 182.168.0.17 Tall 152.168.0.114

(o [ e

Figure 7-3: An ARP request packet

Packet 2: ARP Response

In the response to the initial request (see Figure 7-4), the Ethernet header
now has a destination address of the source MAC address from the first
packet. The ARP header looks similar to that of the ARP request, with a few
changes:

* The packet’s operation code (opcode) is now 0x0002 @, indicating a
reply rather than a request.

® The addressing information is reversed—the sender MAC address and
IP address are now the target MAC address and IP address ©.
*  Most important, all the information is present, meaning we now have

the MAC address (00:13:46:0b:22:ba) @ of our host at 192.168.0.1.



.‘ Wireshark - Packet £ - arp_resolution - a X

Frame 2: 46 bytes on wire (368 bits), 46 bytes captured (368 bits)
v Ethernet II, Src: D-LinkCo_@b:22:ba (©@:13:46:8b:22:ba), Dst: HonHaiPr_Ge:8b:24 (0@:16:ce:6e:8b:24)
Destination: HonHaiPr Gm:Bb:24 (@@:16:ce:6e:8h:24)
Source: D-LinkCo_8b:22:ba (@9:13:46:8b:22:ba)
Type: ARP (@x0526)
Trailer: c@aBee72
v Address Resolution Protecol (reply)
Hardware type: Ethernet (1)
Protocol type: IPvd4 (8x8588)
Hardware size: 6
Protocol size: 4
Opcode: reply (2) )
sender MAC address: D-LinkCo_@b:22:ba (@@:13:46:8b:22:ha) @)
Sender IP address: 192.168.0.1
Target MAC address: HonHaiPr_6e:8b:24 (@@:16:ce:6e:8b:24)
Target IP address: 192.168.9.114

No.: 2 - Tare: 0008081 - Source: D-LinkCo_ Re22:ba - Destination: HonHaiPr_Ge:8b:24 - Protocol: ARP - Length: 46 - Infor 192.168.0.1 & at B0:17-46:06:22:ba

Figure 7-4: An ARP reply packet

Gratuitous ARP

arp_gratuitous.pcapng

Where I come from, when something is done “gratuitously,” the word
usually carries a negative connotation. A gratuitous ARP, however, is a good
thing.

In many cases, a device’s IP address can change. When this happens, the
IP-to-MAC address mappings that hosts on the network have in their caches
will be invalid. To prevent this from causing communication errors, a
gratuitous ARP packet is transmitted on the network to force any device that
receives it to update its cache with the new IP-to-MAC address mapping (see
Figure 7-5).
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Source IP: 192.168.0.101
*
SEEESTTYNN Source MAC: f2:12:f2:f2:f2:f2
Target IP: 192.168.0.101 [ =]

Target MAC: 00:00:00:00:00:00

Figure 7-5: The gratuitous ARP process

A few different scenarios can spawn a gratuitous ARP packet. One of the
most common is the changing of an IP address. Open the capture file
arp_gratuitous.pcapng, and you’ll see this in action. This file contains only a

single packet (see Figure 7-6) because that’s all that’s involved in gratuitous
ARP.

M Wireshark - Packet 1. arp_gratuitous - O *

Frame 1: 6@ bytes on wire (48@ bits), 6@ bytes captured (480 bits)
¥ Ethermet II, Src: IntelCor b7:f2:f5 (00:03:47:b7:f2:f5), Dst: Broadcast (ff:ff:ff:ff:ff:fF)
Destination: Broadcast (ff:ff:ff:ff:ff:ff) @
Source: IntelCor_b7:f2:f5 (@@:03:47:b7:12:15)
Type: ARP (&x0886)
Padding: 900000000000020000000000000000000000
¥ Address Resolution Protocol (request/gratuitous ARP)
Hardware type: Ethernet (1)
Protocol type: IPv4 (BxBEee)
Hardware size: 6
Protocol size: 4
Opcode: request (1)
[Is gratuitous: True]
Sender MAC address: IntelCor_b7:f2:f5 (@@:03:47:b7:f2:f5)
@ sender 1P address: 24.6.125.19
Target MAC address: ©6:00:00 00:00:00 (00:00:00:80:00:00)
€) Target IP address: 24.6.125.19

No.: 1 - Tirme: O.000000 - Source: IntelCor b7:H2:45 - Destination: Broadcast - Protocol: ARP - Length: 80 - Infor Gratuitous ARP for 24.6.125.19 (Reguest)

(oo 1| e

Figure 7-6: A gratuitous ARP packet

Examining the Ethernet header, you can see that this packet is sent as a



broadcast so that all hosts on the network receive it @. The ARP header
looks like an ARP request, except that the sender IP address ® and the target

IP address © are the same. When received by other hosts on the network,
this packet will cause them to update their ARP tables with the new IP-to-
MAC address association. Because this ARP packet is unsolicited but results
in a client updating its ARP cache, the packet is considered gratuitous.

You’ll notice gratuitous ARP packets in a few situations. As mentioned,
changing a device’s IP address will generate a gratuitous packet. Also, some
operating systems will perform a gratuitous ARP on startup. Additionally,
some systems use gratuitous ARP packets to support load balancing.

Internet Protocol (IP)

The primary purpose of protocols at layer 3 of the OSI model is to allow for
communication between networks. As you just saw, MAC addresses are used
for communication on a single network at layer 2. In much the same fashion,
layer 3 is responsible for addresses used in internetwork communication. A
few protocols can do this, but the most common is the Internet Protocol (IP),

which currently has two versions in use—IP version 4 and IP version 6.
We’ll start by examining IP version 4 (IPv4), which is defined in RFC 791.

Internet Protocol Version 4 (IPv4)

To understand the functionality of IPv4, you need to know how traffic flows
between networks. IPv4 is the workhorse of the communication process and
is ultimately responsible for carrying data between devices, regardless of
where the communication endpoints are located.

A simple network in which all devices are connected via hubs or switches
is called a local area nerwork (LAN). When you want to connect two LLANSs,
you can do so with a router. Complex networks can consist of thousands of
LANSs connected through thousands of routers worldwide. The internet
itself is a collection of millions of LANs and routers.

IPv4 Addresses

IPv4 addresses are 32-bit assigned numbers used to uniquely identify devices



connected to a network. It’s a bit much to expect someone to remember a
sequence of ones and zeros that is 32 characters long, so IP addresses are
written in dotted-quad (or dotted-decimal) notation.

In dotted-quad notation, each of the four sets of ones and zeros that
make up an IP address is converted to base 10 and represented as a number
between 0 and 255 in the format A.B.C.D (see Figure 7-7). For example,
consider the IP address 11000000 10101000 00000000 00000001. This value
is obviously a bit much to remember or notate. Fortunately, using dotted-
quad notation, we can represent it as 192.168.0.1.

11000000 10101000 00000000 00000001
I I I |
192 168 0 1

192.168.0.1

Figure 7-7: Dotted-quad IPv4 address notation

An IP address consists of two parts: a nerwork portion and a host portion.
The network portion identifies the LAN the device is connected to, and the
host portion identifies the device itself on that network. The determination
of which part of the IP address belongs to the network or host portion is not
always the same. This information is communicated by another set of
addressing information called the network mask (netmask) or sometimes
referred to as a subnet mask.

In this book, when we refer to an IP address, we will always be referving to an
IPv4 address. Later in this chapter, we will look at IP version 6, which uses a
different set of rules for addressing. Whenever we refer to an IPv6 address, it
will be explicitly labeled as such.

The netmask identifies which part of the IP address belongs to the
network portion and which part belongs to the host portion. The netmask
number is also 32 bits long, and every bit that is set to a 1 identifies the part
of the IP address that is reserved for the network portion. The remaining



bits are set to 0 to identify the host portion.

For example, consider the IP address 10.10.1.22, represented in binary
as 00001010 00001010 00000001 00010110. To determine the allocation of
each section of the IP address, we can apply our netmask. In this case, our
netmask is 11111111 11111111 00000000 00000000. This means that the
first half of the IP address (10.10 or 00001010 00001010) is reserved for the
network portion, and the last half of the IP address (.1.22 or 00000001
00010110) identifies the individual host on this network, as shown in Figure
7-8.

10.10.1.22 —=00001010 00001010 00000001 00010110
| | | |  —= 10.10.1.22

255.255.0.0 = 11111111 11111111 00000000 00000000 Noret 1o
8 J J

Network Host
Figure 7-8: The netmask determines the allocation of the bits in an IP address.

As indicated in Figure 7-8, netmasks can also be written in dotted-quad
notation. For example, the netmask 11111111 11111111 00000000
00000000 is written as 255.255.0.0.

IP addresses and netmasks are commonly written in Classless Inter-
Domain Routing (CIDR) notation. In this form, an IP address is written in full,
followed by a forward slash (/) and the number of bits that represent the
network portion of the IP address. For example, an IP address of 10.10.1.22
and a netmask of 255.255.0.0 would be written in CIDR notation as
10.10.1.22/16.

IPv4 Packet Structure

The source and destination IP addresses are the crucial components of the
IPv4 packet header, but that’s not all of the IP information you’ll find in a
packet. The IP header is quite complex compared to the ARP packet we just
examined; it includes a lot of extra functionality that helps IP do its job.

As shown in Figure 7-9, the IPv4 header has the following fields:

Version The version of IP being used (this will always be 4 for IPv4).
Header Length The length of the IP header.

Type of Service A precedence flag and type of service flag, which are



used by routers to prioritize traffic.

Total Length 'The length of the IP header and the data included in
the packet.

Identification A unique identification number used to identify a
packet or sequence of fragmented packets.

Flags Used to identify whether a packet is part of a sequence of
fragmented packets.

Fragment Offset If a packet is a fragment, the value of this field is
used to reassemble the packets in the correct order.

Time to Live Defines the lifetime of the packet, measured in hops or
seconds through routers.

Protocol Identifies the transport layer header that encapsulates the
[Pv4 header.

Header Checksum An error-detection mechanism used to verify that
the contents of the IP header are not damaged or corrupted.

Source IP Address The IP address of the host that sent the packet.
Destination IP Address The IP address of the packet’s destination.

Options Reserved for additional IP options. It includes options for
source routing and timestamps.

Data The actual data being transmitted with IP.

Internet Protocol Version 4 (IPv4)
Offsets| Octet 0 1 2 3
Octet |  Bit 0-3 4-7 8-15 16-18 19-23 24-31
0 0 Version T‘;?& f Type of Service Total Length
32 Identification Flags Fragment Offset
8 64 Time to Live Protocal Header Checksum
12 96 Source IP Address
16 128 Destination IP Address
20 160 Options
24+ | 192+ Data

Figure 7-9: The IPv4 packet structure

Time to Live




ip_ttl_source.pcapng ip_ttl_dest.pcapng

The Time to Live (I'TL) value defines a period of time that can elapse or a
maximum number of routers a packet can traverse before the packet is
discarded for IPv4. A 'T'T'L is defined when a packet is created and generally
is decremented by 1 every time the packet is forwarded by a router. For
example, if a packet has a T'TL of 2, the first router it reaches will decrement
the TTL to 1 and forward it to the second router. This router will then
decrement the TTL to zero, and if the final destination of the packet is not
on that network, the packet will be discarded (see Figure 7-10).

=]
—TTL T—e 2337 B
—
[ =]
—TTL 2— 3333 [ =TTL 1| 3353 [
I
[ =]
—TTL 3—a={ 3333 B=TTL 2| 3223 H-TTL 1—am 3533 B

Figure 7-10: The TTL of a packet decreases every time it traverses a router.

Why is the TTL value important? Typically, we are concerned about
the lifetime of a packet only in terms of the time that it takes to travel from
its source to its destination. However, consider a packet that must travel to a
host across the internet while traversing dozens of routers. At some point in
that packet’s path, it could encounter a misconfigured router and lose the
path to its final destination. In such a case, the router could do a number of
things, one of which could result in the packet’s being forwarded around a
network in a never-ending loop.

An infinite loop can cause all sorts of issues, but it typically results in the
crash of a program or an entire operating system. Theoretically, the same
thing could occur with packets on a network. The packets would keep
looping between routers. As the number of looping packets increased, the
available bandwidth on the network would deplete until a denial of service
condition occurred. To prevent this, T'TL was created.

Let’'s look at an example of this in Wireshark. The file



ip_ttl_source.pcapng contains two ICMP packets. ICMP (discussed later in this
chapter) uses IP to deliver packets, as we can see by expanding the IP header
section in the Packet Details pane (see Figure 7-11).

‘ Wireshark : Packet 1 « ip_ttl_source — a X

Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
Ethernet II, Src: HewlettP bf:91:ee (80:25:b3:bf:91:ee), Dst: Cisco-Li_B66:71:95 (@8:21:29:66:71:95)
¥ Internet Protocol Version 4, Src; 10.16.8.3, Dst: 192.168.6.128
8188 .... = Version: 4 (}
. @181 = Header Length: 28 bytes @
Differentiated Services Field: @x®@ (DSCP: C5@, ECN: MNot-ECT)
Total Length: 6@ €
Identification: @x728d (29325)
Flags: @xee
Fragment offset: @
Time to live: 128 &)
Protocoel: ICMP (1)
Header checksum: @x8808 [validation disabled]
Source: 16.10.8.3 @
Destination: 192.168.8.128 (ﬂ
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
Internet Control Message Protocol

Ne.: I - Time: 0.000000 - Source: 10.10.0.7 - Destination: 192.188.0.128 - Protocol: JOMP - Lengtfc 74 + Infox Eche (ping) request id=000001, seq=37/R472. ti=128 (reply- in 2)

Figure 7-11: The IP header of the source packet

You can see that the version of IP being used is version 4 @, the IP
header length is 20 bytes @, the total length of the header and payload is 60
bytes ©, and the value of the TTL field is 128 @.

The primary purpose of an ICMP ping is to test communication
between devices. Data is sent from one host to another as a request, and the
receiving host should send that data back as a reply. In this file, we have one

device with the address of 10.10.0.3 ® sending an ICMP request to a device

with the address 192.168.0.128 @®. This initial capture file was created at the
source host, 10.10.0.3.

Now open the file ip_ttl_dest.pcapng. In this file, the data was captured at
the destination host, 192.168.0.128. Expand the IP header of the first packet
in this capture to examine its T'I'L value (see Figure 7-12).

You should immediately notice that the TTL value is 127 @, 1 less than
the original TTL of 128. Without even knowing the architecture of the
network, we can conclude that one router separates these devices and thus



the passage through that router reduced the 'T'T'L value by 1.

‘ Wireshark - Packet 1 - ip_ttl_dest = (m X

Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
Ethernet II, Src: Cisco-Li_66:71:94 (00:21:29:66:71:94), Dst: Dell c@:56:70 (©80:21:70:c0:56:10)
v Internet Protocol Version 4, Src: 10.10.0.3, Dst: 192.168.0.128
@180 .... = Version: 4
. 9101 = Header Length: 20 bytes
Differentiated Services Field: 6x0@ (DSCP: (50, ECM: Not-ECT)
Total Length: 6@
Identification: @x728d (29325)
Flags: @x@e
Fragment offset: @
Time to live: 127 @
Protocol: ICMP (1)
Header checksum: @xfdfe [validation disabled]
Source: 10.10.0.3
Destination: 192.168.0.128
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
Internet Control Message Protocol

Now:r 1 - Tiera: 0000000 - Source: 10.10.0.3 - Destinaton: 192.188.0.128 + Protocol: IC...  Langth: 74 - Infor Eche (ping) request icen01, sequ37/R472. iia 127 (reply in

Figure 7-12: The IP header shows us that the TTL has been decremented by 1.

IP Fragmentation

ip_frag_source.pcapng

Packet fragmentation is a feature of IP that permits reliable delivery of data
across varying types of networks by splitting a data stream into smaller
fragments.

The fragmentation of a packet is based on the maximum transmission unit
(MTU) size of the layer 2 data link protocol in use and the configuration of
the devices using this layer 2 protocol. In most cases, the layer 2 data link
protocol in use is Ethernet. Ethernet has a default MTU of 1,500, which
means that the maximum packet size that can be transmitted over an
Ethernet network is 1,500 bytes (not including the 14-byte Ethernet header
itself).

Although there are standard MTU settings, the MTU of a device can be



reconfigured manually in most cases. An MTU setting is assigned on a per-
interface basis and can be modified on Windows and Linux systems, as well as
on the interfaces of managed routers.

When a device prepares to transmit an [P packet, it determines whether
it must fragment the packet by comparing the packet’s data size to the MTU
of the network interface from which the packet will be transmitted. If the
data size is greater than the MTU, the packet will be fragmented.
Fragmenting a packet involves the following steps:

1. The device splits the data into the number of packets required for
successful data transmission.

2. The Total Length field of each IP header is set to the segment size of
each fragment.

3. The More fragments flag is set to 1 on all packets in the data stream,
except for the last one.

4. 'The Fragment offset field is set in the IP header of the fragments.
5. The packets are transmitted.

The file ip_frag source.pcapng was taken from a computer with the
address 10.10.0.3, transmitting a ping request to a device with the address
192.168.0.128. Notice that the Info column of the Packet List pane lists two
fragmented IP packets, followed by the ICMP (ping) request.

Begin by examining the IP header of packet 1 (see Figure 7-13).



‘ Wireshark - Packet 1. ip_frag_source - O bt

Frame 1: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits)
Ethernet II, Src: HewlettP bf:9l:ee (@@:25:b3:bf:91:ee), Dst: Cisco-Li_66:71:95 (@09:21:29:66:71:95)
v Internet Protocol Version 4, Src: 19.10.6.3, Dst: 192.168.6.128
@1ed .... = Version: 4
. @181 = Header Length: 20 bytes
Differentiated Services Field: @x®@ (DSCP: CS@, ECM: Not-ECT)
Total Length: 1508
Identification: @x7474 (29812)
v Flags: @x@l (More Fragments)
. = Reserved bit: Not set
8.4 va.. = Don't fragment: Not set
..1. .... = More fragments: Set @
Fragment offset: @ @
Time to live: 128
Protocol: ICMP (1)
Header checksum: @x8088 [validation disabled]
Source: 10.19.8.3
Destination: 192.168.8.128
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown ]
Reassembled IPv4 in frame: 3

Data (1488 bytes)

No.: 1 - Tirre: QLO00000 - Sowuce: 10.10.0.7 - Destination: 152.158.0.128 - Protocol: IR 1514 - Info: Fragmented 1P protocdl (proto=TCMP 1. off=0. ID=7474) [Reassamblad in

Figure 7-13: More fragments and Fragment offset values can indicate a fragmented packet.

You can see that this packet is part of a fragment based on the More
fragments and Fragment offset fields. Packets that are fragments will either
have a positive Fragment offset value or have the More fragments flag set. In

the first packet, the More fragments flag is set @, indicating that the
receiving device should expect to receive another packet in this sequence.

The Fragment offset is set to 0 @, indicating that this packet is the first in a
series of fragments.

The IP header of the second packet (see Figure 7-14) also has the More

fragments flag set @, but in this case, the Fragment offset value is 1480 @.
This is indicative of the 1,500-byte M'T'U, minus 20 bytes for the IP header.

The third packet (see Figure 7-15) does not have the More fragments
flag set @, which marks it as the last fragment in the data stream, and the

Fragment offset is set to 2960 ©, the result of 1480 + (1500 — 20). These
fragments can all be identified as part of the same series of data because they

have the same values in the Identification field of the IP header ©.



‘ Wireshark « Packet 2 . ip_frag_source - [} 4

> Frame 2: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits)
» Ethernet II, Src: HewlettP bf:91:ee (00:25:b3:bf:91:ee), Dst: Cisco-Li 66:71:95 (B@:21:29:66:71:95)
v Internet Protocol Version 4, Src: 10.10.08.3, Dst: 192.168.0.128
81ea .... = Version: 4
. 8181 = Header Length: 20 bytes
» Differentiated Services Field: @x8® (DSCP: CS®, ECM: Not-ECT)
Total Length: 1588
Identification: Bx7474 (29812)
¥ Flags: @x@l (More Fragments)
@... .... = Reserved bit: Mot set
.. sue. = Don't fragment: Mot set
il uuv. = More fragments: Set )
Fragment offset: 1486 @
Time to live: 128
Protocol: ICMP (1)
> Header checksum: 8x88@@ [validation disabled]
Source: 10.18.8.3
Destination: 192.168.0.128
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
R m Pwd in frame:
> Data (1480 bytes)

Now: 2 - Time: 0.000010 - Sourcs; 10.10.0.3 « Destnation: 192.168.0.128 « Protocol: 1Pv4 _. 1514 « Info: Fragmented' 1P protoee! (proto=I1CMP 1, off=1480 [D=2474) [Reassembled i

[ Qe ]| ne

Figure 7-14: The Fragment offset value increases based on the size of the packets.

M Wireshark . Packet 3 - ip_frag_source — O X

» Frame 3: 582 bytes on wire (4656 bits), 582 bytes captured (4656 bits)
» Ethernet II, Src: HewlettP_bf:9l:ee (00:25:b3:bf:91:ee), Dst: Clsco-Li 66:71:95 (0@:21:29:66:71195)
% Internet Protocel Version 4, Src: 10.16.6.3, Dst: 192.168.8.128
010€ .... = Version: 4
. 8181 = Header Length: 2@ bytes
» Differentiated Services Field: &x8@ (DSCP: CS8®, ECN: Not-ECT)
Total Length: 568
Identification: @x7474 (29812) t’
v Flags: @x@@
@... .... = Reserved bit: Not set
+@.. +2.. = Don’t fragment: Not set
..B. .... = More fragments: Not set @
Fragment offset: 2960 @
Time to live: 128
Protocol: ICMP (1)
» Header checksum: @xedp@ [validation disabled]
Source: 10.128.8.3
Destination: 192.168.98.128
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
» [3 IPv4 Fragments (3508 bytes): #1(1488), #2(1488), #3(548)]
» Intermet Control Message Protocol

Moz 3 - Time: 0000013 « Source: 10.10.0.3 » Destination: 192.1568.0.128 - Prosocol: TCMP - Lengeh: 582 « Info: Eoho (ping) request id=0a0001, seq=57/14592. twh=128 (reply in

[ Cose || Hep

Figure 7-15: More fragments is not set, indicating that this fragment is the last.



