
6
CARRIAGE RETURN LINE FEED INJECTION

Some vulnerabilities allow users to input encoded characters that have
special meanings in HTML and HTTP responses. Normally,
applications sanitize these characters when they are included in user
input to prevent attackers from maliciously manipulating HTTP
messages, but in some cases, applications either forget to sanitize input
or fail to do so properly. When this happens, servers, proxies, and
browsers may interpret the special characters as code and alter the
original HTTP message, allowing attackers to manipulate an
application’s behavior.

Two examples of encoded characters are �����' and �����$, which represent
�?�Q (a carriage return) and �?�U (a line feed). These encoded characters are
commonly referred to as carriage return line feeds (CRLFs). Servers and
browsers rely on CRLF characters to identify sections of HTTP
messages, such as headers.

A carriage return line feed injection (CRLF injection) vulnerability occurs
when an application doesn’t sanitize user input or does so improperly. If
attackers can inject CRLF characters into HTTP messages, they can
achieve the two types of attacks we’ll discuss in this chapter: HTTP
request smuggling and HTTP response splitting attacks. Additionally,
you can usually chain a CRLF injection with another vulnerability to
demonstrate a greater impact in a bug report, as I’ll demonstrate later
in the chapter. For the purpose of this book, we’ll only provide

examples of how to exploit a CRLF injection to achieve HTTP request
smuggling.

HTTP Request Smuggling

HTTP request smuggling occurs when an attacker exploits a CRLF
injection vulnerability to append a second HTTP request to the initial,
legitimate request. Because the application does not anticipate the
injected CRLF, it initially treats the two requests as a single request.
The request is passed through the receiving server (typically a proxy or
firewall), processed, and then sent on to another server, such as an
application server that performs the actions on behalf of the site. This
type of vulnerability can result in cache poisoning, firewall evasion,
request hijacking, or HTTP response splitting.

In cache poisoning, an attacker can change entries in an application’s
cache and serve malicious pages instead of a proper page. Firewall
evasion occurs when a request is crafted using CRLFs to avoid security
checks. In a request-hijacking situation, an attacker can steal �K�W�W�S�R�Q�O�\

cookies and HTTP authentication information with no interaction
between the attacker and client. These attacks work because servers
interpret CRLF characters as indicators of where HTTP headers start,
so if they see another header, they interpret it as the start of a new
HTTP request.

HTTP response splitting, which we’ll focus on in the rest of this
chapter, allows an attacker to split a single HTTP response by injecting
new headers that browsers interpret. An attacker can exploit a split
HTTP response using one of two methods depending on the nature of
the vulnerability. Using the first method, an attacker uses CRLF
characters to complete the initial server response and insert additional
headers to generate a new HTTP response. However, sometimes an
attacker can only modify a response and not inject a completely new
HTTP response. For example