While it isn’t as common to see fragmented packets on a network as it
used to be, understanding why packets are fragmented is useful so that when
you do encounter them, you can diagnose issues or spot missing fragments.

Internet Protocol Version 6 (IPv6)

When the IPv4 specification was written, nobody had any idea that we
would eventually have the number of internet-connected devices that exist
today. The maximum IPv4 addressable space was limited to just south of 4.3
billion addresses. The actual amount of addressable space shrinks even
further when you subtract ranges reserved for special uses such as testing,
broadcast traffic, and RFC1918 internal addresses. While several efforts
were made to delay the exhaustion of IPv4 addresses, ultimately the only way
to address this limitation was to develop a new version of the IP
specification.

Thus, the IPv6 specification was created, with its first version released in
1998 as RFC 2460. This version provided several performance
enhancements, including a much larger address space. In this section, we’ll
look at the IPv6 packet structure and discuss how IPv6 communications
differ from those of its predecessor.

IPv6 Addresses

IPv4 addresses were limited to 32 bits, a length that provided an addressable
space measured in the billions. IPv6 addresses are 128 bit, providing an
addressable space measured in undecillions (a trillion trillion trillion). That’s
quite an upgrade!

Since IPv6 addresses are 128 bits, they are unwieldy to manage in binary
form. Most of the time, an IPv6 address is written in eight groups of 2 bytes
in hexadecimal notation, with each group separated by a colon. For example,
a very simple IPv6 address looks like this:

1111:aaaa:2222:bbbb:3333:cccc:4444:dddd

Your first thought is probably the same one many have who are used to
remembering IPv4 addresses: IPv6 addresses are virtually impossible to
memorize. That is an unfortunate trade-off for a much larger address space.



One feature of IPv6 address notation that will help in some cases is that

some groups of zeroes can be collapsed. For example, consider the following
IPv6 address:

1111:0000:2222:0000:3333:4444:5555:6666

You can collapse the grouping containing the zeroes completely so it
isn’t visible, like this:

1111::2222:0000:3333:4444:5555:6666

However, you can only collapse a single group of zeroes, so the
following address would be invalid:

1111::2222::3333:4444:5555:6666

Another consideration is that leading zeroes can be dropped from IPv6
addresses. Consider this example in which there are zeroes in front of the
fourth, fifth, and six groups:

1111:0000:2222:0333:0044:0005: ffff:ffff

You could represent the address more efficiently like this:

1111::2222:333:44:5: ffff. ffff

This isn’t quite as easy to use as an IPv4 address, but it’s a lot easier to
deal with than the longer notation.

An IPv6 address has a network portion and a host portion, often called a
network prefix and interface identifier, respectively. The distribution of these
fields varies depending on the classification of the IPv6 communication.
IPv6 traffic is broken down into three classifications: unicast, multicast, or
anycast. In most cases, you’ll probably be working with link-local unicast
traffic, which is communication from one device to another inside a network.
The format of a link-local unicast IPv6 address is shown in Figure 7-16.

Padding
A

fe80:0000:0000:0000:7a3 1:c1ff-fech:b256
A < y

N
Prefix Interface Identifer




Figure 7-16: The parts of an IPv6 link-local unicast address

Link-local addresses are used when communication is intended for
another device within the same network. A link-local address can be
identified by having its most significant 10 bits set to 1111111010 and the
next 54 bits set to all zeroes. Thus, you can spot a link-local address when

the first half is fe80:0000:0000:0000.

The second half of a link-local IPv6 address is the interface ID portion,
which uniquely identifies a network interface on an endpoint host. On
Ethernet networks, this can be based on the MAC address of the interface.
However, a MAC address is only 48 bits. To fill up the entire 64-bit space,
the MAC address is cut in half, and the value Oxfffe is added between each
half as padding to create a unique identifier. Lastly, the seventh bit of the
first byte is inverted. That’s a bit complex, but consider the interface ID in
Figure 7-17. The original MAC address for the device represented by this
ID was 78:31:cl:cb:b2:56. The bytes Oxfffe were added in the middle, and
flipping the seventh bit of the first byte changed the & to an 4.

Padding
pres
7a31:c1ff:fecb:b256

— M~
MAC Address MAC Address
(First Half) (Last Half)

Figure 7-17: The interface ID utilizes an interface MAC address and padding.

IPv6 addresses can be represented with CIDR notation just like 1Pv4
addresses. In this example, 64 bits of addressable space are represented with
a link-local address:

fe80:0000:0000:0000: /64

The composition of an IPv6 address changes when it is used with global
unicast traffic that is routed over the public internet (see Figure 7-18). When
used in this manner, a global unicast is identified by having its first 3 bits set
to 001, followed by a 45-bit global routing prefix. The global routing prefix,
which is assigned to organizations by the Internet Assigned Numbers
Authority IANA), is used to uniquely identify an organization’s IP space.
The next 16 bits are the subnet ID, which can be used for hierarchical



addressing, similar to the netmask portion of an IPv4 address. The final 64
bits are used for the interface ID, just as with link-local unicast addresses.
The routing prefix and subnet ID can vary in size.

Network

Prefix
A

r200] :4860:4860:0006:7031 ¢ 1ff:fecb:b256
\ v J N AN v J
Routing Subnet Interface Identifer
Prefix ID

Figure 7-18: The parts of an |Pv6 global unicast address

IPv6 provides a lot more efficiency than IPv4 in terms of routing packets
to their destination and making effective use of address space. This efficiency
is due to the larger range of addresses available and the use of link-local and
global addressing along with unique host identifiers.

It’s easy for you to visually differentiate IPv6 and IPv4 addresses, but many
programs cannot do so. If you need to specify an IPv6 address, some
applications, such as browsers or command line utilities, require you to place
square brackets around the address, like this: [1111::2222:333:44:5:ff{f]. This
requirement isn’t always documented well and bas been a source of frustration
for many as they learn IPv6.

IPv6 Packet Structure

bttp_ip4and6.pcapng

The structure of the IPv6 header has grown to support more features, but it
was also designed to be easier to parse. Instead of being variable in size with
a header length field that needs to be checked to parse the header, headers
are now a fixed 40 bytes. Additional options are provided via extension
headers. The benefit is that most routers only need to process the 40-byte
header to forward the packet along.

As shown in Figure 7-19, the IPv6 header has the following fields:



Version The version of IP being used (this is always 6 for IPv6).
Traffic Class Used to prioritize certain classes of traffic.

Internet Protocol Version 6 (IPvé)

Offsets| Octet 0 1 2 3
Octet Bit 0-3 4-7 8-11 12-15 16-23 24-31

0 0 Version Traffic Class Flow Label

4 32 Payload Length Next Header Hop Limit

8 64

12 96

Source IP Address

16 128

20 160

24 192

28 224

Destination IP Address
32 256
36 288

Figure 7-19: The IPv6 packet structure

Flow Label Used by a source to label a set of packets belonging to the
same flow. This field is typically used for quality of service (QoS)
management and to ensure packets that are part of the same flow take
the same path.

Payload Length The length of the data payload following the IPv6
header.

Next Header Identifies the layer 4 header that encapsulates the IPv6
header. 'This field replaces the Protocol field in IPv4.

Hop Limit Defines the lifetime of the packet, measured in hops
through routers. This field replaces the T'TL field in IPv4.

Source IP Address The IP address of the host that sent the packet.

Destination IP Address The IP address of the packet’s destination.

Let’s compare an IPv4 and an IPv6 packet to examine a few of the

differences by looking at http_ip4and6.pcapng. In this capture, a web server

was

configured to listen for both IPv4 and IPv6 connections on the same

physical host. A single client configured with both IPv4 and IPv6 addresses
browsed to a server using each of its addresses independently and
downloaded the index.php page using HI'T'P via the curl application (Figure



7-20).

Upon opening the capture, you should readily see which packets belong
to which conversation based on the addresses in the Source and Destination
columns in the Packet List area. Packets 1 through 10 represent the IPv4
stream (stream 0), and packets 11 through 20 represent the IPv6 stream
(stream 1). You can filter for each of these streams from the Conversations
window or by entering tcp.stream == 0 or tcp.stream == 1 in the filter

bar.

Client Web Server
172.16.16.140 HTTP GET /index.php 172.16.16.139
2001:db8:1:2::1002 HTTP GET /index.php > 2001:db8:1:2::1000

Figure 7-20: Connections between the same physical hosts using different IP versions

We'll cover HI'T'P, the protocol responsible for serving web pages on
the internet, in depth in Chapter 8. In this example, just note that the
business of serving web pages remains consistent regardless of which lower-
layer network protocol is used. The same can be said of TCP, which also
operates in a consistent manner. This is a prime example of encapsulation in
action. Although IPv4 and IPv6 function differently, the protocols
functioning at different layers are unaffected.

Figure 7-21 provides a side-by-side comparison of two packets with the
same function—packets 1 and 11. Both packets are TCP SYN packets
designed to initiate a connection from the client to the server. The Ethernet
and TCP sections of these packets are nearly identical. However, the IP
sections are completely different.

¢ The source and destination address formats are different @®.



The IPv4 packet is 74 bytes with a 60-byte total length @, which
includes both the IPv4 header and payload and a 14-byte Ethernet

header. The IPv6 packet is 96 bytes with a 40-byte IPv6 payload @ and a
separate 40-byte IPv6 header along with the 14-byte Ethernet header.
The IPv6 header is 40 bytes, double the IPv4 header’s 20 bytes, to
accommodate the larger address size.

IPv4 identifies the protocol with the Protocol field @, whereas IPv6
identifies it with the Next header field (which can also be used to specity
extension headers) ©.

IPv4 has a T'TL field ®, whereas IPv6 accomplishes the same
functionality using the Hop limit field ©.

IPv4 includes a header checksum value ®, while IPv6 does not.
The IPv4 packet is not fragmented, but it still includes values for those

options @. The IPv6 header doesn’t contain this information because, if
fragmentation were required, it would be implemented in an extension

header.



Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
Ethernet II, Src: Vmware_d3:46:dd (8@:0c:29:d3:46:dd), Dst: Vmware_1f:a7:55 (@0:0c:29:1f:a7:55)
¥ Internet Protocol Version 4, Src: 172.16.16.148, Dst: 172.16.16.139
@1e@ .... = Version: 4
veo B181 = Header Length: 2@ bytes
v Differentiated Services Field: ex®@ (DSCP: C5@, ECN: Mot-ECT)
008 88.. = Differentiated Services Codepoint: Default (@)
vess +.00 = Explicit Congestion MNotification: Mot ECN-Capable Transport (8)
oTDtal Length: 6@
Identification: @xfadf (54223)
¥ Flags: @x82 (Don't Fragment)
8 o.. ... = Reserved bit: Not set
1.. .... = Don’t fragment: Set
2B, .... = More fragments: Not set
Fragment offset: @
€) Time to live: 64
@ Protocol: TCP (6)
© v Header checksum: @xcéad [validation disabled]
[Good: False]
[Bad: False]
Source: 172.16.16.148
@ Destination: 172.16.16.139
[Source Ge=oIP: Unknown]
[Destination GeoIP: Unknown]
Transmission Control Protocol, Src Port: 53358 (53350), Dst Port: 88 (8@), Seq: @, Len: @
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v
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Frame 11: 94°bytes on wire (752 bits), 94 bytes captured (752 bits)
DPCEMESwt 1T, Src: Vmware_d3:46:dd (@0:8c:29:d3:46:dd), Dst: Vmware 1f:a7:55 (8@:8c:29:1f:a7:55)
¥ Internet Protocel Versiom 6, Src: 20@1:db8:1:2::1002, Dst: 2001:db8:1:2::1800
8119 .... = Version: 6
9 = - ’ Hay T Traffic class: @x@@® (DSCP: (5@, ECN: MNot-ECT)
elghbommltatlon and ARP = Differentiated Services Codepoint: Default (@)
.......... B9 .... vens seee snns 2es. = Explicit Congestion Motification: Not ECN-Capabl..

...... e ... 0000 0000 0000 GGOG 0OG0 = Flowlabel: ©x20000000
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in the last section of this chapter) to do its legwork. T'o accomplish this task,
ICMPv6 uses multicast, a type of communication in which only hosts that
subscribe to a data stream will receive and process it. Multicast traffic can be
identified quickly because it has its own reserved IP space (ff00::/8).

Although the address resolution process relies on a different protocol, it
still uses a very simple request/response workflow. For example, let’s
consider a scenario in which a host with the IPv6 address 2001:db8:1:2::1003
wants to communicate with another host identified by the address
2001:db8:1:2::1000. Just as with IPv4, the source device must be able to
determine the link-layer (MAC) address of the host it wants to communicate
with, since this is intra-network communication. This process is described in
Figure 7-22.

o
—
—
—

File Server
ICMPvé Neighbor Solicitation (Type 135) 2001:db8:1:2::1001
00:0c:29:1F:22:al
) AR
ICMPvé Neighbor Solicitation (Type 135) ™ O
. . w
— ~&—— |CMPv6 Neighbor Adverfisement (Type 136) S| .
. Web Server
Client
2001:db8:1:2::1003 2001:db8:1:2::1000
00:0¢:29:2(:80:31 ICMPvé Neighbor Solicitation (Type 135) 00:0c:29:1F:a7:55
Mail Server

2001:db8:1:2::1002
00:0c:29:fe:ea:1e



Figure 7-22: The neighbor solicitation process for address resolution

In this process, the host 2001:db8:1:2::1003 sends a Neighbor
Solicitation ICMPv6 type 135) packet to every device on the network via
multicast, asking, “What is the MAC address for the device whose IP address
is 2001:db8:1:2::1000? My MAC address is 00:0C:29:2:80:31.”

The device assigned that IPv6 address will receive this multicast
transmission and respond to the originating host with a Neighbor
Advertisement (ICMPv6 type 136) packet. This packet says, “Hi, my
network address is 2001:db8:1:2::1000 and my MAC address is
00:0c:29:1f:a7:55.” Once this message is received, communication can begin.

You can see this process in action in the capture file icrmpv6_neighbor
_solicitation.pcapng. This capture embodies the example we’ve just discussed
in which 2001:db8:1:2::1003 wants to communicate with 2001:db8:1:2::1000.
Look at the first packet and expand the ICMPv6 portion in the Packet
Details window (Figure 7-23) to see that the packet is ICMP type 135 @ and
was sent from 2001:db8:1:2::1003 to the multicast address {f02::1:ff00:1000

@. The source host provided the target IPv6 address it wanted to
communicate with @, along with its own layer 2 MAC address @.



‘ Wireshark - Packet 1 . icrpvé_neighbor_solicitation - O X

Frame 1: 86 bytes on wire (688 bits), 86 bytes captured (688 bits)
Ethernet II, Src: Veware_2f:B6:31 (8@:8c:29:21:88:31), Dst: IPvEmcast_ff:00:10:00 (33:33:11:80:10:00)
% Internet Protocol Version 6, Src: 2801:db8:1:2::1883, Dst: ff@2::1:ffee:1eee
8118 .... = Version: &
. BDOOO POBA .... .... ... sees -u.. m Traffic class: @x@@ (DSCP: C50, ECN: Not-ECT)
............ 2900 9226 0008 0080 PAPE = Flowlabel: Bxee@e8880
Payload length: 32
Next header: ICMPvE (5B)
Hop limit: 255
(1) Source: 2001:db8:1:2::1063
Destination: ffe2::1:ffee:10ee
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
v Internet Control Message Protocol vé
Type: Neighbor Solicitation (135) @
Code: @
Checksum: @x44b7 [correct]
Reserved: 90000000
Target Address: 2e@1:dbs:1:2::1eee €
¥ ICMPvE Option (Source link-layer address : @@:@c:29:2f:80:31)
Type: Source link-layer address (1)
Length: 1 (8 bytes)
Link-layer address: Vmware_2f:88:31 {W:Bc:2?:2f:89:31}o

No.: 1 * Time: QL0000 * Source: 2000 b8 1:2::1007 « Destnavion; fil2:: LAfDO:I000 « Pro_ v * Langeh: 85 + Info: Naighbor Soloiation for 2001:ab8:1:2:: 1000 from 00:0c:29: 24803

[om 1| w

Figure 7-23: A neighbor solicitation packet

The response to the solicitation is found in the second packet in the
capture file. Expanding the ICMPv6 portion of the Packet Details window

(Figure 7-24) reveals this packet is ICMP type 136 @, was sent from
2001:db8:1:2::1000 back to 2001:db8:1:2::1003 @, and contains the MAC
address 00:0c:29:1f:a7:55 associated with 2001:db8:1:2::1000 ©.



,‘ Wireshark « Packet 2 - icmpvB_neighbor_solicitation b a X

Frame 2: 86 bytes on wire (688 bits), 86 bytes captured (688 bits)
Ethernet II, Src: Vmware_1f:a7:55 (00:0c:29:1f:a7:55), Dst: Vmware 2f:80:31 (@0:0c:29:2f:B80:31)
v Internet Protocol Version 6, Src: 2001:db8:1:2::10008, Dst: 2001:db8:1:2::1883
8118 .... = Version: 6
. OOOO PROY .... .... voue e2ss ... = Traffic class: @xe® (DSCP: CS@, ECN: Not-ECT)
ssss wman . D000 DRRO DDOE 20RO 00B@ = Flowlabel: @xPBEEO2ES
Payload length: 32
MNext header: ICMPw6 (58)
Hop limit: 255
o Source: 2@@1:dbB:1:2::1000
Destination: 20601:db8:1:2::1883
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
v Internet Control Message Protocol vé
Typa: Neighbor Advertisement (136) @
Code: B
Checksum: @xBbeb [correct]
v Flags: ex6ee00000

B.vr sess ss2s smms ssss smss ssas sess @ ROuter: Not set
slin awam ieEe wsea - weae seadosees seas = SOlEcitad: St
--1 = Override: Set

...0 2800 000G PGEG ODOOG ORGP AGDE BBR® = Reserved: @
Target Address: 2001:db8:1:2::108@
¥ ICMPvE Option (Target link-layer address : 8@:8c:29:1f:a7:55)
Type: Target link-layer address (2)
Length: 1 (8 bytes)
Link-layer address: Vmware_1f:a7:55 (@@:0c:29:1f:a7:55) @

Now: 2 - Time: 0.000257 - Source: 2001:c88:1:2::1000 - Destination: 2001:608:1:2::10... Info: Neighbor Advertisement 2001:cb8:1:2::1000 (5ol ovr) & st 00:0c:29:1Fa7:5

Figure 7-24: A neighbor advertisement packet

Upon completion of this process, 2001:db8:1:2::1003 and
2001:db8:1:2::1000 begin communicating normally with ICMPv6 echo
request and reply packets, indicating the neighbor solicitation process and
link-layer address resolution was successful.

IPv6 Fragmentation

ipv6_fragments.pcapng

Fragmentation support was built into the IPv4 header because it ensured
packets could traverse all sorts of networks at a time when network M'T'Us
varied wildly. In IPv6, fragmentation is used less, so the options supporting
it are not included in the IPv6 header. A device transmitting IPv6 packets is
expected to perform a process called MTU discovery to determine the
maximum size of packets it can send before actually sending them. In the



event that a router receives a packet that is too large for the MTU on the
network it is forwarding to, it will drop the packet and return an ICMPv6
Packet Too Big (type 2) message to the originating host. Upon receipt, the
originating host will attempt to resend the packet with a smaller M'TU, it
such action is supported by the upper-layer protocol. This process will
repeat until a small enough M'TU is reached or until the payload can be
fragmented no more (Figure 7-25). A router will never be responsible for
fragmenting packets on its own; the source device is responsible for
determining an appropriate M'T'U for the transmission path and fragmenting
appropriately.

= e 2 <

&) a0
@@@J @@@

Il

Client Router Router Web Server
MTU 1500 MTU 1500 MTU 1400 MTU 1500

1500-Byte MTU Packet ———

~4— |CMPv6 Packet Too Big (Type 2)

Fragmented IPvé Packet with MTU 1400 ——
Figure 7-25: IPv6 MTU path discovery

If the upper-layer protocol being used in conjunction with IPv6 can’t
limit the size of the packet payload, then fragmentation must still be used. A
fragmentation extension header can be added to the IPv6 packet to support
this scenario. You will find a sample capture showing IPv6 fragmentation in
the file named ipv6_fragments.pcapng.

Because the receiving device has a smaller MTU than the sending
device, there are two fragmented packets to represent each ICMPv6 echo
request and reply in the capture file. The fragmentation header from the
first packet is shown in Figure 7-26.



.‘ Wireshark - Packet 1 - ipvb_fragments i O »

Frame 1: 1518 bytes on wire (12080 bits), 1510 bytes captured (12080 bits)
Ethernet II, Src: Vmware_2F:80:31 (99:0<:29:2f:80:31), Dst: Apple_cb:b2:56 (78:31:cl:ichibl:56)
v Internet Protocol Version 6, 5rc: 2001:dbB:1:2::1883, Dst: 2e@l:dbB:1:2::1008

9118 .... = Version: 6
VoL... ODOO GBB8 .... .... .... ..a- .... = Traffic class: @x88 (DSCP: CS@, ECN: Not-ECT)
.. DB BB.. .... siie ssew sess sss. = Differentiated Services Codepoint: Default (@)
oo shes seee +enr = Explicit Congestion Metification: Not ECN-Capable Transpert (@)

i .. DOOE 2008 CODD 2OP8 BOGE = Flowlabel: BxDOO2EE00
Payload length: 1456
Mext header: Fragment Header for IPvE (44) 0
Hop limit: G4
Source: 2001:db3:1:2::1083
Destination: 2801:dbB:1:2::100@
[Source GeoIP: Unknown]
[Destination GeolP: Unkmown]
¥ Fragment Header
Next header: ICMPwE (S58)
Reserved octet: @x008a
BOBE GORe BBEe O... = Offset: @ (8 bytes) 9
« «88. = Reserved bits: @
traa asss ssss seel = More Fragments: Yes e
Identification: @xcde@@sl? o
Reassembled IPv6E in frame: 2
Data (1448 bytes)

Now.r 1+ Tieve: Q000000 + Source: 2001 bl {:2:: 1007 + Dastingtion: 2007 :cb8: 1:2: 1000 + Protocol TP - Lengthr 1510 - Infor IPvE fagment (el mores i idente o817 e 58]

ot

Figure 7-26: An IPv6 fragment header extension

The 8-byte extension header contains all the same fragmentation
properties that are found in an IPv4 packet, such as a Fragment offset @,

More Fragments flag ©, and Identification field @. Instead of being present
in every packet, it is only added to the end of packets requiring
fragmentation. This more efficient process still allows the receiving system
to reassemble the fragments appropriately. Additionally, if this extension
header is present, the Next header field will point to the extension header

rather than the encapsulating protocol @.

IPv6 Transitional Protocols

IPv6 addresses a very real problem, but its adoption has been slow because of
the effort required to transition network infrastructure to it. To ease this
transition, several protocols allow IPv6 communication to be tunneled across
networks that support only IPv4 communication. In this respect, tunneling
means that IPv6 communication is encapsulated inside of IPv4
communications just as other protocols may be encapsulated. Encapsulation



is usually done in one of three ways:

Router to Router Uses a tunnel to encapsulate IPv6 traffic from the
transmitting and receiving hosts on their networks over an IPv4
network. This method allows entire networks to communicate in IPv6
over intermediary IPv4 links.

Host to Router Uses encapsulation at the router level to transmit
traffic from an IPv6 host over an IPv4 network. This method allows an
individual host to communicate in IPv6 to an IPv6 network when the
host resides on an IPv4-only network.

Host to Host Uses a tunnel between two endpoints to encapsulate
IPv6 traffic between IPv4- or IPv6-capable hosts. This method allows
IPv6 endpoints to communicate directly across an IPv4 network.

While this book won’t cover transitional protocols in depth, it’s helpful
to be aware of their existence in case you ever need to investigate them while
performing analysis at the packet level. The following are a few common
protocols:

6to4 Also known as IPv6 over IPv4, this transitional protocol allows
IPv6 packets to be transmitted across an IPv4 network. This protocol
supports relays and routers to provide router-to-router, host-to-router,
and host-to-host IPv6 communication.

Teredo This protocol, used for IPv6 unicast communications over an
IPv4 network using NAT (network address translation), works by
sending IPv6 packets over IPv4 encapsulated in the UDP transport
protocol.

ISATAP ‘'This intrasite protocol allows communication between 1Pv4-
and IPv6-only devices within a network in a host-to-host manner.

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) is the utility protocol of TCP/IP,
responsible for providing information regarding the availability of devices,
services, or routes on a T'CP/IP network. Most network-troubleshooting
techniques and tools center around common ICMP message types. ICMP is

defined in RFC 792.



ICMP Packet Structure

ICMP is part of IP, and it relies on IP to transmit its messages. ICMP
contains a relatively small header that changes depending on its purpose. As
shown in Figure 7-27, the ICMP header contains the following fields:

Type The type or classification of the ICMP message, based on the
RFC specification

Code The subclassification of the ICMP message, based on the RFC

specification

Checksum Used to ensure that the contents of the ICMP header and
data are intact upon arrival

Variable A portion that varies depending on the Type and Code fields

Internet Control Message Protocol (ICMP)

Offsets| Octet 0 1 2z 3
Octet |  Bit 0-7 8-15 16-23 24-31
0 0 Type Code Checksum
4+ 32+ Variable

Figure 7-27: The ICMP header

ICMP Types and Messages

As noted, the structure of an ICMP packet depends on its purpose, as
defined by the values in the Type and Code fields.

You might consider the ICMP Type field the packet’s classification and
the Code field its subclass. For example, a Type field value of 3 indicates
“destination unreachable.” While this information alone might not be
enough to troubleshoot a problem, if that packet were also to specify a Code
field value of 3, indicating “port unreachable,” you could conclude that there
is an issue with the port with which you are attempting to communicate.

For a full list of available ICMP types and codes, see
http://www.iana.org/assignments/icmp-parameters/.




Echo Requests and Responses

icmp_echo.pcapng

ICMP’s biggest claim to fame is the ping utility. Ping is used to test for
connectivity to a device. While ping itself isn’t a part of the ICMP spec, it
utilizes ICMP to achieve its core functionality.

To use ping, enter ping ipaddress at the command prompt, replacing
ipaddress with the actual IP address of a device on your network. If the
target device is turned on, your computer has a communication route to it,
and there is no firewall blocking that communication, you should see replies
to your ping command.

The example in Figure 7-28 shows four successful replies that display
their size; round trip time (or RT'T), which is the time it takes for the packet
to arrive and a response to be received; and TTL used. The Windows utility
also provides a summary detailing how many packets were sent, received,
and lost. If communication fails, you should see a message telling you why.

B Command Prompt = O X

C:\>ping 172.16.16.1

Pinging 172.16.16.1 with 32 bytes of data:
Reply from 172.16.16.1: bytes=32 time=2ms
Reply from 172.18.18.1: bytes=32 time=ims
Reply Trom 172.16.16.1: bytes=32 time=2ms
Reply from 172.16.16.1: bytes=32 time=2ms

Ping statistics for 172.16.16.1:

Packets: Sent = 4, Received = 4, Lost = @ (@X loss),
Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 2Zms, AVErage = 1ims

Figure 7-28: The ping command being used to test connectivity

Basically, the ping command sends one packet at a time to a device and
listens for a reply to determine whether there is connectivity to that device,
as shown in Figure 7-29.



Echo (Ping) Request

Echo (Ping) Response

L E Lo
L L d R % &%
—

Figure 7-29: The ping command involves only two steps.

Although ping has long been the bread and butter of I'T, its results can be a bit
deceiving when host-based firewalls are deployed. Many of today’s firewalls
limit the ability of a device to respond to ICMP packets. This is great for
security, because potential attackers using ping to determine whether a host is
accessible might be deterred, but troubleshooting is also more difficult—it can
be frustrating to ping a device to test for connectivity and not receive a reply
when you know you can communicate with that device.

The ping utility in action is a great example of simple ICMP
communication. The packets in the file icmsp_echo.pcapng demonstrate what
happens when you run ping.

The first packet (see Figure 7-30) shows that host 192.168.100.138 is

sending a packet to 192.168.100.1 @. When you expand the ICMP portion
of this packet, you can determine the ICMP packet type by looking at the

Type and Code fields. In this case, the packet is type 8 @ and the code is 0

©, indicating an echo request. (Wireshark should tell you what the displayed
type/code actually is.) This echo (ping) request is the first half of the
equation. It is a simple ICMP packet, sent using IP, that contains a small
amount of data. Along with the type and code designations and the
checksum, we also have a sequence number that is used to pair requests with
replies, and there is a random text string in the variable portion of the ICMP

packet.



‘ Wireshark - Packet 1 . icmp_echo — | X

Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
Ethernet II, Src: CompalCo b8:59:bl (@@:16:d4:b8:59:bl), Dst: Ciscolnc_4b:c@:7f (00:12:80:4b:c@:7f)
Internet Protocol Version 4, Src: 192.168.1808.138, Dst: 192.168.180.1 0
v Internet Control Message Protocol
a_ype: & (Echo (ping) request)
aCDde: @
Checksum: 8x145c [correct]
Identifier (BE): 1280 (0x0508)
Identifier (LE): 5 (@x8085)
Sequence number (BE): 13312 (8x3480)
Sequence number (LE): 52 (@x8834)
[Response frame: 2]
¥ Data (32 bytes)
Data: 6162636465666768696a6b6c6dbe6T?@7172737475767761. ..
[Length: 32]

Ne.: 1 - Time: QL0000 - Source: 192.168.100, 138 - Destination: 152,168 100.1 - Protocely ICMP - Length: 74 - Imfo: Eche (ping) request id'=0h500, seg=13712/52, =128 (realy- i

.

Figure 7-30: An ICMP echo request packet

The terms echo and ping are often used interchangeably, but remember that
ping s actually the name of a tool. The ping tool is used to send ICMP echo
request packets.

The second packet in this sequence is the reply to our request (see

Figure 7-31). The ICMP portion of the packet is type 0 @ and code 0 @,

indicating that this is an echo reply. Because the sequence number and

identifier in the second packet match those of the first ®, we know that this
echo reply matches the echo request in the previous packet. Wireshark
displays the values of these fields in big-endian (BE) and little-endian (LE)
format. In other words, it represents the data in a different order based on
how a particular endpoint might process the data. This reply packet also
contains the same 32-byte string of data that was transmitted with the initial

request @. Once this second packet has been received by 192.168.100.138,
ping will report success.



‘ Wireshark - Packet 2 - icmp_echo - o X

Frame 2: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
Ethernet II, Src: Ciscolnc_4b:c@:7f (@0:12:88:4b:c@:77), Dst: CompalCo_b8:59:b1 (@@:16:d4:b8:59:bl)
Internet Protocol Version 4, Src: 192.168.160.1, Dst: 192.168.106.138
v Internet Control Message Protocol
o Type: @ (Echo (ping) reply)
@B code: @
Checksum: @xlc5c [correct]
Identifier (BE): 1288 (@x8580)
Identifier (LE): 5 (8xP885)
a Sequence number (BE): 13312 (@x340a)
Sequence number (LE): 52 (@x@034)
[Request frame: 1]
[Response time: ©.776 ms]
v Data (32 bytes)
o Data: 6162636465666768696a6b6c6d6ebf707172737475767761. ..
[Length: 32]

No.: 2 = Time: 0.000778 « Source: 192.168.100.1 + Destination: 192.168.100.138 + Protocol:... + Lengeh: 24 - Infor Echo (ping) reply id=0500, soq=13312%2, =255 {request in ]

Figure 7-31: An ICMP echo reply packet

Note that you can use variations of the ping command to increase the
size of the data padding in echo requests, which forces packets to be
fragmented for various types of network troubleshooting. This may be
necessary when you’re troubleshooting networks that require a smaller
fragment size.

The random text used in an ICMP echo request can be of great interest to a
potential attacker. Attackers can use the information in this padding to profile
the operating system used on a device. Additionally, attackers can place small
bits of data in this field as a method of covert communication.

traceroute

icmp_traceroute.pcapng

The traceroute utility is used to identify the path from one device to
another. On a simple network, a path may go through only a single router or
no router at all. On a complex network, however, a packet may need to go
through dozens of routers to reach its final destination. Thus, it is crucial to
be able to trace the exact path a packet takes from one destination to another



in order to troubleshoot communication.

By using ICMP (with a little help from IP), traceroute can map the path
packets take. For example, the first packet in the file icmsp_traceroute.pcapng is
pretty similar to the echo request we looked at in the previous section (see
Figure 7-32).

In this capture, the packets were generated by running the command
tracert 4.2.2.1. To use traceroute on Windows, enter tracert ipaddress at the
command prompt, replacing ipaddress with the actual IP address of a
device whose path you want to discover. To use traceroute on Linux or Mac,
use the command traceroute ipaddress.

M Wireshark - Packet 1 - icmp_traceroute - O x

Frame 1: 186 bytes on wire (848 bits), 106 bytes captured (848 bits)
Ethernet II, Src: CompalCo b8:59:bl (00:16:d4:b8:59:bl1), Dst: Ciscolnc_4b:cO:7f (00:12:88:4b:c@:7f)

~ Internet Protocol Version 4, Src: 192.168.106.138, Dst: 4.2.2.1 "

e1ee .... = Version: 4
» 8181 = Header Length: 2@ bytes

Differentiated Services Field: @xB8 (DSCP: €58, ECN: Not-ECT)
Total Length: 92
Identification: éxffs1 (65361)
Flags: ©x@@
Fragment offset: @
Time to live: 1@
Protocol: ICMP (1)
Header checksum: @x8fla [validation disabled]
Source: 192.168.186.138
Destination: 4.2.2.1
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]

v Internet Control Message Protocol
Type: 8 (Echo (ping) request}i}
Code: @
Checksum: Bxbaff [correct]
Identifier (BE): 1280 (@x0508)
Identifier (LE): 5 (@w0oa5)
Sequence number (BE): 14336 (©x380@)
Sequence number (LE): 56 (@6x@03E)
[No response seen]
Data (64 bytes)

Mo 1 - Time: 000000 - Source: 152,188, 100,138 + Destination: 4.2.2..1 + Protocol: IOM..the 108 + Infoe Echo ((ping) request id'=(0dIS00. seg=i473658. mi=1 (no nesponse found

[ ][ r

Figure 7-32: An ICMP echo request packet with a TTL value of 1

At first glance, this packet appears to be a simple echo request ® from

192.168.100.138 to 4.2.2.1 @, and everything in the ICMP portion of the
packet is identical to the formatting of an echo request packet. However,



when you expand the IP header of this packet, you’ll notice something odd:

the packet’s TTL wvalue is set to 1 @, meaning that the packet will be
dropped at the first router that it hits. Because the destination 4.2.2.1
address is an internet address, we know that there must be at least one router
between our source and destination devices, so there is no way this packet
will reach its destination. That’s good for us, because traceroute relies on the
fact that this packet will make it to only the first router it traverses.

The second packet is, as expected, a reply from the first router we
reached along the path to our destination (see Figure 7-33). This packet
reached this device at 192.168.100.1, its T'TL was decremented to 0, and the
packet could not be transmitted further, so the router replied with an ICMP

response. This packet is type 11 @ and code 0 @, data that tells us that the
destination was unreachable because the packet’s TTL was exceeded during
transit.

This ICMP packet is sometimes called a double-headed packet, because
the tail end of its ICMP portion contains a copy of the IP header © and

ICMP data @ that were sent in the original echo request. This information
can prove very useful for troubleshooting.



M Wireshark - Packet 2 - icmp_traceroute — O *

Frame 2: 7@ bytes on wire (560 bits), 70 bytes captured (560 bits)
Ethernet II, Srec: Ciscolnc_4b:c@:7f (00:12:80:4b:cB:7f), Dst: CompalCo bB:59:b1 (0@:16:d4:bB8:59:b1)
v Internet Protocol Version 4, Src: 192.168.109.1, Dst: 192.168.180.138
@1e@ .... = Version: 4
. 8121 = Header Length: 28 bytes
Differentiated Services Field: @xc@® (DSCP: CS6, ECN: Mot-ECT)
Total Length: 56
Tdentification: @x491a (18714)
Flags: @x0@
Fragment offset: @
Time to live: 255
Protocol: ICMP (1)
Header checksum: @x28@e [validation disabled]
Sgurce: 192.168.190.1
Destination: 192.165.108.138
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
v Internet Control Message Protocol
i’ Type: 11 (Time-to-live exceeded)
19 Code: @ (Time to live exceeded in transit)
Checksum: @xfa4ff [correct]
© - Internet Protocol Version 4, Src: 192.168.18@.138, Dst: 4.2.2.1
v Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: @
Checksum: @xbaff [in ICMP error packet]
Identifier (BE): 1280 (o0x058@)
Identifier (LE): 5 (0x@085)
Sequence number (BE): 14336 (@x3308)
Sequence number (LE): 56 (@x@B838)

Mo, 2+ Timer Q00081 - Sourcar 192,188,100 1 + Dastinavion: 192, 188, 100 138 + Brococol; JCME + Langthe 70 « Infor Tima-to-live axcaadad (Time o lve exeeded in transit)

T

Figure 7-33: An ICMP response from the first router along the path

This process of sending packets with a T'TL value of 1 occurs two more
times before we get to packet 7. Here, you see the same thing you saw in the
first packet, except that this time, the T'TL value in the IP header is set to 2,
which ensures the packet will make it to the second hop router before it is
dropped. As expected, we receive a reply from the next hop router,

12.180.241.1, with the same ICMP destination unreachable and TTL
exceeded messages.

This process continues, with the T'TL value increasing by 1, until the
destination 4.2.2.1 is reached. Right before that happens, however, you'll see
in Figure 7-34 that the request on line 8 timed out. How can a request along
the path time out and the process still complete successfully? Typically, this
happens when a router is configured to not respond to ICMP requests. The
router still receives the request and passes the data forward to the next



router, which is why we’re able to see the next hop on line 9 in Figure 7-34.
It just didn’t generate the ICMP time to live exceeded packet as the other
hops did. With no response, tracert assumes the request has timed out and
moves on to the next one.

To sum up, this traceroute process has communicated with each router
along the path, building a map of the route to the destination. An example
map is shown in Figure 7-34.

Bl Command Prompt — O x

Cr\»tracert 4.2.2.1

Tracing route to a.resolvers.level3.net [4.2.2.1]
over a maximum of 38 hops:

€1 ms { i INTERIOREZDOD8 []'.":".‘15.15.]]
1 ms 1 5 192.168.1.1
2 ms s 192.168.8.1
172-127-116-3.lightspeed.tukrga.sbcglobal .net [17

1
1
2
25
6.
26

«121
Reguest timed out.
a.resolvers.level3.net [4.2.2.1]

RN ; Bk e

Figure 7-34: A sample output from the traceroute utility

The discussion here on traceroute is generally Windows focused because this
utility uses ICMP exclusively. The traceroute utility on Linux is a bit more
versatile and can utilize other protocols in order to perform route path tracing.

ICMP Version 6 (ICMPv6)

The updated version of IP relies heavily on ICMP for functions such as
neighbor solicitation and path discovery, as demonstrated in earlier
examples. ICMPuv6 was established with RFC 4443 to support the feature set
needed for IPv6, along with additional enhancements. We don’t cover
ICMPv6 separately in this book because it uses the same packet structure as

do ICMP packets.

ICMPv6 packets are generally classified as either error messages or
informational messages. You can find a full list of the available types and



codes from  TANA  here:  http://www.iana.org/assignments/icmpv6-
parameters/icmpv6-parameters.xhtml.

This chapter has introduced you to a few of the most important
protocols you will examine during the process of packet analysis. ARP, IP,
and ICMP are at the foundation of all network communications, and they
are critical to just about every daily task you will perform. In Chapter 8, we
will look at common transport layer protocols, TCP and UDP.



8
TRANSPORT LAYER PROTOCOLS

In this chapter, we’ll continue to examine individual
protocols and how they appear at the packet level.
Moving up the OSI model, we’ll look at the transport
layer and the two most common transport protocols,

TCP and UDP.

Transmission Control Protocol (TCP)

The ultimate goal of the Transmission Control Protocol (TCP) is to provide
endto-end reliability for the delivery of data. TCP, which is defined in RFC
793, handles data sequencing and error recovery, and ultimately ensures that
data gets where it’s supposed to go. TCP is considered a connection-oriented
protocol because it establishes a formal connection before transmitting data,
tracks packet delivery, and usually attempts to formally close communication
channels when transmission is complete. Many commonly used application-
layer protocols rely on TCP and IP to deliver packets to their final
destination.



TCP Packet Structure

TCP provides a great deal of functionality, as reflected in the complexity of
its header. As shown in Figure 8-1, the following are the TCP header fields:

Source Port The port used to transmit the packet.
Destination Port The port to which the packet will be transmitted.

Sequence Number The number used to identify a TCP segment.
This field is used to ensure that parts of a data stream are not missing.

Acknowledgment Number  The sequence number that is to be
expected in the next packet from the other device taking part in the

communication.

Flags
identifying the type of T'CP packet being transmitted.

Window Size The size of the TCP receiver buffer in bytes.

Checksum Used to ensure the contents of the TCP header and data

The URG, ACK, PSH, RST, SYN, and FIN flags for

are intact upon arrival.

Urgent Pointer

data within the packet.

Options Various optional fields that can be specified in a T'CP packet.

It the URG flag is set, this field is examined for
additional instructions for where the CPU should begin reading the

Transmission Control Protocol (TCP)

Offsets| Octet 0 1 2 3
Octet | Bit 0-3 4-7 8-15 16-23 24-31

0 0 Source Port Destination Port

4 32 Sequence Number

8 64 Acknowledgment Number

12 96 |Data Offset| Reserved Flags Window Size

16 | 128 Checksum Urgent Pointer

20+ | 160+ Options

Figure 8-1: The TCP header

TCP Ports




tcp_ports.peapng

All TCP communication takes place using source and destination ports,
which can be found in every TCP header. A port is like the jack on an old
telephone switchboard. A switchboard operator would monitor a board of
lights and plugs. When a light lit up, he would connect with the caller, ask
who she wanted to talk to, and then connect her to the other party by
plugging in a cable. Every call needed to have a source port (the caller) and a
destination port (the recipient). TCP ports work in much the same fashion.

To transmit data to a particular application on a remote server or device,
a 'TCP packet must know the port the remote service is listening on. If you
try to access an application on a port other than the one configured for use,
the communication will fail.

The source port in this sequence isn’t incredibly important and can be
selected randomly. The remote server will simply determine the port to
communicate with from the original packet it’s sent (see Figure 8-2).

Source Port 1024 / Dest Port 80 ——= %D
uw;
~a—— Source Port 80 / Dest Port 1024 [ o
B Web Server
I Listening on Port 80
I -

Source Port 3221 / Dest Port 25 ——m=

-a—— Source Port 25 / Dest Port 3221 — _°

Fr TR A5
FX e et
—

Mail Server

Client

Listening on Port 25
Figure 8-2: TCP uses ports to transmit data.

There are 65,535 ports available for use when communicating with
TCP. We typically divide these into two groups:

*  The system port group (also known as the standard port or well-known



port group) is from 1 through 1023 (ignoring 0 because it’s reserved).
Well-known, established services generally use ports that lie within the
system port grouping.

*  'The ephemeral port group is from 1024 through 65535 (although some
operating systems have different definitions for this). Only one service
can communicate on a port at any given time, so modern operating
systems select source ports randomly in an effort to make
communications unique. These source ports are typically located in the
ephemeral range.

Let’s examine a couple of TCP packets and identify the port numbers
they are using by opening the file #zp_ports.pcapng. In this file, we have the
HTTP communication of a client browsing to two websites. As mentioned
previously, HT'TP uses TCP for communication, making it a great example
of standard T'CP traffic.

In the first packet in this file (see Figure 8-3), the first two values
represent the packet’s source port and destination port. This packet is being

sent from 172.16.16.128 to 212.58.226.142. The source port is 2826 @, an
ephemeral port. (Remember that source ports are chosen at random by the
operating system, although they can increment from that random selection.)

The destination port is a system port, port 80 @, the standard port used for
web servers using HT'TP.

M Wireshark . Packet 1 - tep_ports - O x

Frame 1l: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

Ethernet II, Src: IntelCor _Sb:7d:4a (@@:21:6a:5b:7d:4a), Dst: D-Link_21:99:4c (@@:85:5d:21:99:4¢c)

Internet Protocol Version 4, Src: 172.16.16.128, Dst; 212.58.226.142

~ Transmission Control Protocol, Src Port: slc-systemlog (2826), Dst Port: http (8@), Seq: 3691127924, Len: @

Source Port: slc-systemlog (2826) @
Destination Port: http (S‘?‘,-g
[Stream index: @]
[TCP Segment Len: @]
Sequence number: 3691127924
Acknowledgment number: @
Header Length: 32 bytes
Flags: @xe@e2 (SYN)
Window size value: 8192
[Calculated window size: B8132)
Checksum: @xcfeb [validation disabled]
Urgent pointer: @
Options: (12 bytes), Maximum segment size, Mo-Operation (MOP), Window scale, Mo-Operation (NOP), No-Operation (NOP), SACK permitted

Mot § - Time: 0.000000 - Sources 172.16.16.128 + Desciation: 212.58.226,342 - Protocol TCP + Infix slesystemiog — bt [SYN] Seqe 591127924 Winwe 8152 Lan=( MSS= 1450 WS4 SACK_PERM=]

Figure 8-3: The source and destination ports can be found in the TCP header.

Notice that Wireshark labels these ports as slc-systemlog (2826) and



http (80). Wireshark maintains a list of ports and their most common uses.
Although system ports are primarily the ones with labeled common uses,
many ephemeral ports have commonly used services associated with them.
The labeling of these ports can be confusing, so it’s typically best to disable
it by turning off transport name resolution. To do this, go to Edit p
Preferences B Name Resolution and uncheck Enable Transport Name
Resolution. If you wish to leave this option enabled but want to change how
Wireshark identifies a certain port, you can do so by modifying the services
file located in the Wireshark system directory. The contents of this file are
based on the JANA common ports listing (see “Using a Custom hosts File”
on page 86 for an example of how to edit a name resolution file).

The second packet is sent back from 212.58.226.142 to 172.16.16.128
(see Figure 8-4). As with the IP addresses, the source and destination ports

are now also switched ©.

In most cases, TCP-based communication works the same way: a
random source port is chosen to communicate to a known destination port.
Once this initial packet is sent, the remote device communicates with the
source device using the established ports.

This sample capture file includes one more communication stream. See
if you can locate the port numbers it uses for communication.

M Wireshark +Packet 2 « tcp_ports - a X

Frame 2: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
Ethernet II, Src: D-Link_21:99:4c (@0:05:5d:21:99:4c), Dst: IntelCor_Sb:7d:4a (09:21:6a:5b:7d:4a)
Internet Protocol Version 4, Src: 212.58.226.142, Dst: 172.16.16.128
~ Transmission Control Protocol, Src Port: B8 (88), Dst Port: 2826 (2826), Seq: @, Ack: 1, Len: @
Source Port: 8@
o Destination Port: 2826
[Stream index: @]
[TCP Segment Len: 8]
Sequence number: @ (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes
Flags: 8x@12 (SYN, ACK)
MWindow size wvalue: 5348
[Calculated window size: 5848]
Checksum: @x9ac@® [validation disabled]
Urgent pointer: @
Options: (12 bytes), Maximum segment sire, No-Operation (NOP), Mo-Operation (NOP), SACK permitted, No-Operation (NOP), Window scale
[SEQ/ACK analysis]

Nen: 2 - Time: L I32627 - Source: 212.58.226. 142 + Destingoon: 172.16.16. 128 - Protocok TOP « Lengey: &6 - Info: 80 — 2826 [SYN, ACK] Seq=0 Ack=1 Win=5840 len=0 MSS5=1406 SACK PERM=1 WS=128

e

Figure 8-4: Switching the source and destination port numbers for reverse communication

As we progress through this book, you’ll learn more about the ports associated



with common protocols and services. Eventually, you’ll be able to profile
services and devices by the ports they use. For a comprebensive list of common
ports, look at the services file located in the Wireshark system directory.

The TCP Three-Way Handshake

All 'TCP-based communication must begin with a handshake between two
hosts. This handshake process serves several purposes:

* Itallows the transmitting host to ensure that the recipient host is up and
able to communicate.

* Itlets the transmitting host check that the recipient is listening on the
port the transmitting host is attempting to communicate on.

tcp_handshake.pcapng

* Itallows the transmitting host to send its starting sequence number to
the recipient so that both hosts can keep the stream of packets in proper
sequence.

The TCP handshake occurs in three steps, as shown in Figure 8-5. In
the first step, the device that wants to communicate (host A) sends a TCP
packet to its target (host B). This initial packet contains no data other than
the lower-layer protocol headers. The TCP header in this packet has the
SYN flag set and includes the initial sequence number and maximum
segment size (MSS) that will be used for the communication process. Host B
responds to this packet by sending a similar packet with the SYN and ACK
flags set, along with its initial sequence number. Finally, host A sends one
last packet to host B with only the ACK flag set. Once this process is
completed, both devices should have all of the information they need to
begin communicating properly.

TCP packets are often referred to by the flags they have set. For example,
rather than refer to a packet as a TCP packet with the SYN flag set, we call
that packet a SYN packet. As such, the packets used in the TCP handshake
process arve veferred to as SYN, SYN/ACK, and ACK.




To see this process in action, open #cp_handshake.pcapng. Wireshark
includes a feature that replaces the sequence numbers of TCP packets with
relative numbers for easier analysis. For our purposes, we’ll disable this
feature in order to see the actual sequence numbers. To disable this, choose
Edit p Preferences, expand the Protocols heading, and choose TCP. In
the window, uncheck the box next to Relative Sequence Numbers and

click OK.

SYN

SYN/ACK

r L P R
L it 1 R0
—

ACK
Host A Host B

Figure 8-5: The TCP three-way handshake

The first packet in this capture represents our initial SYN packet @ (see
Figure 8-6). The packet is transmitted from 172.16.16.128 on port 2826 to
212.58.226.142 on port 80. We can see here that the sequence number

transmitted is 3691127924 @.
The second packet in the handshake is the SYN/ACK response © from
212.58.226.142 (see Figure 8-7). This packet also contains this host’s initial

sequence number (233779340) @ and an acknowledgment number

(3691127925) @. The acknowledgment number shown here is 1 more than
the sequence number included in the previous packet, because this field is
used to specify the next sequence number the host expects to receive.

The final packet is the ACK @ packet sent from 172.16.16.128 (see
Figure 8-8). This packet, as expected, contains the sequence number

3691127925 @ as defined in the previous packet’s Acknowledgment number
field.

A handshake occurs before every TCP communication sequence. When
you are sorting through a busy capture file in search of the beginning of a
communication sequence, the sequence SYN-SYN/ACK-ACK is a great



marker.

M Wireshark - Packet 1-tcp_handshake - m] b4

» Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
» Ethernet IT, Src: IntelCor Sb:7d:4a (@@:21:6a:5b:7d:4a), Dst: D-Link_21:99:4c (@@:85:5d:21:99:4c)
» Internet Protocol Version 4, Src: 172.16.16.128, Dst: 212.58.226.142
v

Source Port: 2826

Destination Port: 88

[Stream index: @]

[TCP Segment Len: @]

Sequence number: 3691127924 o'

Acknowledgment number: @

Header Length: 32 bytes

v
= Reserved: Mot set
= Nonce: Not set
. = Congestion Window Reduced (CWR): Not set
sass 4@y ou.. = ECH-Echo: Mot set
«o@ ... = Urgent: Not set
...8 .... = Acknowledgment: Not set
wess 2xes B... = Push: Mot set
e ssss 222+ o8, = Reset: Not set
>

[ —— @ = Fin: Not set
[TCP Flags: *=++e=sssmsge]
Window size value: 8192
[Calculated window size: 8192]
» Checksum: @xcfeb [validation disabled]
Urgent pointer: @
» Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation (NOP), Mo-Operation (NOP), SACK permitted

Nis 1 - Timas 000000 - Sourcer 172.16,16,129 - Destination; 212.58.226.142 - Protocok TCP * Lengeh 86 + Inflx 2825 — 80 [SYN] SeqeI6511275924 Wine 8152 Lon=( MSSe 1450 WS4 SACK PERM =]

Figure 8-6: The initial SYN packet

‘ ‘Wireshark - Packet 2 . tcp_handshake —_ [m} ™

> Frame 2: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
> Ethernet IT, Src: D-Link_21:99:4c (8@:05:5d:21:99:4c), Dst: IntelCor_Sb:7d:4a (@@:21:6a:5b:7d:4a)
» Internet Protocol Version 4, Src: 212.58.226.142, Dst: 172.16.16.128
w

Source Port: 8@

Destination Port: 2826

[Stream index: 8]

[TCP Segment Len: @]

Sequence number: 233779348 (1]

Acknowledgment number: 3691127925 @

Header Length: 32 bytes
e

0998, .... .... = Reserved: Not set
R = Nonce: Mot set
ve.r B... ... = Congestion Window Reduced (CWR): Mot set
cess <@.. .... = ECN-Echo: Not set
..8. .... = Urgent: Not set
<.l .... = Acknowledgment: Set
csvs Bias = Push:i Not set
case seee B, = REset: Not set
R R S LR i e e R O e s e B T T R N E VR S == U TR R T B e e |
vess wess +..8 = Fin: Not set
[TCP Flags: =**==***a**5*]
Window size value: 5848
[Calculated window size: 5848]
» Checksum: 8x9ac® [validation disabled]
Urgent pointer: @
> Options: (12 bytes), Maximum segment cize, Mo-Operation (NOP), No-Operation (NOP), SACK permitted, No-Operation (NOP), Window scale
» [SEQ/ACK analysis]

No.: 2 - Tames Q132627 - Sources 212.58.226. 142 + Destination: 172,18.15.128 + Protocok TCP - Lengehs 65 - Inlby 80 = 2826 [SYN, ACK] Sequ 233778340 Acka 3691127525 Wine S840 Lenml) MSSa 1408 SACK PERMal WSa 128

o e ]

Figure 8-7: The SYN/ACK response



M Wireshark . Packet 3 - tep_handshake B m] x

Frame 3: 54 bytes on wire (432 bits), 54 bytes captured (432 bits)
Ethernet II, Src: IntelCor_Sb:7d:4a (©@:21:6m:5b:7d:4a), Dst: D-Link_21:99:4c (00:85:5d:21:99:4c)
Internet Protocel Version 4, Sre: 172.16.16.128, Dst: 212.58.226.142
v Transmission Control Protocol, 5rc Port: 2826 (2826), Dst Port: 8@ (8@), Seq: 3691127925, Ack: 233779341, Len: @
Source Port: 2826
Destination Port: 88
[Stream index: @]
[TCP Segment Len: @]
Sequence number: 3691127925 ‘]
Acknowledgment number: 233779341
Header Length: 26 bytes
v Flags: @x818 (ACK)
@80, .... .... = Reserved: Mot set
Nonce: Not set
Congestion Window Reduced (CWR): Mot set
ECM-Echo: Mot set
Urgent: Not set
Acknowledgment: Set '9
Push: Not set
Reset: Not set
Syn: Mot set
ssss aans »0.8 = Fini Not set
[TCP Flags: **#s**épr=ss]
Window size value: 4218
[Calculated window size: 16872]
[Window size scaling factor: 4]
Checksum: @xelb2? [validation disabled]
Urgent pointer: 8
[SEQ/ACK analysis]

m
| T TR R R T R T 1}

Newr 3 - Time: 0132768 + Sowrce: 172.16.16.128 - Destination: 212.58.226.142 » Protocol: TCP « Length: 54 - Infoe 2828 — 80 [ACK] Seq=3681127325 Ack=23377934] Win=15872 Len=0

e

Figure 8-8: The final ACK

TCP Teardown

tcp_teardown.pcapng

Most greetings eventually have a good-bye and, in the case of TCP, every
handshake has a teardown. The TCP teardown is used to gracefully end a
connection between two devices after they have finished communicating.
This process involves four packets, and it utilizes the FIN flag to signify the
end of a connection.

In a teardown sequence, host A tells host B that it is finished
communicating by sending a "TCP packet with the FIN and ACK flags set.
Host B responds with an ACK packet and transmits its own FIN/ACK
packet. Host A responds with an ACK packet, ending the communication.
This process is illustrated in Figure 8-9.
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Figure 8-9: The TCP teardown process

To view this process in Wireshark, open the file tcp_teardown.pcapng.
Beginning with the first packet in the sequence (see Figure 8-10), you can
see that the device at 67.228.110.120 initiates teardown by sending a packet

with the FIN and ACK flags set @.

M Wireshark - Packet 1 - tep_teardown - O >

Frame 1: 6@ bytes on wire (48@ bits), 6@ bytes captured (488 bits)
Ethernet II, Src: D-Link_21:99:4¢c (@0:05:5d:21:99:4¢), Dst: IntelCor Sb:7d:4a (@@:21:6a:5b:7d:4a)
Internet Protocel Version 4, Src: 67.228.119.120, Dst: 172.16.16.128
~ Transmission Control Protocol, Src Port: B@ (8@), Dst Port: 3363 (3363), Seq: B22643295, Ack: 2879388537, Len: @
Source Port: 8@
Destination Port: 3363
[Stream index: @]
[TCP Segment Len: &]
Sequence number: 822643295
Acknowledgment number: 2879388537
Header Length: 20 bytes
@ - Flags: exe1l (FIN, ACK)
Reserved: Mot set
Monce: Mot set
Congestion Window Reduced (CWR): Not set
ECH-Echo: Not set
Urgent: Mot set
Acknowledgment: Set
Push: Mot set
Reset: Mot set
... ..B. = Syn: Not zet
e e v T T
[Tcp FIEES: aaa.-aa.-;..;ta;]
Window size walue: 71
[Calculated window size: 71]
[Window size scaling factor: -1 (unknown)]
Checksum: @x279b [validation disabled]
Urgent pointer: @

[
Woowmowowowowm oo

Wo.2 1 = Times 0000000 - Sorce: 67.228.110.120 - Desvingtion: 172.16.16.128 * Promeal; TCP « Lengthe 60 » Infee 80 — 3363 [FIN. ACK] Seq=822643295 Ack=2070380537 Win=71 Len=1
Close Help




Figure 8-10: The FIN/ACK packet initiates the teardown process.

Once this packet is sent, 172.16.16.128 responds with an ACK packet to
acknowledge receipt of the first packet, and it sends a FIN/ACK packet. The
process is complete when 67.228.110.120 sends a final ACK. At this point,
the communication between the two devices ends. If they need to begin
communicating again, they will have to complete a new TCP handshake.

TCP Resets

tcp_refuseconnection.pcapng

In an ideal world, every connection would end gracefully with a TCP tear-
down. In reality, connections often end abruptly. For example, a host may be
misconfigured, or a potential attacker may perform a port scan. In these
cases, when a packet is sent to a device that is not willing to accept it, a TCP
packet with the RST flag set may be sent. The RST flag is used to indicate
that a connection was closed abruptly or to refuse a connection attempt.

The file tep_refuseconnection.pcapng displays an example of network traffic
that includes an RST packet. The first packet in this file is from the host at
192.168.100.138, which is attempting to communicate with 192.168.100.1
on port 80. What this host doesn’t know is that 192.168.100.1 isn’t listening
on port 80 because it’s a Cisco router with no web interface configured.
There is no service configured to accept connections on that port. In
response to this attempted communication, 192.168.100.1 sends a packet to
192.168.100.138 telling it that communication won’t be possible over port
80. Figure 8-11 shows the abrupt end to this attempted communication in

the 'TCP header of the second packet. The RST packet contains nothing
other than RST and ACK flags @, and no further communication follows.



‘ Wireshark - Packet 2 - tcp_refuseconnection s | x

Frame 2: 60 bytes on wire (486 bits), 60 bytes captured (480 bits)
Ethernet II, Src: CiscoInc_4b:c@:7f (8@:12:88:4b:c0:7f), Dst: CompalCo_b8:59:bl (9@:16:d4:b8:59:b1)
Internet Protocol Version 4, Src: 192.168.10@.1, Dst: 192.165.10@.133
¥ Transmission Control Protocol, Src Port: 8@ (B@), Dst Port: 3372 (3372), Seq: @, Ack: 951857948, Len: @
Source Port: B8
Destination Port: 3372
[Stream index: 8]
[TCP Segment Len: @]
Sequence number: @
Acknowledgment number: 951857548
Header Length: 2@ bytes
& v Flags: 8x814 (RST, ACK)
PR, .... .... = Reserved: Not set
I = Monce: Not set
Y . Eennp— = Congestion Window Reduced (CWR): Not set
ECN-Echo: Mot set
Urgent: Mot set
Acknowledgment: Set
Push: Mot set
Reset: Set
Syn: Not set
Fin: Mot set
[TCP Flags: **=s*=*=psg+*]
Window size value: @
[Calculated window size: @]
[Window size scaling factor: -2 (no window scaling used)]
Checksum: @x21b4 [validation disabled]
Urgent pointer: @
[ [SEQ/ACK analysis]
Ne.: 2 ¢ Time: QLOBIFIE « Sowrve: 182, 1681001 - Destination: 192,168,100, 138 - Prosocol: TOP - Length: & « Infor B — 3372 [RST, ACK] Seq={) Ack=351057940 Wn=0 len=0

@
i nm m & ® W n

Figure 8-11: The RST and ACK flags signify the end of communication.

An RST packet ends communication whether it arrives at the beginning
of an attempted communication sequence, as in this example, or is sent in
the middle of the communication between hosts.

User Datagram Protocol (UDP)

udp_dnsrequest.pcapng

The User Datagram Protocol (UDP) is the other layer 4 protocol commonly
used on modern networks. While TCP is designed for reliable data delivery
with built-in error checking, UDP aims to provide speedy transmission. For
this reason, UDP is a best-effort service, commonly referred to as a
connectionless protocol. A connectionless protocol doesn’t formally establish
and terminate a connection between hosts, unlike TCP with its handshake
and teardown processes.



With a connectionless protocol, which doesn’t provide reliable services,
it would seem that UDP traffic would be flaky at best. That would be true,
except that the protocols that rely on UDP typically have their own built-in
reliability services or use certain features of ICMP to make the connection
somewhat more reliable. For example, the application-layer protocols DNS
and DHCP, which are highly dependent on the speed of packet transmission
across a network, use UDP as their transport layer protocol, but they handle
error checking and retransmission timers themselves.

UDP Packet Structure

udp_dnsrequest.pcapng
The UDP header is much smaller and simpler than the TCP header. As
shown in Figure 8-12, the following are the UDP header fields:
Source Port The port used to transmit the packet
Destination Port The port to which the packet will be transmitted
Packet Length The length of the packet in bytes

Checksum Used to ensure that the contents of the UDP header and
data are intact upon arrival

User Datagram Protocol (UDP)
Offsets| Octet 0 ] 2 3
Octet | Bit 0-7 8-15 16-23 24-31
0 0 Source Port Destination Port
4 32 Packet Length Checksum

Figure 8-12: The UDP header

The file wudp_dnsrequest.pcapng contains one packet. This packet
represents a DNS request, which uses UDP. When you expand the packet’s
UDP header, you'll see four fields (see Figure 8-13).



M Wireshark - Packet 1 udp_dnsrequest — O *

Frame 1: 73 bytes on wire (584 bits), 73 bytes captured (584 bits)
Ethernet II, Sre: CompalCo b8:59:bl (88:16:d4:b8:59:b1), Dst: Ciscolnc 4b:ec@:7f (00:12:80:4b:cB:7f)
» Internet Protocol Version 4, Src: 192.168.180.138, Dst: 192.168.190.1
¥ User Datagram Protocol, Src Port: 186@ (186@), Dst Port: 53 (53)
Source Port: 1668
Destination Port: 53
Length: 33
» Checksum: @x6dSa [validation disabled]
[Stream index: @]
Domain Name System (query)

Mo I - Time: QOO0 - Sowce: 192, 168, 100,138 - Destination: 192 168.100.1 « Protocol: DNS - Lengtf: 77 + Infox Standand query Bl S0F A wireshark.og

e ][ e

Figure 8-13: The contents of a UDP packet are very simple.

The key point to remember is that UDP does not care about reliable
delivery. Therefore, any application that uses UDP must take special steps to
ensure reliable delivery, if it is necessary. This is in contrast to TCP, which
utilizes a formal connection setup and teardown, and has features in place to
validate that packets were transmitted successfully.

This chapter has introduced you to the transport layer protocols TCP
and UDP. Not unlike network protocols, TCP and UDP are at the core of
most of your daily communication, and the ability to analyze them
effectively is critical to becoming an effective packet analyst. In Chapter 9,
we will look at common application-layer protocols.



9
COMMON UPPER-LAYER PROTOCOLS

In this chapter, we’ll continue to examine the
functions of individual protocols, as well as what they
look like when viewed with Wireshark. We’ll discuss

five of the most common upper-layer (layer 7)

protocols: DHCP, DNS, HT'TP, and SM'TP.

Dynamic Host Configuration Protocol (DHCP)

In the early days of networking, when a device wanted to communicate over
a network, it needed to be assigned an address by hand. As networks grew,
this manual process quickly became cumbersome. To solve this problem,
Bootstrap Protocol (BOOTP) was created to automatically assign addresses
to network-connected devices. BOOTP was later replaced with the more
sophisticated Dynamic Host Configuration Protocol (DHCP).

DHCP is an application-layer protocol responsible for allowing a device
to automatically obtain an IP address (and addresses of other important
network assets, such as DNS servers and routers). Most DHCP servers today
also provide other parameters to clients, such as the addresses of the default
gateway and DNS servers in use on the network.



DHCP Packet Structure

DHCP packets can carry quite a lot of information to a client. As shown in
Figure 9-1, the following fields are present within a DHCP packet:
OpCode Indicates whether the packet is a DHCP request or a DHCP
reply
Hardware Type The type of hardware address (10MB Ethernet,
IEEE 802, ATM, and so on)

Hardware Length The length of the hardware address
Hops Used by relay agents to assist in finding a DHCP server

Transaction ID A random number used to pair requests with
responses

Seconds Elapsed Seconds since the client first requested an address
from the DHCP server

Flags The types of traffic the DHCP client can accept (unicast,

broadcast, and so on)



Dynamic Host Configuration Protocol (DHCP)
Offsets | Octet 0 1 2 3
Octet Bit 0-7 8-15 16-23 24-31
0 0 OpCode Hardware Type | Hardware Length Hops
4 32 Transaction 1D
8 64 Seconds Elapsed Flags
12 96 Client IP Address
16 128 Your IP Address
20 160 Server IP Address
24 192 Gateway IP Address
28 224 Client IP Address
32 256
36 288
Client Hardware Address (16 bytes)
40 | 320
44 | 352
48+ | 384+ Server Host Name (64 bytes)
Boot File (128 byfes)
Options

Figure 9-1: The DHCP packet structure

Client IP Address The client’s IP address (derived from the Your IP
Address field)

Your IP Address The IP address offered by the DHCP server
(ultimately becomes the Client IP Address field value)

Server IP Address The DHCP server’s IP address

Gateway IP Address The IP address of the network’s default gateway
Client Hardware Address The client’s MAC address

Server Host Name The server’s host name (optional)

Boot File A boot file for use by DHCP (optional)

Options Used to expand the structure of the DHCP packet to give it
more features

The DHCP Initialization Process



dhcp_nolease _initialization.pcapng

The primary goal of DHCP is to assign addresses to clients during the
initialization process. The renewal process takes place between a single client
and a DHCP server, as shown in the file dhcp_nolease_initialization.pcapng.
The DHCP initialization process is often referred to as the DORA process
because it uses four types of DHCP packets: discover, offer, request, and
acknowledgment, as shown in Figure 9-2. Here, we’ll take a look at each

type of DORA packet.

Discover
= 1l
Offer I
“eeEsEar= Request _—| =
DHCP Client DHCP Server

Acknowledgment

Figure 9-2: The DHCP DORA process

The Discover Packet

As you can see in the referenced capture file, the first packet is sent from
0.0.0.0 on port 68 to 255.255.255.255 on port 67. The client uses 0.0.0.0
because it does not yet have an IP address. The packet is sent to
255.255.255.255 because this is the network-independent broadcast address,
thus ensuring that this packet will be sent out to every device on the
network. Because the device doesn’t know the address of a DHCP server,
this first packet is sent in an attempt to find a DHCP server that will listen.

Examining the Packet Details pane, the first thing we notice is that
DHCP relies on UDP as its transport layer protocol. DHCP is very
concerned with the speed at which a client receives the information it’s
requesting. DHCP has its own built-in reliability measures, which means
UDP is a perfect fit. You can see the details of the discovery process by



examining the first packet’'s DHCP portion in the Packet Details pane, as
shown in Figure 9-3.

M Wireshark - Packet 1. dhecp_nolease_renewal = O X

Frame 1: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface ®
Ethernet 1T, Src: Vmware 59:fd:21 (88:8c:29:59:fd:21), D=t: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol Version 4, Src: @.0.6.08, Dst: 255.255.255.255
User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
¥ Bogtstrap Protocol (Discover)

Message type: Boot Request (1) )

Hardware type: Ethernet (@x@l)

Hardware address length: 6

Hops: @

Transaction ID: @x696ddcEé

Seconds elapsed: @

Bootp flags: &x80868 (Unicast)

Client IP address: ©.9.0.0
) Your (client) IP address: ©.8.8.9

Next server IP address: 9.9.0.8

Relay agent IP address: 0.9.0.0

Client MAC address: Vmware_59:fd:21 (@@:8c:29:59:fd:21)

Client hardware address padding: 9@2000000020200000000

Server host name not given

Boot file name not giwven

Magic cookie: DHCP
v Option: (53) DHCP Message Type (Discover) @

Length: 1
DHCP: Discover (1)

Option: (50@) Requested IP Address

Option: (12) Host Name

Option: (55) Parameter Request List

Option: (255) End

Padding: 06068686060800500000800000000000000000000000000008. . .

No.: 1+ Time: 0.000000 * Sourcer 0.0.0.0 - Dastination: 255.255.255.255 * Protocol: DHCP -« Infor DHCP Discovar - Transacoion 1D OvE96ce 66

=

Figure 9-3: The DHCP discover packet

Because Wireshark still references BOOTP when dealing with DHCP, you’l
see a Bootstrap Protocol section in the Packet Details pane, rather than a
DHCP section. Nevertheless, U'll refer to this as the packet’s DHCP portion
throughout this book.

This packet is a request, identified by the (1) in the Message type field



@. Most of the fields in this discovery packet are either all zeros (as you can

see in the IP address fields @) or pretty self-explanatory, based on the listing
of DHCP fields in the previous section. The meat of this packet is in its four

Option fields ©.
DHCP Message Type 'This is option type 53, with length 1 and a

value of piscover (1). These values indicate that this is a DHCP discover
packet.

Client Identifier = This provides additional information about the
client requesting an IP address.

Requested IP Address This supplies the IP address the client would
like to receive. This can be a previously used IP address or 0.0.0.0 to
indicate no preference.

Parameter Request List 'This lists the different configuration items
(IP addresses of other important network devices and other non IP
items) the client would like to receive from the DHCP server.

The Offer Packet

The second packet in this file lists valid IP addresses in its IP header,
showing a packet traveling from 192.168.1.5 to 192.168.1.10, as shown in
Figure 9-4. The client doesn’t actually have the 192.168.1.10 address yet, so
the server will first attempt to communicate with the client using its
hardware address, as provided by ARP. If communication isn’t possible, the
server will simply broadcast the offer to communicate.

The DHCP portion of this second packet, called the offer packet,
indicates that the Message type is a reply @. This packet contains the same

Transaction ID as the previous packet @, which tells us that this reply is
indeed a response to our original request.

The offer packet is sent by the DHCP server in order to offer its
services to the client. It does so by supplying information about itself and the

addressing it wants to provide the client. In Figure 9-4, the IP address
192.168.1.10 in the Your (client) IP address field is being offered to the

client ® from 192.168.1.5 identified by the Next server IP address field @.

The first option listed identifies the packet as a pHcp offer ©. The options



that follow are supplied by the server and indicate the additional information
it can offer, along with the client’s IP address. You can see that it offers the
following:

* An IP address lease time of 10 minutes

* A subnet mask of 255.255.255.0

® A broadcast address of 192.168.1.255

* A router address of 192.168.1.254

* A domain name of mydomain.example

¢  Domain name server addresses of 192.168.1.1 and 192.168.1.2



M Wireshark - Packet 2 - dhep_nolease_renewal = O x

Frame 2: 344 bytes on wire (2752 bits), 344 bytes captured (2752 bits) on interface @
Ethernet II, Src: Vmware_c@:60:a4 (80:8c:29:c0:60:24), Dst: Vmware 59:fd:21 (@@:8c:29:59:fd:21)
Internet Protocol Version 4, Src; 192.168.1.5, Dst: 192.168.1.10
User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
v Bootstrap Protocol (Offer)
Message type: Boot Reply (2) @
Hardware type: Ethernet (Bx@1)
Hardware address length: 6
Hops: @
Transaction ID: @x696ddc66 @
Seconds elapsed: @
Bootp flags: @x@608 (Unicast)
Client IP address: ©.0.0.8
€ Your (client) IP address: 192.168.1.18

| @ Next serv adzress: 1%.163.1.5
Figure 9:d:, The DHUP glfer agket,

Client MAC address: Vmware_59:fd:21 (@8:0c:29:59:fd:21)

Client hardware address padding: 22008

The Request:Packet: -

Boot file name not given

Once gﬁgﬁ @ﬁtiﬁ@gg& an.offer fgpm the DHCP server, it should accept
with a DHEP Tequest packet, as shown in Figure 9-5.

DHCP: Offer

Theithird packet<irrathisicapture still comes from IP address 0.0.0.

Length: 4

because we have netyet-completed the process of obtaining an IP address @.

The packet oW kilows the"DFICP server it is communicating with,
IP Address Lease Time: (6@@s) 10 minutes
v Option: (1) Subnet Mask
Length: 4
Subnet Mask: 255.255.255.8
¥ Option: (28) Broadcast Address
Length: 4
Broadcast Address: 192.168.1.255
v Option: (3) Router
Length: 4
Router: 192.168.1.254
¥ Option: (15) Domain Name
Length: 16
Domain Name: mydomain.example
¥ QOption: (6) Domain Mame Server
Length: 8
Domain Name Server: 192.1638.1.1
Domain Name Server: 192.168.1.2
v Option: (255) End
Option End: 255

Ma.: 2 - Time; 1002288 - Source: 192.158.1.5 - Destination: 192,188.1.10 - Protocal; DHCP - Infor DHOP Offer - Transaction D OxSS6ckicls

e

it

),




M Wireshark . Packet 3 . dhep_nolease_renewal - O 4

Frame 3: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface @
Ethernet II, Src: Vmware_59:fd:21 (@@:0c:29:59:fd:21), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol Version 4, Src: ©.8.8.8, Dst: 255.255.255.255€)
User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
v Bootstrap Protocol (Request)
Message type: Boot Reguest (1)@
Hardware type: Ethernet (©@x@8l)
Hardware address length: 6
Hops: @
Transaction ID: @x696ddcés @
Seconds elapsed: @
Bootp flags: @x8@8@ (Unicast)
Client IP address: 6.0.8.8
Your (client) IP address: @.8.8.8
Next server IP address: 6.0.8.8
Relay agent IP address: ©.0.8.0
Client MAC address: Vmware_59:fd:21 (8@:8c:29:59:fd:21)
Client hardware address padding: B0000006000600000000
Server host name not given
Boot file name not given
Magic cookie: DHCP
¥ Option: (53) DHCP Message Type (Request) &)
Length: 1
DHCP: Regquest (3)
¥ QOption: (54) DHCP Server Identifier
Length: 4
DHCP Server Identifier: 192.168.1.5 @
¥ Option: (50) Requested IP Address
Length: 4
Requested IP Address: 192.168.1.10
v QOption: (12) Host Name
Length: 7
Host Name: ubuntu2
» Option: (55) Parameter Reguest List
v QOption: (255) End
Option End: 255
Padding: £ p

Noe: 3 - Time: 1002980 - Source: 0.0.0.0 - Destination: 255.255.255.255 - Protocol: DHCP - Info: DHOP Request - Transaction 1D QS96abess

[[cose |1 reo

Figure 9-5: The DHCP request packet

The Message type field shows that this packet is a request @, and the

Transaction ID field is the same as in the first two packets ©, indicating they
are part of the same process. This packet is similar to the discover packet, in
that all of its IP-addressing information is zeroed.

Finally, in the Option fields, we see that this is a pHcP Request @. Notice
that the requested IP address is no longer blank and that the DHCP Server



Identifier field also contains an address ©.

The Acknowledgment Packet

In the final step in this process, the DHCP server sends the requested IP
addresses to the client in an acknowledgment packet and records that
information in its database, as shown in Figure 9-6. The client now has an IP
address and can use it to begin communicating on the network.

Ml Wireshark . Packet 4 . dhep_nolease_renewal - O X

> Frame 4: 344 bytes on wire (2752 bits), 344 bytes captured (2752 bits) on interface @
> Ethernet II, Src: Vmware_c®:60:ad4 (@0:0c:29:c0:68:a4), Dst: Vmware_59:Td:21 (@@:0c:29:59:fd:21)
» Internet Protocol Version 4, Src: 192.16B8.1.5, Dst: 192.168.1.1@
» User Datagram Protocel, Src Port: bootps (67), Dst Port: bootpc (68)
~ Bootstrap Protocol (ACK)
Message type: Boot Reply (2)
Hardware type: Ethernet (8x@l)
Hardware address length: 6
Hops: @
Transaction ID: @x696ddc66
Seconds elapsed: @
» Bootp flags: @x@88@ (Unicast)
Client IP address: #.2.98.@
Your (client) IP address: 192.168.1.16
Next server IP address: 192.168.1.5
Relay agent IP address: ©.9.2.8
Client MAC address: Vmare 59:fd:21 (@©:8c:29:59:fd:21)
Client hardware address padding: 2eeg280eee00020200008
Server host name not given
Boot file name not given
Magic cookie: DHCP
Option: (53) DHCP Message Type (ACK)
» Option: (54) DHCP Server Identifier
» Option: (51) IP Address Lease Time
» Option: (1) Subnet Mask
» Option: (28) Broadcast Address
Option: (3) Router
» Option: (15) Demain Name
» Option: (6) Domain MName Server
Option: (255) End

No: 4+ Time: 1.0052437 - Source; 192.168.1.5 - Destinations 192, 168.1. 10 * Prococoll DHCP + Infor DHCP ACK - Transacoion 1D (ERecctss

=

Figure 9-6: The DCHP acknowledgment packet

DHCP In-Lease Renewal

dhcp_inlease _renewal.pcapng



When a DHCP server assigns an IP address to a device, it leases it to the
client. This means that the client is allowed to use the IP address for only a
limited amount of time before it must renew the lease. The DORA process
just discussed occurs the first time a client gets an IP address or when its
lease time has expired. In either case, the device is considered to be out of
lease.

When a client with an IP address in-lease reboots, it must perform a
truncated version of the DORA process in order to reclaim its IP address.
This process is called an in-lease renewal.

In the case of a lease renewal, the discovery and offer packets are
unnecessary. Think of an in-lease renewal as being the same DORA process
used in an out-of-lease renewal, but the in-lease renewal doesn’t need to do
as much, leaving only the request and acknowledgment steps. You’ll find a
sample capture of an in-lease renewal in the file dhcp_inlease_renewal.pcapng.

DHCP Options and Message Types

DHCP’s real flexibility lies in its available options. As you’ve seen, the
packet’s DHCP options can vary in size and content. The packet’s overall
size depends on the combination of options used. You can view a full list of
the many DHCP options at btep://www.iana.org/assignments/bootp-dhbcp-
parameters/.

The only option required in all DHCP packets is the Message type
option (option 53). This option identifies how the DHCP client or server
will process the information contained within the packet. There are 8
message types, as defined in Table 9-1.

Table 9-1: DHCP Message Types

Type  Message Description
number type

1 Discover Used by the client to locate available DHCP servers

2 Offer Sent by the server to the client in response to a discover
packet

3 Request Sent by the client to request the offered parameters

from the server


http://www.iana.org/assignments/bootp-dhcp-parameters/

4 Decline Sent by the client to the server to indicate invalid
parameters within a packet

5 ACK Sent by the server to the client with the configuration
parameters requested

6 NAK  Sent by the client to the server to refuse a request for
configuration parameters

7 Release  Sent by the client to the server to cancel a lease by
releasing its configuration parameters

8 Inform  Sent by the client to the server to ask for configuration
parameters when the client already has an IP address

DHCP Version 6 (DHCPv6)

dhcp6_outlease_acquisition.pcapng

If you examine the packet structure for a DHCP packet in Figure 9-1, you’ll
see that it doesn’t provide enough room to support the length required for
IPv6 address allocation. Instead of retrofitting DHCP for this purpose,
DHCPv6 was devised in RFC3315. Since DHCPv6 isn’t built on the
concept of BOOTP, its packet format is much simpler (Figure 9-7).

Dynamic Host Configuration Protocol Version 6 (DHCPvé)
Offsets| Octet 0 ] 2 3
Octet | Bit 0-7 8-15 16-23 24-31
0 0 Message Type Transaction ID
4+ 32+ Options

Figure 9-7: The DHCPv6 packet structure

The packet structure shown here contains only two static values, which
function in the same manner as their DHCP counterparts. The rest of the
packet structure varies depending on the message type identified in the first
byte. Within the Options section, each option is identified with a 2-byte
option code and a 2-byte length field. A full list of message types and option
codes that can appear in these fields can be found here:
bttp://www.iana.org/assignments/dbcpv6-parameters/dbcpv 6-parameters.xhtml.


http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml

DHCPv6 accomplishes the same goal as DHCP, but to understand the
flow of DHCPv6 communication, we must replace our DORA acronym
with a new one, SARR. This process is illustrated in Figure 9-8, which
represents a client that is currently out of lease.

Solicit
L= i | gg
Advertise LLL =
Request — | —
DHCPvé Client DHCPvé Server
Reply

Figure 9-8: The DHCPv6 SARR out-of-lease renewal process

The SARR process has four steps:

1. Solicit: An initial packet is sent from a client to a special multicast
address (ff02::1:2) to attempt to locate available DHCPvV6 servers on the
network.

2. Advertise: An available server responds directly to the client to indicate
that it is available to provide addressing and configuration information.

3. Request: The client sends a formal request for configuration
information to the server via multicast.

4. Reply: The server sends all available requested configuration
information directly to the client, and the process is complete.

A summary of this process is shown in Figure 9-9, which is taken from
the file dhcp6_outlease_acquisition.pcapng. In this example, we see the SARR
process in action as a new host on the network (fe80::20c:29ft:fe5e:7744)
receives configuration information from a DHCPv6 server (fe80::20c:291t
:felf:a755). Each packet represents one step of the SARR process, with the
initial solicit and advertise packets tied together using the transaction 1D



0x9de03f and the request and reply packets associated with the transaction
ID 0x2d1603. While it isn’t shown in the figure, this communication takes
place over ports 546 and 547, which are the standard ports used by
DHCPv6.

N Time Soures Destination Protocal  Length Infa

 1@.. feB@::20c:297T:feSe:7744 ffo2::1:2 DHCPVE 118 Solicit XID: @xSde@3df CID: #08100011def69bdeedc2aSeT74a4
2 8. feB@::28c:20Ff:felf:a755 FeB@::28c:29ff:feSe:T7744 DHCPVE 166 Advertize NID: Bx0ded3f CID: B60100811defe0bdd@Bc2o5eT744 TAA: 2081:db8:1:2::1862
3 1.. TeB@::20c:297T:TeSe:7744 T02::1:2 DHCPwE 164 Request XID: 8x2d1683 CID: fedlefelldefeaSbdofdc295e?744 IAA: 2081:db8:1:2::1882
4 1.. feB@::20c:20fF:felf:a755 feBd::20c:20Ff:feSe:7744 DHCPvE 166 Reply XID: ex2d1603 (ID: @@8180011def5obdeeec295e7744 IAA: 2081:dbB:1:2::1882

Figure 9-9: A client obtaining an IPv6 address via DHCPv6

Overall, the packet structure of DHCPv6 traffic looks a lot different, but
most of the same concepts apply. The process still requires some form of
DHCP server discovery and a formal retrieval of configuration information.
Those transactions are all tied together via transaction identifiers in each
pair of packets exchanged between the client and server. IPv6 addressing
can’t be supported by traditional DHCP mechanisms, so if you have devices
getting [Pv6 addresses automatically from a server on your network, it’s
likely that you’re already running DHCPv6 services on your network. If
you’d like to compare DHCP and DHCPv6 further, I recommend opening
the packet captures discussed in this chapter side by side and stepping
through them.

Domain Name System (DNS)

The Domain Name System (DNS) is one of the most crucial internet
protocols because it is the proverbial molasses that holds the bread together.
DNS ties domain names, such as www.google.com, to IP addresses, such as
74.125.159.99. When we want to communicate with a networked device and
we don’t know its IP address, we access that device via its DNS name.

DNS servers store a database of resource records of IP address—to—DNS
name mappings, which they share with clients and other DNS servers.

Because the architecture of DNS servers is complicated, we’ll just look at some
common types of DNS traffic. You can review the various DNS-related RFCs
at https://www.isc.org/community/rfcs/dns/.
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DNS Packet Structure

As you can see in Figure 9-10, the DNS packet structure is somewhat
different from that of the packet types we’ve discussed previously. The
following fields can be present within a DNS packet:

DNS ID Number  Used to associate DNS queries with DNS
responses
Query/Response (QR) Denotes whether the packet is a DNS query

or response
OpCode Defines the type of query contained in the message

Authoritative Answers (AA) If this value is set in a response packet,
indicates that the response is from a name server with authority over the
domain

Truncation (T'C) Indicates that the response was truncated because it
was too large to fit within the packet

Recursion Desired (RD) When this value is set in a query, indicates
that the DNS client requests a recursive query if the target name server
doesn’t contain the information requested

Recursion Available (RA) If this value is set in a response, indicates
that the name server supports recursive queries

Domain Name System (DNS)
Offsets | Octet 0 1 2 3
Octet |  Bit 0-7 8-15 16-23 24-31
0 0 DNS ID Number Q| opCode [A[L|RIR] z | RCode
4 32 Question Count Answer Count
8 64 Name Server (Authority) Record Count Additional Records Count
12+ | 96+ Questions Section Answers Section
Authority Section Additional Information Section

Figure 9-10: The DNS packet structure

Reserved (Z) Defined by RFC 1035 to be set as all zeros; however,
sometimes it’s used as an extension of the RCode field

Response Code (RCode)

presence of any errors

Used in DNS responses to indicate the

Question Count The number of entries in the Questions Section




Answer Count The number of entries in the Answers Section

Name Server (Authority) Record Count 'The number of name
server resource records in the Authority Section

Additional Records Count The number of other resource records in
the Additional Information Section

Questions Section Variable-sized section that contains one or more
queries for information to be sent to the DNS server

Answers Section  Variable-sized section that carries one or more
resource records that answer queries

Authority Section  Variable-sized section that contains resource
records that point to authoritative name servers that can be used to
continue the resolution process

Additional Information Section Variable-sized section that contains
resource records that hold additional information related to the query
that is not absolutely necessary to answer the query

A Simple DNS Query

dns_query_response.pcapng

DNS functions in a query-response format. A client wishing to resolve a
DNS name to an IP address sends a query to a DNS server, and the server
sends the requested information in its response. In its simplest form, this
process takes two packets, as can be seen in the -capture file
dns_query_response.pcapng.

The first packet, shown in Figure 9-11, is a DNS query sent from the
client 192.168.0.114 to the server 205.152.37.23 on port 53, which is the
standard port used by DNS.



‘ Wireshark : Packet 1 . dns_query_response = (] X

Frame 1: 73 bytes on wire (584 bits), 73 bytes captured (584 bits)
Ethernet II, Src: HonHaiPr_Ge:B8b:24 (B0:16:ce:6e:8b:24), Dst: D-Link_21:99:4c (@0:85:5d:21:99:4c)
Internet Protocol Version 4, Src: 192,.168.8.114, Dst: 265.152.37.23
User Datagram Protocol, Src Port: 1060 (1060), Dst Port: 53 (53) )
¥ Domain Name System (query)
[Response In: 2]
Transaction ID: @xlaef
v Flags: @x@1e@ Standard query @
Bt Aaaa asae aaes = Response: Message is a query
s = Qpcode: Standard query (@)
voB. vivs wu.. = Truncated: Message is not truncated
....... 1 ...s assa = Recursion desired: Do query recursively
B waw. m I3 reserved (0)
........... @ .... = Non-authenticated data: Unacceptable
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
¥ Queries
v wireshark.org: type A, class IN €
Name: wireshark.org
[Name Length: 13]
[Label Count: 2]
Type: A (Host Address) (1)
Class: IN (@xeo@l)

Wiows I+ Thmar 0.000000 « Sourcer 192, 168.0.114  Dastination: 205, 152.37.23 + Protocol: DVS « Langehr 73 = Infor Standavd quary OcI80F A wireshark. org

Figure 9-11: The DNS query packet

When you begin examining the headers in this packet, you’ll see that
DNS also relies on UDP @.

In the DNS portion of the packet, you can see that smaller fields near
the beginning of the packet are condensed by Wireshark into a single Flags
section. Expand this section, and you’ll see that the message is indeed a
standard query @, that it is not truncated, and that recursion is desired (we’ll
cover recursion shortly). Only a single question is identified, which can be
found by expanding the Queries section. There, you can see the query is for
the name wireshark.org for a host (type a) internet (1v) address ©. This packet

is basically asking, “Which IP address is associated with the wireshark.org
domain?”

The response to this request is in packet 2, as shown in Figure 9-12.

Because this packet has an identical identification number @, we know that it
contains the correct response to the original query.


http://wireshark.org
http://wireshark.org

The Flags section confirms that this is a response and that recursion is
available if necessary @. This packet contains only one question and one

resource record ©, because it includes the original question in conjunction
with its answer. Expanding the Answers section gives us the response to the

query: the IP address of wireshark.org is 128.121.50.122 @. With this
information, the client can now construct IP packets and begin
communicating with wireshark.org.

M Wireshark - Packet 2 . dns_query_response o a X

Frame 2: 89 bytes on wire (712 bits), 89 bytes captured (712 bits)
Ethernet II, Src: D-Link_21:99:4c (©0:85:5d:21:99:4c), Dst: HonHaiPr_6e:8b:24 (0©:16:ce:6e:8b:24)
Internet Protocol Version 4, Src: 285.152.37.23, Dst: 192.168.6.114
User Datagram Protocol, Src Port: 53 (53), Dst Port: 1868 (1660)
v Domain Name System (response)
Request In: 1]
[Time: 9.091164000 seconds]
Transaction ID: @x18aT €
v Flags: @x818@ Standard query response, No error @
lowe wevs wnse 2. = Response: Message is & response
Opcode: Standard query (8)
Authoritative: Server is net an authority for domain
Truncated: Message is not truncated
Recursion desired: Do query recursively
Recursion available: Server can do recursive queries
Z: reserved (@)
Answer authenticated: Answer/authority portion was not authenticated by the server
Non-authenticated data: Unacceptable
Reply code: Mo error (@)

s
Lm
[}

[
[ U I B

Questions: 1
Answer RRs: 1
Authority RRs: @
Additional RRs: @
¥ Queries
¥ wireshark.org: type A, class IN
Name: wireshark.org
[Name Length: 13]
[Label Count: 2]
Type: A (Host Address) (1)
Class: IN (exeoel)
¥ Answers
v wireshark.org: type A, class IN, addr 128.121.50.122 @
Name: wireshark.org
Type: A (Host Address) (1)
Class: IN (©x@eel)
Time to live: 14400
Data length: 4
Address: 128.121.5@.122

Ne.: 2 « Time: D.091164 + Source: 205.152.37.23 « Destination: 192.168.0.114 - Protocol: DN + Length: 89 - Info: Standard query response (xI80F A wireshark.ong A 128.121.50.122
Close Help

Figure 9-12: The DNS response packet

DNS Question Types

The Type fields used in DNS queries and responses indicate the resource
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record type that the query or response is for. Some of the more common
message/resource record types are listed in Table 9-2. You’ll be seeing these
types throughout normal traffic and in this book. (The list in Table 9-2 is
brief and by no means exhaustive. T'o review all DNS resource record types,
visit bttp://www.iana.org/assignments/dns-parameters/.)

Table 9-2: Common DNS Resource Record Types

Value Type  Description

1 A IPv4 host address

2 NS Authoritative name server
5 CNAME Canonical name for an alias
15 MX Mail exchange

16 TXT Text string

28 AAAA  IPv6 host address

251 IXFR Incremental zone transfer

252 AXFR  Full zone transfer

DNS Recursion

dns_recursivequery_client.pcapng, dns_recursivequery_server.pcapng

Due to the hierarchical nature of the internet’s DNS structure, DNS servers
must be able to communicate with each other in order to answer the queries
submitted by clients. While we expect our internal DNS server to know the
name-to-IP address mapping of our local intranet server, we can’t expect it
to know the IP address associated with Google or Dell.

When a DNS server needs to find an IP address, it queries another
DNS server on behalf of the client making the request, in effect acting like a
client. This process is called recursion.

To view the recursion process from both the DNS client and server
perspectives, open the file dns_recursivequery_client.pcapng. This file contains
a capture of a client’s DNS traffic file in two packets. The first packet is the
initial query sent from the DNS client 172.16.0.8 to its DNS server
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172.16.0.102, as shown in Figure 9-13.

M Wireshark - Packet 1 - dns_recursivequery_client - O X

Frame 1: 76 bytes on wire (6088 bits), 76 bytes captured (688 bits)
Ethernet II, Src: HewlettP bf:9l:ee (80:25:b3:bf:91:ee), Dst: Veware 92:94:9f (00:0c:29:92:94:9F)
Internet Protocol Version 4, Src: 172.16.8.8, Dst: 172.16.8.182
¥ User Datagram Protocel, Src Port: 56125 (56125), Dst Port: 53 (53)
Source Port: 56125
Destination Port: 53
Length: 42
¥ Checksum: 8x58ca [validation disablad]
[Good Checksum: False]
[Bad Checksum: False]
[Stream index: @]
¥ Demain Name System (query)
Response Im: 2]
Transaction ID: @xBb34
¥ Flags: @x@108 Standard query
Bius vsss sass ssss = Response: Message is a query
BBB B... siie sess = Opcode: Standard query (@)
«e®. vuvs eue. = Truncated: Message is not truncated
....... 1.... .... = Recursion desired: Do query recursively @}
B.. .... = Z: reserved (@)
........... @ .... = Non-authenticated data: Unacceptable
Quastions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @&
¥ Queries
~ www.nostarch.com: type A, class IN @
Name: www.nostarch.com
[Mame Length: 16]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (exeeal)

Mo I - Times 0.000000 - Source: 172.16.0.8 - Dessnation: 172.16.0.102 - Protocod: DS - Length: 78 - Infoc Standand queny 0h 34 A www.nostarch.com

Help
Figure 9-13: The DNS query with the Recursion desired bit set

When you expand the DNS portion of this packet, you'll see that this is

a standard query for an A type record for the DNS name www.nostarch.com @.
To learn more about this packet, expand the Flags section, and you’ll see

that recursion is desired ©.

The second packet is what we would expect to see in response to the
initial query, as shown in Figure 9-14.


http://www.nostarch.com

M Wireshark . Packet 2 . dns_recursivequery_client -

* Frame 2: 92 bytes on wire (736 bits), 92 bytes captured (736 bits)
Ethernet II, Src: Vmware_92:94:9f (0@:8c:29:92:94:9f), Dst: HewlettP_bf:91:ee (©08:25:b3:bf:91:ee)
Internet Protocol Version 4, Src: 172.16.0.182, Dst: 172.16.0.8
User Datagram Protocol, Src Port: 53 (53), Dst Port: 56125 (56125)
~ Domain Mame System (response)
Request In: 1
[Time: ©.183134800 seconds]
Transaction ID: @x8b34 )
V¥ Flags: @x318@ Standard query response, No error
l1... «vvv vuse +v.. = Response: Message is a response
.B00 B... ... ... = Opcode: Standard query (@)
Authoritative: Server is not an authority for domain
«aB. iu.s ... = Truncated: Message is not truncated
....... 1 .... .... = Recursion desired: Do query recursively

-]
"

........ 1... .... = Recursion available: Server can do recursive queries
@.. .v.. = Z: reserved (0)

........... ® .... = Non-authenticated data: Unacceptable
= Reply code: Mo error (@)
Questions: 1
Answer RRs: 1
Authority RRs: @
Additional RRs: @
¥ Queries
¥ wwwi.nostarch.com: type A, class IN
Name: www.nostarch.com
[Name Length: 16]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (ex@eel)
¥ Answers
¥ www.nostarch.com: type A, class IN, addr 72.32.92.4 @
Name: www.nostarch.com
Type: A (Host Address) (1)
Class: IN (©x8061)
Time to live: 3680
Data length: 4
Address: 72.32.92.4

No.: 2 * Time: 0.183134 * Source: 172.16.0.102 + Dactination: 172.16.0.8 * Protocols DNS © Langeh: 92 + Info: Standare quary response 08534 A wwiw.nostarch.com A 72.32.92.4

Answer authenticated: Answer/authority portion was not authenticated by the server

Help

Figure 9-14: The DNS query response

This packet’s transaction ID matches that of our query @, no errors are
listed, and we receive the A type resource record associated with

www.nostarch.com .

We can see that this query was answered by recursion by listening to the
DNS server’s traffic when the recursion is taking place, as demonstrated in
the file dns_recursivequery_server.pcapng. "This file shows a capture of the
traffic on the local DNS server when the query was initiated (Figure 9-15).

No. Time Source Destination Protocol Length Info
T 1@.. 172.16.0.8 172.16.8.102 DNS 76 Standard query ©@x8b34 A www.nostarch.com

29.. 172.16.0.182 4.2.2.1 DNS 76 Standard query @xf34d A www.nostarch.com

39.. 4.2.2.1 172.16.0.182 DNS 92 Standard query response @xf34d A www.nostarch.com A 72.32.92.4
- 4 0.. 172.16.0.182 172.16.0.8 DNS 92 Standard query response @x8b34 A www.nostarch.com A 72.32.92.4



http://www.nostarch.com

Figure 9-15: DNS recursion from the server’s perspective

The first packet is the same initial query we saw in the previous capture
file. At this point, the DNS server has received the query, checked its local
database, and realized it doesn’t know the answer to the question of which IP
address goes with the DNS name (www.nostarch.com). Because the packet was
sent with the Recursion desired bit set, the DNS server can ask another
DNS server this question in an attempt to locate the answer, as you can see
in the second packet.

In the second packet, the DNS server at 172.16.0.102 transmits a new

query to 4.2.2.1 @, which is the server to which it is configured to forward
upstream requests, as shown in Figure 9-16. This query mirrors the original
one, effectively turning the DNS server into a client. We can tell that this is
a new query because the transaction ID number differs from the transaction

ID number in the previous capture file ®.

‘ Wireshark « Packet 2 - dns_recursivequery_server — | X

Frame 2: 76 bytes on wire (608 bits), 76 bytes captured (608 bits)
Ethernet II, Src: Vmware_92:94:9f (00:8c:29:92:94:9f), Dst: Ciscolnc_31:87:33 (00:26:0b:31:07:33)
Internet Protocol Version 4, Src: 172.16.8.182, Dst: 4.2.2.10
User Datagram Protocol, Src Port: 62578 (62578), Dst Port: 53 (53)
v Domain Name System (query)
Response In: 3]
Transaction ID: @xf34d @
Flags: @x818@ Standard query
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
¥ Queries
¥ www.nostarch.com: type A, class IN
Name: www.nostarch.com
[Name Length: 16]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (@x888l)

No.z 2 * Timar 0000379 - Sourcer 172.16.0.102 * Dastination: 4.2.2.1 - Protocol: DNS - Langeh: 75 + Infor Standard queny (340 A www.nastavch.com

[ome ]| v

Figure 9-16: The recursive DNS query

Once this packet is received by server 4.2.2.1, the local DNS server
receives the response shown in Figure 9-17.


http://www.nostarch.com

M Wireshark . Packet 3 . dns_recursivequery_server o a X

> Frame 3: 92 bytes on wire (736 bits), 92 bytes captured (736 bits)
> Ethernet II, Src: Ciscolnc_31:87:33 (@0:26:8b:31:07:33), Dst: Vmware_92:94:9f (009:8c:29:92:94:9f)
> Internet Protocol Version 4, Src: 4.2.2.1, Dst: 172.16.8.182
» User Datagram Protocol, Src Port: 53 (53), Dst Port: 6257@ (6257@)
% Domain Name System (response)
E:QH:i: In: 2
[Time: ©.182223068 seconds]
Transaction ID: @éxf3ad
* Flags: ©x8188 Standard query response, No error
Questions: 1
Answer RRs: 1
Authority RRs: @
Additional RRs: @
¥ Queries
¥ www.nostarch.com: type A, class IN
Name: www.nostarch.com
[Name Length: 16]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (@x@eal)
¥ Answers
¥ www.nostarch.com: type A, class IN, addr 72.32.92.4
Name: www.nostarch.com
Type: A (Host Address) (1)
Class: IN (@x8081)
Time to live: 3600
Data length: 4
Address: 72.32.92.4

No.: 3 + Time: 0.182602 « Source: 4.2.2.1 + Destination; 172.16.0.102 « Protocol: DNS « Length: 82 + Infor Standrd guery response O34d A www.nostarch.com A 72.32.92

[ Gose ]| neo

Figure 9-17: Response to the recursive DNS query

Having received this response, the local DNS server can transmit the
fourth and final packet to the DNS client with the information requested.

Although this example shows only one layer of recursion, recursion can
occur many times for a single DNS request. Here, we received an answer
from the DNS server at 4.2.2.1, but that server could have retransmitted the
query recursively to another server in order to find the answer. A simple
query can travel all over the world before it finally gets a correct response.
Figure 9-18 illustrates the recursive DNS query process.
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Figure 9-18: A recursive DNS query

DNS Zone Transfers

dns_axfr.pcapng

A DNS zone is the namespace (or group of DNS names) that a DNS server
has been delegated to manage. For instance, Emma’s Diner might have one
DNS server responsible for emzmasdiner.com. In that case, devices both inside
and outside Emma’s Diner wishing to resolve emmasdiner.com to an IP
address would need to contact that DNS server as the authority for that
zone. If Emma’s Diner were to grow, it could add a second DNS server to
handle the email portion of its DNS namespace only, say
mail.emmasdiner.com, and that server would be the authority for that mail
subdomain. Additional DNS servers might be added for subdomains as
necessary, as shown in Figure 9-19.


http://emmasdiner.com
http://emmasdiner.com
http://mail.emmasdiner.com

emmasdiner.com

Il

— Eo web.emmasdiner.com
e Eo db.web.emmasdiner.com
. Er} cart.web.emmasdiner.com
- mail.emmasdiner.com

o

Figure 9-19: DNS zones divide responsibility for namespaces.

A zone transfer occurs when zone data is transferred between two
devices, typically out of desire for redundancy. For example, in organizations
with multiple DNS servers, administrators commonly configure a secondary
DNS server to maintain a copy of the primary server’s DNS zone
information in case the primary server becomes unavailable. There are two
types of zone transfers:

Full zone transfer (AXFR) 'These types of transfers send an entire
zone between devices.

Incremental zone transfer (IXFR) These types of transfers send only
a portion of the zone information.

The file dns_axfr.pcapng contains an example of a full zone transfer
between the hosts 172.16.16.164 and 172.16.16.139. When you first look at
this file, you may wonder whether you’ve opened the right one, because
rather than UDP packets, you see TCP packets. Although DNS relies on
UDP, it uses T'CP for certain tasks, such as zone transfers, because T'CP is
more reliable for the amount of data being transferred. The first three
packets in this capture file are the T'CP three-way handshake.

The fourth packet begins the zone transfer request between



172.16.16.164 and 172.16.16.139. This packet doesn’t contain any DNS
information. It’s marked as a “I'CP segment of a reassembled PDU” because
the data sent in the zone transfer request packet was sent in multiple packets.
Packets 4 and 6 contain the packet’s data. Packet 5 is the acknowledgment
that packet 4 was received. These packets are displayed in this manner
because of the way Wireshark parses and displays TCP packets for easier
readability. For our purposes, we can reference packet 6 as the complete
DNS zone transfer request, as shown in Figure 9-20.

M Wireshark . Packet 6 - dns_axfr = O x

Frame &: 87 bytes on wire (696 bits), 87 bytes captured (696 bits)
Ethernet II, Src: Vmware 7e:ec:ad (00:0c:29:7e:ec:ad), Dst: Vmware ce:d1:9e (00:8c:29:ce:d1:9e)
Internet Protocol Version 4, Src: 172.16.16.164, Dst: 172.16.16.139
Transmission Control Protocol, Src Port: 1188 (1188), Dst Port: 53 (53), Seq: 1570704528, Ack: 451899283, Len: 33
[2 Reassembled TCP Segments (35 bytes): #4(2), #6(33)]
v Domain Name System (query)
[Response In: 7]
Length: 33
Transaction ID: @x@ee7
Flags: @x@18@ Standard query @@
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
¥ Queriec
¥ contoso.local: type AXFR, class IN
Name: contoso.local
[Mame Length: 13]
[Label Count: 2]
Type: AXFR (transfer of an entire zone) (252)
e Class: IN (exeeal)

No.: & - Time: 0.218858 + Source: 172.18.186.184 + Destination: 172,18.18, 139 + Protocol; DINS - Lengeh: 87 - Info: Standard guery 80007 AXFR contoso.local

reo

Figure 9-20: DNS full zone transfer request

The zone transfer request is a standard query @, but instead of

requesting a single record type, it requests the AXFR type @, meaning that it
wishes to receive the entire DNS zone from the server. The server responds
with the zone records in packet 7, as shown in Figure 9-21. As you can see,
the zone transfer contains quite a bit of data, and this is one of the simpler
examples! With the zone transfer complete, the capture file ends with the
TCP connection teardown process.

The data contained in a zone transfer can be very dangerous in the wrong
hands. For example, by enumerating a single DNS server, you can map a




network’s entive infrastructure.

Ml Wireshark - Packet 7 - dns_adr

Frame 7: 1218 bytez on wire (9688 bits), 1218 bytes captured (0688 bits)
» Ethernet II, Src: Vmware_ce:dl:9e (8@:8c:29:ce:dl:3e), Dst: Vmware_Te:ec:ad (B0:8c:29:7eiec:ad)
» Internet Protocol Version 4, Src: 172.16.16.139, Dst: 172.16.16.164
Transmission Control Protocol, Src Pert: 53 (53), Dst Port: 1188 (1188), Seq: 451699283, Ack: 1578784561, Len: 1156
Domain Mame System (response)
[Request In: 6]
[Time: 6.821769898 seconds]
Length: 1154
Transaction ID: @x@ee7
Flags: OxB18@ Standard query response, No error
Questions: 1
Answer RRs: 21
Authority RRs: @
Additional RRs: @
~ Queries
v contoso.local: type AXFR, class IN
Name: contoso.local
[Mame Length: 13]
[Label Count: 2]
Type: AKFR (transfer of an entire zone) (252)
Class: IN (@x@001)
v Answers
contoso.local: type S04, class IN, mname dns3.contoso.local
contoso.local: type A, class IN, addr 172.16.16.139
contoso.local: type WS, clase IN, ns dns3.conteso.lecal
_msdes.contoso.local: type NS, class IN, ns csanders-Sceael.contose.local
_ge._tep.Default-First-Site-Name._sites.contose.local: type SRV, class IN, prierity @, weight 100, port 3268, target dns3.contoso.local
» _kerberos._tcp.Default-First-5ite-Mame._sites.centoso.local: type SRV, class IN, priority @, weight 188, port &8, target dns3.contoso.local
_ldap._tcp.Default-First-Site-Name._sites.comtoso.local: type SRV, class IN, priority @, weight 18@, port 38%, target dns3.comtoso.local
» _EC._tcp.contoso.local: type SRY, class IN, priority @, weight 188, port 3268, target dns3.contoso.local
_kerberos. _tecp.conteso.local: type SRV, class IN, priority @, weight 188, port B8, target dns3.contoso.lecal
» _kpasswd. tep.contose.lecal: type SRV, class IN, priority 8, welght 188, port 454, target dns3.contose.lecal
» _ldap._tcp.contosa.local: type SRV, class IN, priority &, weight 188, port 389, target dns3.centoso.local
_kerberos._udp.conteso,local: type SRV, cless IN, priority @, weight 188, port B8, terget dnsi.contoseo,local
_kpasswd._udp.contoso.local: type SRY, class IN, priority @, weight 180, port 464, target dns3.contoso.local
dns3.contoso. local: type A, class IN, addr 172.16.16.139

» _ldap._tep.DesalnDnsZones.contoso.local: type SRV, class

_ldap._tcp.ForestDnsZones.contoso.local: type SRV, class

DomainDnsZones.contoso.lecal: type A, class IN, addr 172.
_ldap._tcp.Default-First-Site-Name._sites.DomainDnzZones.

» ForestDnsZones.contoso.local: type A, class IN, addr 172.
_ldap._tcp.Default-First-Site-Name. sites.ForestDnsZones.

16.16.139

contoso. local: type SRV, class IN, priority @, weight 188, port 385, target dns3.contozo.local
IN, priority @, weight 188, port 389, target dns3.contose.local

16.16.139

contoso. local: type SRV, class IN, priority 8, weight 188, port 383, target dnsi.contoso.local
IN, priority @, weight 18@, port 389, target dns3.contoso.local

contoso. local: type 504, class IN, mname dns3.contoso.local

Mp: 7« Tme: Q280425+ Sowvos: I72.06.16.479 « Dasvrason: 1721616164 « Prowmcok DS * bengehe 1210 + Info: Standard query nesp._ V' 0 100 J89 chud.conmmofocal A 17016 16,179 SRV 0 100 389 chad conmso.local SRV 0 100 369 dhal.compse.focl S04 drel. compse

=10 =

Figure 9-21: The DNS full zone transfer occurring

Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol is the delivery mechanism of the World
Wide Web, allowing web browsers to connect to web servers to view web
pages. In most organizations, HTTP represents, by far, the highest
percentage of traffic seen going across the wire. Every time you do a Google
search, send a tweet, or check University of Kentucky basketball scores on
http://www.espn.com/, you'’re using HTTP.

We won’t look at the packet structures for an HT'TP transfer because
there are so many different implementations of the HI'TP protocol that the
structure may vary wildly. Because of this variance, that exercise is left to
you. Here, we’ll look at some practical applications of HI'TP such as
retrieving and posting content.


http://www.espn.com/

Browsing with HTTP

http_google.pcapng

HTTP is most commonly used to browse web pages on a web server using a
browser. The capture file http_google.pcapng shows such an HT'TP transfer,
using T'CP as the transport layer protocol. Communication begins with a
three-way handshake between the client 172.16.16.128 and the Google web
server 74.125.95.104.

Once communication is established, the first packet is marked as an
HTTP packet from the client to the server, as shown in Figure 9-22.

M Wireshark - Packet 4 - http_google - a x

Frame 4: 681 bytes on wire (5448 bits), 681 bytes captured (5448 bits)
Ethernet II, Src: IntelCor_Sb:7d:4a (@0@:21:6a:5b:7d:4a), Dst: D-Link_21:99:4c (©0:05:5d:21:99:4c)
Internet Protocol Version 4, Src: 172.16.16.128, Dst: 74.125.95.184
Transmission Control Preotocol, Src Port: 1686 (1606), Dst Port: 80 (80), Seq: 2082691768, Ack: 2775577374, Len: 627
~ Hypertext Transfer Protocol
v GET / HTTP/1.1\r\n
[Expert Info (Chat/Sequence): GET / HTTP/1.1\r\n]
Request Method: GET
@ Reguest URI: /
Request Version: HTTP/1.1
Host: www.google.com\ri\n
User-Agent: Mozilla/5.8 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=8.9,%/*;q=0.8\r\n
Accept-Language: en-us,en;g=8.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISD-8859-1,utf-8;q=8.7,%;q=0.7\r\n
Keep-Alive: 388\r\n
Connection: keep-alive\r\n
[truncated]Cookie: PREF=ID=257313a%38e6c248:U=267c896b5F39Tb@b:FF=4:LD=en:NR=18:TM=1268736654:LM=1265479336:GM=1:5..
\rin
[Full request URI: http://www.google.com/]
[HTTP request 1/1]
[Response in frame: 12]

MNo.: 4 - Time: 0.070248 - Source: 172.16.16.128 + Destination: 74.125.95. 104 * Protocol: HTTP - Length: 881 - Info: GET / HTTR/1.1

Figure 9-22: The initial HTTP GET request packet

The HT'TP packet is delivered over TCP to the server’s port 80 @, the
standard port for HI'TP communication (several other ports are often used
as well, such as 8080 and 8888).

HTTP packets are identified by one of eight request methods as defined
in HT'TP specification version 1.1 (see http://www.iana.org/assignments/http-
methods/bttp-methods.xbtml), which indicate the action the packet’s
transmitter will perform on the receiver. As shown in Figure 9-22, this
packet identifies its method as cet, its request Uniform Resource Indicator


http://www.iana.org/assignments/http-methods/http-methods.xhtml

(URI) as /, and the request version as HTTp/1.1 @. This information tells us
that the client is sending a request to download (ceT) the root web directory
(/) of the web server using version 1.1 of HTTP.

Next, the host sends information about itself to the web server. This
information includes things such as the browser (User-Agent) being used,
languages accepted by the browser (Accept-Languages), and cookie
information (at the bottom of the capture). The server can use this
information to determine which data to return to the client in order to
ensure compatibility.

When the server receives the HT'TP ceT request in packet 4, it responds
with a TCP ACK, acknowledging the packet, and begins transmitting the
requested data from packets 6 to 11. HI'TP is used only to issue application-
layer commands between the client and server. Why do all these HI'TP
packets show up as TCP under the protocol heading in the packet list?
When data transfer begins, the Wireshark packet list window will identify
those packets as TCP instead of HI'TP since no HT'TP request/response
headers are present in those individual packets. Thus, where data transfer is
occurring, you see TCP instead of HI'TP in the Protocol column.
Nonetheless, this is still part of the HI'TP communication process.

Data is sent from the server in packets 6 and 7, an acknowledgment
from the client in packet 8, two more data packets in packets 9 and 10, and
another acknowledgment in packet 11, as shown in Figure 9-23. All of these
packets are shown in Wireshark as TCP segments, rather than as HI'TP
packets, although H'TTP is still responsible for their transmission.

Mo, Time  Source Destination Protocol Length Info
6 @.. 74.125.95.184 172.16.16.128 TCP 146@ [TCP segment of a reassembled POU)
7 8... 74.125.95.104 172.16.16.128 TCP 1468 [TCP segment of a reassembled PDU]
8 8... 172.16.16.128 74.125.95.104 TCP 54 1606 -+ 868 [ACK] Seq=2882692395 Ack=2775580186 Win=16872 Len=@
9 @... 74.125.95.184 172.16.16.128 TCP 1468 [TCP segment of a reassembled PDU]
18 @... 74.125.95.104 172.16.16.128 TCP 156 [TCP segment of a reassembled PDU]
11 8... 172.16.16.128 74.125.95.184 TCP 54 1686 - B@ [.{ACK] Seq=2882692395 Ack=2775581694 Win=16872 Len=@

Figure 9-23: TCP transmitting data between the client browser and web server

Once the data is transferred, Wireshark reassembles the data stream for
viewing, as shown in Figure 9-24.



Ml Wireshark - Packet 12 - http_google = O X

Frame 12: 591 bytes on wire (4728 bits), 591 bytes captured (4728 bits)
Ethernet II, Src: D-Link_21:99:4c (90:05:5d:21:99:4c), Dst: IntelCor S5h:7d:4a (@@:21:6a:5b:7d:4a)
Internet Protocel Version 4, Src: 74.125.95.184, Dst: 172.16.16.128
Transmission Control Protocol, Src Port: 8@ (8@), Dst Port: 1686 (16@6), Seq: 2775581694, Ack: 2082692395, Len: 537
[5 Reassembled TCP Segments (4857 bytes): #6(1406), #7(1406), #9(1406), #10(102), #12(537)]
~ Hypertext Transfer Protocol
~ HTTP/1.1 288 OK\r\n
[Expert Info (Chat/Sequence): HTTP/1.1 268 OK\r\n]
Request Version: HTTP/1.1
@ status Code: 200
Response Phrase: 0K
Date: Tue, @9 Feb 2010 @1:18:37 GMT\r\n
Expires: -1\r\n
Cache-Control: private, max-age=@\r\n
Content-Type: text/html; charset=UTF-8\r\n
Content-Encoding: gzip\rin
Server: gws\r\n
Vv Content-Length: 4633\r\n
[Content length: 4633]
X-X55-Protection: @\r\n
\r\n
[HTTP response 1/1]
[Time since request: ©.184147000 seconds]
[Request in frame: 4]
Content-encoded entity body (gzip): 4633 bytes -> 11388 bytes
Line-based text data: text/html

No.: 12 - Time; 0.134395 - Source; 74,125.95.104 - Destination: 172.16,16.128 + Promool: HTTP - Length: 591 - Infor HTTEL. 1 200 OK (hexthend)

Close Help

Figure 9-24: Final HTTP packet with response code 200

In many instances, you won’t be able to see readable HINML data when
browsing through the packet list because that data is gzip compressed to
increase bandwidth efficiency. This is signified by the Content-Encoding field
in the HT'T'P response from the web server. It’s only when you view the full
stream that the data is decoded and easily readable.

HTTP uses a number of predefined response codes to indicate the
results of a request method. In this example, we see a packet with status code

200 @, which indicates a successful request method. The packet also includes
a timestamp and some additional information about the encoding of the
content and configuration parameters of the web server. When the client
receives this packet, the transaction is complete.

Posting Data with HTTP

bttp_post.pcapng



Now that we have looked at the process of downloading data from a web
server, let’s turn our attention to uploading data. The file http_post.pcapng
contains a very simple example of an upload: a user posting a comment to a
web-site. After the initial three-way handshake, the client (172.16.16.128)
sends an HTTP packet to the web server (69.163.176.56), as shown in
Figure 9-25.

M Wireshark - Packst 4 . hitp_post = m] *

Frame 4: 1175 bytes on wire (940@ bits), 1175 bytes captured (9400 bits) A
Ethernet II, Src: IntelCor_Sb:7d:4a (@@:21:6a:Sb:7d:4a), Dst: D-Link_21:99:4c (080:05:5d:21:99:4c)
Internet Protocol Version 4, Src: 172.16.16.128, Dst: 69.163.176.56
Transmission Control Protocol, Src Port: 1989 (1989), Dst Port: 80 (88), Seq: 28080874211, Ack: 3748859985, Len: 1121
~ Hypertext Transfer Protocol
~ POST /wp-comments-post.php HTTR/1.1\r\n
[Expert Info (Chat/Sequence): POST /wp-comments-post.php HTTR/1.1\r\n]
Request Method: POST @)
Request URI: /wp-comments-post.php @
Request Version: HTTR/1.1
Host: www.chrissanders.org\r\n
User-Agent: Mozilla/5.8 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.7) Gecko/20@91221 Firefox/3.5.7\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/*;q=8.8\r\n
Accept-Language: en-us,en;q=08.5\r\n
Accept-Encoding: gzip,deflate\ri\n
Accept-Charset: IS0-8859-1,utf-8;g=8.7,%;q=0.7\r\n
Keep-Alive: 3@8\r\n
Connection: keep-alive\r\n
Referer: http://www.chrissanders.org/?p=3108\rin
[truncated]Cookie: _ utma=84195659.500695863.1261144042.1265668706.1265682737.20; _ utmz=84195659.1264688282.12...
Content-Type: application/x-www-form-urlencoded\ri\n
Content-Length: 179\r\n
\r\n
[Full request URI: http://www.chrissanders.org/wp-comments-post.php]
[HTTP request 1/2]
[Response in frame: 6]
[Next request in frame: 7
¥ HTML Form URL Encoded: application/x-www-form-urlencoded @
¥ Form item: “author"™ = "Chris Sanders"
Key: author
Value: Chris Sanders
¥ Form item: “"email” = "chrisfchrissanders.org”
Key: email

Value: chris@ichrissanders.org

¥ Form item: “url™ = "http://www.chrissanders.org"
Key: url
Value: http://www.chrissanders.org

No.: 4 - Time: 0.081100 - Sowrce: 172.16.16.128 - Destination: 59, 163.176.55 - Protocol: HTTR - Length: 1175 + Infor POST fwp-comments-post.pfp HTTR/L. 1 (application/r-wiww-orm-uriencoded)

(o]

Figure 9-25: The HTTP POST packet

This packet uses the post method @ to upload data to a web server for
processing. The post method used here specifies the URI /wp-comments-post.php

0 and the HT'T'P version of HTTp/1.1. To see the contents of the data posted,
expand the HI'ML Form URL Encoded portion of the packet ©.
Once the data is transmitted in this post, an ACK packet is sent. As



shown in Figure 9-26, the server responds with packet 6, transmitting the

response code 302 @, which means “found.”

Ml Witeshark . Packet & . hitp_post

Frame 6: 964 bytes on wire (7712 bits), 964 bytes captured (7712 bits) A
Ethernet 1I, Src: D-Link_21:99:4c (B@:85:5d:21:99:4c), Dst: IntelCor Sh:7d:4a (88:21:6a:5b:7d:4a)
Internet Protocol Version 4, Src: €9.163.176.56, Dst: 172.16.16.128
Transmission Contrel Protecol, Src Port: 8@ (88), Dst Port: 1389 (1989), Seq: 3748859985, Ack: 2808675332, Len: 918
~ Mypertext Transfer Protocel
* HTTR/1.1 382 Found\r\n
[Expert Iafe (Chat/Sequence): HTTP/1.1 382 Feund\rin]
Request Version: HTTR/1.1
Status Code: 302 @)
Response Fhrase: Found
Date: Tue, 8% Feb 2818 82:38:26 GMT\rin
Server: Apache\r\n
X-Powered-By: PHP/4.4.9\r\n
Expires: Wed, 11 Jan 1584 85:80:88 GMT\r\n
Cache-Control: no-cache, must-revalidate, max-age=8'\rn
Pragma: mo-cache\rin
Set-Coockle: comment_author_8d7dcB@2852e983c178f35a2d747915b=Chris+Sanders; expires=Saturday, 22-Jan-11 @7:58:27 GMT; path=/\r\n
Set-Cookie: comment_suthor_email 8d7dcBO2B82e983c178f3522d747915b=chris¥dbchrissanders.org; expires=Saturday, 22-Jan-11 87:58:27 GMT; path=/\r\n
Set-Cookie: comment_suthor_url @ e5@3c17ef35a2d747915b=httpR3AK2IFA2Fwiw. chrissanders.org; expires=Saturday, 22-Jan-11 @7:58:27 GMT; path=/\rin
Last-Modified: Tue, 8% Feb 2818 :38:27 GM
9 Location: htt i.chrissanders.org/?p=3188cpage=1#comment - 183882\ r\n
vary: Accept-Enceding\rin

MTh

3

Content-Encoding: gzipirin
¥ Content-Lemgth: 2
[Content lemgt
Keep-Alive: timeout=2, max=188\r\n

Connection: Keep-Ali

r\n

Content-Type: text/htmlirin
Arin

[HTTF response 1/2]

[Time since request: 1.35672780@ seconds]

[ 18]
Content-encoded entity body (gzip): 28 bytes -»> @ bytes

Ma: & - T 1437837 - Sowroe: 59163, 17655 - Dasvingwion: 172 15.15.125 « Prossesi HTTD - Langeh: 964 - Infex HTTE. I 207 Found (rasghom\Mabommed Dacker]

Figure 9-26: HTTP response 302 is used to redirect.

The 302 response code is a common means of redirection in the HT TP
world. The Location field in this packet specifies where the client is to be

directed @. In this case, that location is on the originating web page where
the comment was posted. The client performs a new GeT request to retrieve
content at the new location, which it sends over the next several packets.
Finally, the server transmits status code 200, and the communication ends.

Simple Mail Transfer Protocol (SMTP)

If web browsing is the most common activity a user will participate in,
sending and receiving email is probably in second place. The Simple Muail
Transfer Protocol (SMTP), used by platforms such as Microsoft Exchange and
Postfix, is the standard for sending email.

As with HTTP, the structure of an SM'TP packet can vary based on the
implementation and the set of features supported by the client and server. In



this section, we’ll review some of the basic functionality of SMTP by
examining what sending email looks like at the packet level.

Sending and Receiving Email

The architecture supporting email is similar to the US Postal Service. When
you write a letter, you put it in your mailbox, a postal worker picks it up, and
it’s transported to a post office where it’s sorted. From there, the letter is
either delivered to another mailbox serviced by that same post office or
transported to another post office that is responsible for delivering it. A
letter may traverse multiple post offices or even “hub” offices designed
exclusively to distribute to post offices in specific geographic regions. This
flow of information is illustrated in Figure 9-27.

Local Area Delivery

ﬁ
Sender’s Home Local Post Office Recipient's
Home
Regional Delivery
o)
Sender’s Home Local Post Office Remote Post Office Recipient's
Home
Long-Distance Delivery
ﬁ
Sender’s Home  Local Post Office Regional Remote Post Office Recipient’s
Mail Hub Home

Figure 9-27: Sending a letter via the postal service

Delivering email works in a very similar manner, but the terminology is



a bit different. At the individual user level, the physical mailbox is replaced
by a digital mailbox that is responsible for storing and facilitating the
sending and receiving of your email. You access this mailbox with a mail user
agent (MUA), which is an email client like Microsoft Outlook or Mozilla
Thunderbird.

When you send a message, it’s sent from your MUA to a mail transfer
agent (MTA). The MTA is often referred to as the mail server, with popular
mail server applications being Microsoft Exchange or Postfix. If the email
being sent is destined for the same domain it came from, the MTA can
associate it with the recipient mailbox without any further communication. If
the email is being sent to another domain, the MTA must use DNS to find
the location address of the recipient mail server, then transmit the message
to it. It’s worth noting that the mail server is often made up of other
components like a Mail Delivery Agent (MDA) or a Mail Submission Agent
(MSA), but from the network standpoint, we’ll usually only be interested in

the concept of a client and a server. This basic overview is illustrated in
Figure 9-28.

Local Network Delivery
user ] @domain-abc.com to user2 @domain-abc.com

T SMTP > IMAP/POPB—--
[FEESX

Mail User Agent (MUA) Mail Transfer Agent [MTA) Mail User Agent (MUA)
[Mail Client: Sender] [Mail Server: domain-abc.com| [Mail Client: Recipient]

Outside Network Delivery
user 1 @domain-abc.com to user2@domain-xyz.com

SMTP— SMTP - |MAP/POP3—I-
[FEETS = /BTN

Mail User Agent (MUA}  Mail Transfer Agent (MTA) Mail Transfer Agent (MTA)  Mail User Agent (MUA)
[Mail Client: Sender]  [Mail Server: domain-abc.com] [Mail Server: domain-xyz.com]  [Mail Client: Recipient]

Figure 9-28: Sending an email via SMTP

For simplicity’s sake, we’ll refer to the MUA as the email client and the
MTA as the email server.

Tracking an Email Message



With a basic understanding of how email messages are transmitted, we can
begin to look at packets that represent this process. Let’s start with the
scenario outlined in Figure 9-29.

SKYNET Network CYBERDYNE Network
SMTP—m SMTP—I-» IMAP ——

/PSR [/FEESRS
Windows Sending User Postfix Mail Server Postfix Mail Server Windows Recipient User
Mail Client skynet.local cyberdyne.local Mail Client
172.16.16.225 172.16.16.221 172.16.16.231 172.16.16.235

Figure 9-29: Tracking an email from sender to recipient

There are three steps in this scenario:

1. A user sends a message from their workstation (172.16.16.225). The

email client transmits the message via SM'TP to the local email server
(172.16.16.221 / skynet.local domain).

2. The local email server receives the message and transmits it to a remote
email server (172.16.16.231 / cyberdyne.local domain) via SM'T'P.

3. The remote email server receives the message and associates it with the
appropriate mailbox. The email client on a user’s workstation
(172.16.16.235) retrieves this message using the IMAP protocol.

Step 1: Client to Local Server

mail_sender_client_1.pcapng

We’ll begin stepping through this process by reviewing step 1, which is
represented by mail_sender_client_1.pcapng. The file begins when the user
clicks the Send button in their email client, initiating the TCP handshake
between their workstation and the local email server in packets 1 through 3.

You can ignore any ETHERNET FRAME CHECK SEQUENCE INCORRECT errors observed
while analyzing the packet captures in this section. They are an artifact of the
lab environment in which these were created.




Once a connection is established, SM'TP takes over and begins the work
of transmitting the user’s message to the server. You could examine each
SMTP request and response individually by scrolling through each packet
and viewing the SM'TP section of the Packet Details window, but there is an
easier way. Since SM'TP is a simple transactional protocol and our example
is in clear text, you can follow the TCP stream to view the entire transaction
in one window. Do this by right-clicking any packet in the capture and
selecting Follow p TCP Stream. The resulting stream is shown in Figure
9-30.

With a connection established, the email server sends a service banner
to the client in packet 4 to indicate that it is ready to receive a command. In
this case, it identifies itself as a Postfix server running on the Ubuntu Linux

operating system @. It also identifies that it is capable of receiving Extended
SMTP (ESMTP) commands. ESMTP is an extension to the SMTP
specification that allows for additional commands to be used during mail
transmission.

The email client responds by issuing the evLo command in packet 5 @.
eHLo is the “Hello” command used to identify the sending host when ESM'TP
is supported. If ESMTP is not available, the client will revert to the HeLo
command to identify itself. In this example, the sender is identified by its IP
address, although a DNS name can be used as well.

In packet 7, the server responds with a list of items that include things

like vrry, starTTLS, and size 10240000 . This list, which reflects commands
supported by the SMTP server, is provided so that the client knows what
commands it is allowed to use when transmitting the message. This feature
negotiation occurs at the beginning of every SMTP transaction before a
message is sent. The transmission of the message begins at packet 8 and
makes up most of the remainder of this capture.



M Wireshark . Follow TCP Stream (tcp.stream eq 0) - mail_sender_client_1 - O X

228 mailel ESMTP Postfix (Ubuntu) @B

EHLO [172.16.16.225] @&

256-mailél

258-PIPELINING

25@-5IZE le24600@

® 25e-vRFY

25@-ETRN

25@-STARTTLS

25@-ENHANCEDSTATUSCODES

25@-8BITMIME

258 DSN

MAIL FROM:<sandersfiskynet.local> SIZE=556 &)
258 2.1.8 Ok

RCPT TO:<sanders@cyberdyne.local> @

258 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

To: Chris Sanders <sanders@cyberdyne.local»
From: Chris Sanders <sandersfiskynet.local>
Subject: Help!

Message-ID: <5682DB88.4618687@skynet.local>
Date: Tue, 29 Dec 26815 14:14:88 -850
User-Agent: Mozilla/5.@ (Windows NT 16.8; WOW64; rv:38.8) Gecko/20188101
Thunderbird/38.5.9 g

MIME-Version: 1.@

Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 7bit

I need your help. The system has become self aware. On second thought,
why am I sending this from a system that can most certainly intercept
it? Oh well....

258 2.8.8 Ok: queued as 931C4488D5
QuUIT
221 2.8.0 Bye ©®

7 cliant plefgl 7 server plgEl 12 turns,

Entire conversation (951 bytes) M Show dataas |ASCH v | Stream |0 [3-
Find: | | [ Find ext |
Hide this stream | Print Save as... | Close | Help

Figure 9-30: Viewing the TCP stream from the email client to the local server

SM'TP is governed by simple commands and parameter values sent from
the client, followed by a response code from the server. This is very similar
to protocols like HT'T'P and TELNET and is designed for simplicity. An
example request and reply can be seen in packets 8 and 9, where the client
issues the maiL command with the parameter FrRoM:<sanders@skynet.local> SIZE=556



0, and the server responds with response code 250 (Requested mail action
okay, completed) and the 2.1.6 ok parameter. Here, the client identifies the
sender’s email address and the size of the message, and the server responds
saying that this data was received and is acceptable. A similar transaction
happens again in packets 10 and 11, where the client issues the rcpT

command with the parameter T0:<sanders@cyberdyne.local> @, and the server
responds with another 250 2.1.5 ok code.

If you’d like to review all the available SM'TP commands and parameters, you
can do so here: http://www.iana.org/assignments/mail-parameters/mail-
parameters.xhtml. If you’d like to review the available response codes, that
can be done here: https://www.iana.org/assignments/smtp-enhanced-
status-codes/smtp-enhanced-status-codes.xml.

All that is left is to transmit the message itself. The client initiates this
process in packet 12 by issuing the pata command. The server responds with

code 354 along with a message @, which indicates that the server has created
a buffer for the message and tells the client to begin transmitting. The line
containing the code 354 tells the client to send a dot (<cR><LF>.<CR><LF>) tO
mark the end of the transmission. The message is transmitted in plaintext,
and a response code indicating successful transmission is sent. You’ll notice
the inclusion of some additional information with the message text,
including the date, the content type and encoding, and the user agent
associated with the transmission. This tells you that the end user who sent

this message was using Mozilla Thunderbird @.

With transmission complete, the SMTP connection is terminated by the
email client by issuing the quit command with no parameters in packet 18.
The server responds in packet 19 with the response code 221 (<domain> ser-

vice closing transmission channel) and the 2.6.0 Bye parameter ®. The TCP
connection is torn down gracefully in packets 20-23.

Step 2: Local Server to Remote Server

mail_sender_server_2.pcapng


http://www.iana.org/assignments/mail-parameters/mail-parameters.xhtml
https://www.iana.org/assignments/smtp-enhanced-status-codes/smtp-enhanced-status-codes.xml

Next we’ll examine the same scenario from the perspective of the local email
server responsible for the skynet.local domain; its address is 172.16.16.221.
This capture can be found in the file mail_sender_server_2.pcapng, which was
taken directly from the email server. As you might expect, the first 20 or so
packets mirror the capture in step 1, because they are the same packets
captured from another source.

If the sent message was destined for another mailbox in the skynet.local
domain, we wouldn’t see any more SM'TP traffic; instead, we would see the
retrieval of the message from an email client with the POP3 or IMAP
protocol. However, since this message is destined for the cyberdyne.local
domain, the local SM'TP server must transmit the message to the remote
SMTP server responsible for that domain. This process begins in packet 22
with a 'TCP handshake between the local server 172.16.16.221 and the
remote mail server 172.16.16.231.

In a real-world scenario, an email server locates another server by using a
special DNS record type known as a mail exchange (MX) record. Since this
scenario was created in a lab and the IP address of the remote email server was
preconfigured on the local server, we won’t see that traffic bere. If you'’re
troubleshooting email delivery, you should consider the potential for DNS
issues along with email-specific protocol issues.

With a connection established, we can see in the Packet List window
that SM'TP is used to deliver the message to the remote server. You can
better view this conversation by following the TCP stream for the
transaction. It is shown in Figure 9-31. If you need help isolating this
connection, apply the filter tcp.stream == 1 in the filter bar.



‘ Wireshark - Follow TCP Stream (tcp.stream eq 1) - mail_sender_server 2 - O *

220 maile2 ESMTP Postfix (Ubuntu) @
EHLO mailel @
258-maila2
25@-PIPELINING
250-5IZE 10246000
925@ -VRFY
| 258-ETRN
258-5TARTTLS
258-ENHANCEDSTATUSCODES
258-8BITMIME
258 D5N
MAIL FROM:<sandersfiskynet.local> SIZE=732
RCPT TO:<sanders@cyberdyne.local> ORCPT=rfc822;sanders@cyberdyne.local
DATA
258 2.1.0 Ok
250 2.1.5 Ok
354 End data with <CR><LF>.<CR><LF>
Received: from [172.16.16.225] (unknown [172.16.16.225])
by mail@l (Postfix) with ESMTP id 931C4488D5
for <sanders@cyberdyne.local>; Tue, 29 Dec 2815 14:13:51 -858@ (EST)
To: Chris Sanders <sanders@cyberdyne.local>
From: Chris Sanders <sanders@skynet.local:
Subject: Help!
Message-ID: <56B2DBES.481e687@skynet.local>
Date: Tue, 29 Dec 2815 14:14:88 -0500
User-Agent: Mozilla/5.8 (Windows NT 18.0; WOWE4; rv:38.@) Gecko/20168161
Thunderbird/38.5.8
MIME-Version: 1.8
Content-Type: text/plain; charset=utf-B; format=flowed
Content-Transfer-Encoding: 7bit

I need your help. The system has become self aware. On second thought, o
why am I sending this from a system that can most certainly intercept

it? Oh well....

QUIT

258 2.9.0 Ok: queued as 994C8617DF

221 2.8.8 Bye

3 chent pkifs) 4 server phtsl & turms.
Entire conversation (1155 bytes) - Showdatass ASCH  +| Steam |1 %
Fnd:[ | IIEII!!!II

Hide this stream l Print | Saveas.. : Close | | Help

Figure 9-31: Viewing the TCP stream from the local email server to the remote email server

This transaction is nearly identical to the one in Figure 9-30.
Essentially, the message is just being transmitted between servers. The

remote server identifies itself as maile2 @, the local server identifies itself as

mailer @, a list of support commands is shared ©, and the message is



transferred in its entirety with a bit of additional data from the previous

transaction prepended to the message above the To line @. This all occurs
between packets 27 and 35, with a TCP teardown closing the
communication channel.

The server ultimately doesn’t care whether the message is coming from
an email client or another SMTP server, so all the same rules and
procedures apply (barring any type of access control restrictions). In the real
world, a local email server and a remote email server might not support the
same feature set or might be based on entirely different platforms. This is
why the initial SM'TP communication is so important; it allows the recipient
server to transmit its supported feature set to the sender. When an SM'TP
client or server is aware of the supported features of the recipient server, the
SMTP commands can be adjusted so that the message can be transmitted
effectively. This capability allows SM'TP to be widely usable between any
number of client and server technologies, and this is why you don’t have to
know much about the network infrastructure of the recipient when sending
an email.

Step 3: Remote Server to Remote Client

mail_receiver_server_3.pcapng

At this point, our message has reached the remote server responsible for
delivering emails to mailboxes in the cyberdyne.local domain. We’ll now look
at a packet capture taken from the perspective of the remote server, mail_
receiver_server_3.pcapng, shown in Figure 9-32.



‘ Wireshark - Follow TCP Stream (tcp.streamn eq 0) - mail_receiver_server_3 — O *

220 maile2 ESMTP Postfix (Ubuntu) @ Lnd
EHLO mailel @
256-maile2
258-PIPELINING
258-5IZE 16248666
258-VRFY
258-ETRN
25@8-5STARTTLS
258-ENHANCEDSTATUSCODES
258-8BITMIME
258 DSN
MAIL FROM:<sandersfiskynet.local> SIZE=732
RCPT TO:<sanders@icyberdyne.local> ORCPT=rfcB22;sanders@cyberdyne.local
DATA
256 2.1.0 Ok
256 2.1.5 Ok
354 End data with <CR»><LF>.<CR><LF>
Received: from [172.16.16.225] (unknown [172.16.16.225])
by mailel (Postfix) with ESMTP id 931C448e0D5
for <sandersficyberdyne.local>; Tue, 29 Dec 2015 14:13:51 -@508
(EST)
To: Chris Sanders <sanders@cyberdyne.local>
From: Chris Sanders <sandersfiskynet.local>
Subject: Help!
Message-ID: <5682DB30.40186087@skynet. local>
Date: Tue, 29 Dec 2015 14:14:88 -0500
User-Agent: Mozilla/5.@ (Windows NT 18.8; WOWG4; rv:38.0) Gecko/201ee101
Thunderbird/38.5.8
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 7bit

I need your help. The system has become self aware. On second thought,

why am I sending this from a system that can most certainly intercept
it? Oh well....

l;}UIT

250 2.0.8 Ok: gqueued as 994CB617DF

1221 2.8.@ Bye v
F chane piti(s). 4 servar phxl & tuens,

Entire conversation (1155 bytes) - Show data as | ASCII - Stream |0 =
Find: | || Findnext |

ide this stream| | Print ||5auea5... | Close | Help

Figure 9-32: Viewing the TCP stream from the local email server to the remote email server

Once again, the first 15 packets in this capture look very familiar, as they
are a representation of the same message being exchanged, with the source

address representing the local email server @ and the destination address

representing the remote email server @. Once this sequence is completed,



the SM'TP server can associate the message with the appropriate mailbox so
that the intended recipient can retrieve it via their email client.

As mentioned earlier, SM'T'P is primarily used for sending email and is
by far the most common protocol for that purpose. Retrieving email from a
mailbox on a server is a bit more open-ended, and because of different needs
arising in that space, there are several protocols that are designed to support
this task. The most prevalent are Post Office Protocol version 3 (POP3) and
Internet Message Access Protocol (IMAP). In our example, the remote client
retrieves messages from the email server using IMAP in packets 16-34.

We don’t cover IMAP in this book, but in this example, it wouldn’t do
you a ton of good even if we did because the communication is encrypted. If
you look at packet 21, you’ll see the client (172.16.16.235) send the sTarTTLS

command to the email server (172.16.16.231) in packet 21 @, shown in
Figure 9-33.

| tep stream 2q 1 E = | Expression...  +

Mo, Time Source Destination Protocol  Length Info ~

16 11.748156 172.16.16.235 172.15.16.231 TCP 66 51147 + 143 [SYN] Seq=8 Win=B192 Len=8 M55=146@ W5=256 SACK_PERM=1 B

17 11.748191 172.16.16.231 172.16.16.235 TCP 66 143 + 51147 [SYN, ACK] Seq=8 Ack=1 Win=2920@ Len=@ MS5=146@ SACK_PERM=1 WS=128

1B 11.748353 172.16.16.235 172.16.16.231 TCP 68 51147 + 143 [ACK] Seq=1 Ack=1l Win=65536 Len=@

19 11.755638 172.16.16.231 172.16.16.235 IMAaP 178 Response: * OK [CAPABILITY IMAP4revl LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE-

28 11.819478 172.16.16.235 172.16.16.231 TCR 6@ 51147 =+ 143 [ACK] Seq=1 Ack=125 Win=65535 Len=0

21 11.871657 172.16.16.235 172.16.16.231 IMAP 66 Request: 1 ST.l.R“'_SO

22 11.871722 172.16.16.231 172.16.16.235 TCP 54 143 » 51147 [ACK] Seq=125 Ack=13 Win=29312 Len=0

23 11.871984 172.16.16.231 172.16.16.235 IMAP 87 Response: 1 0K Begin TLS negotiation now.

24 11.8%9094 172.16.16.235 172.15.16.231 TLSvl.2 219 Client Hello

25 11.892786 172.16.16.231 172.16.16.235 TLSw1.2 1447 Server Hello, Certificate, Server Key Exchange, Server Hello Done

26 11.918176 172.16.16.235 172.16.16.231 TLSv1.2 212 Client Key Exchange, Change Cipher Spec, Hello Request, Hello Rt_-q.u_'ste

27 11.911283 172.16.16.231 172.16.16.235 TLSwW1.2 296 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message

28 11.937139 172.16.16.235 172.16.16.231 TLSw1.2 97 Application :lar:a9
29 11.937295 172.16.16.231 172.16.16.235 TLSv1.2 238 Application Data

Figure 9-33: The STARTTLS command indicates that the IMAP traffic will be encrypted.

This command informs the server that the client would like to retrieve
messages securely using TLS encryption. A secure channel is negotiated

between each endpoint in packets 24-27 @, and the message is retrieved
securely via the TLS (Transport Layer Security) protocol in the remaining

packets ©. If you click any of these packets to view the data or attempt to
follow the TCP stream (Figure 9-34), you’ll find that the contents are
unreadable, protecting the email from being intercepted by someone who
might be attempting to hijack or sniff traffic maliciously.

With those final packets received, the process of sending a message from
a user in one domain to a user in another domain is completed.



‘ Wireshark . Follow TCP Stream (tcp.stream eq 1) - mail_receiver_server_3 - O x

* OK [CAPABILITY IMAP4revl LITERAL+ SASL-IR LOGIN-REFERRALS ID EMABLE IDLE STARTTLS LOGINDISABELED] Dovecot (Ubuntu) ~
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Figure 9-34: The IMAP traffic is encrypted as the client downloads the message.

Sending Attachments via SMTP

mail_sender _attachment.pcapng

SMTP was never intended to be a mechanism for transmitting files, but the
ease of emailing a file means that it has become the primary sharing
mechanism for many. Let’s walk through a quick example of what sending a

file looks like at the packet level using SM'T'P.



In the packet capture mail_sender_attachment.pcapng, a user is sending an
email message from their client (172.16.16.225) to another user on the same
network via a local SMTP mail server (172.16.16.221). The message

contains a bit of text and includes an image file attachment.

Sending an attachment via SM'TP is not too different from sending text.
It’s all just data to the server, and although some special encoding usually
takes place, we still rely on the patA command to get things where they’re
going. To see this in action, open the capture file and follow the TCP
stream for the given SM'TP transaction. This stream is pictured in Figure 9-
35.
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Whatever you do, don’t get this encoding confused with a security
feature. Base 64 encoding is almost instantly reversible, and any attacker who
intercepts this communication would be able to retrieve the image file
without much effort. If you are interested in carving this image file out of
the packet capture yourself, there is a similar scenario in which we carve an
image from an HTTP-based file transfer in the Remote-Access Trojan
section of Chapter 12. Once you've read that, flip back to this capture file
and see if you can find out who the user’s mysterious new coworker is.

Final Thoughts

This chapter has introduced the most common protocols you will encounter
when examining traffic at the application layer. In the following chapters,
we’ll examine new protocols and additional features of the protocols we’ve
covered here as we explore a wide range of real-world scenarios.

To learn more about individual protocols, read their associated RFCs or
have a look at The TCP/IP Guide by Charles M. Kozierok (No Starch Press,
2005). Also, see the list of resources in Appendix A.



10
BASIC REAL-WORLD SCENARIOS

Beginning with this chapter, we’ll dig into the meat of
packet analysis as we use Wireshark to analyze real-
world network problems. T’ll introduce a series of
problem scenarios by describing the context of the
problem and providing the information that was
available to the analyst at the time. Having laid the

gr OllIldWOI'k, we’ll turn to analysis as I describe the method used to
capture the appropriate packets and step you through the process of working
toward a diagnosis. Once analysis is complete, I'll point toward potential
solutions and give an overview of the lessons learned.

Throughout, remember that analysis is a very dynamic process. Thus,
the methods I use to analyze each scenario may not be the same ones that
you would use. Everyone approaches problem solving and reasoning through
their own lens. The most important thing is that the result of the analysis
solves a problem, but even when it doesn’t, it’s critical to learn from failures
as well. Experience is the thing we get when we don’t get what we want,
after all.

In addition, most problems discussed in this chapter can probably be



solved with methods that don’t necessarily involve a packet sniffer, but
what’s the fun in that? When I was first learning how to analyze packets, I
found it helpful to examine typical problems in atypical ways by using packet
analysis techniques, which is why I present these scenarios to you.

Missing Web Content

http_espn_fail.pcapng

In the first scenario we’ll look at, our user is Packet Pete, a college basketball
fan who doesn’t keep late hours and usually misses the West Coast games.
The first thing he does when he sits down at his workstation every morning
is visit http://www.espn.com/ for the previous night’s final scores. When Pete
browses to ESPN this morning, he finds that the page is taking a long time
to load, and when it finally does, most of the images and content are missing
(Figure 10-1). Let’s help Pete diagnose this issue.

&= ESPN: The Worldwide Lea

- C f [ espn.go.com iy =
B
%]

ESPN

Submit

- & &

Scores

i

o NCAAM
o NASCAR
o Golf

Figure 10-1: ESPN is failing to load properly.



http://www.espn.com/

Tapping into the Wire

This issue is isolated to Pete’s workstation and is not affecting any others, so
we’ll start by capturing packets directly from there. To do this, we’ll install
Wireshark and capture packets while browsing to the ESPN website. Those
packets are found in the file http_espn_fail pcapng.

Analysis

We know Pete’s issue is that he’s unable to view a website he is browsing to,
so we're primarily going to be looking at the HT'TP protocol. If you read
the previous chapter, you should have a basic understanding of what HT'TP
traffic between a client and server looks like. A good place to start looking is
at the HT'TP requests being made to the remote server. You can do this by
applying a filter for ceT requests (using http.request.method == "GET"),
but this can also be done by simply selecting Statistics » HTTP p
Requests from the main drop-down menu (Figure 10-2).

@ Wireshark - Requests - http_espn_fail

Topic / Item
¥ HTTP Requests by HTTP Host
¥ wWww.espn.com
/
¥ espn.go.com
/
¥ cdn.optimizely.com
/js/310987714.js
¥ assets.espn.go.com
/ifcolumnists/kapadia_sheil_m.jpg
¥ ad.espncdn.com
/combiner/i?img=%2Fphoto%2F2014%2F0806 %2Fnfl_g_colts5_cr_1296x729.jpg&w=556¢
¥ aZ.espncdn.com
/combiner/i?img=%2Fmedia%2Fmotion%2F2016%2F0108%2Fdm_160108_Trainer_shoulc
¥ al.espncdn.com
fcombiner/i?img=%2Fphoto%2F2016%2F0108%2Fsubzero_5x2.png&w=1296&h=518&sc:

Display filter: Enter a display filter ... " Apply

Copy Saveas... Close

Figure 10-2: Viewing HTTP requests to ESPN



From this overview, it appears the capture is limited to seven different
HTTP requests, and they all look like they are associated with the ESPN
website. Each request contains the string espn within the domain name, with
the exception of cdn.optimizely.com, which is a content delivery n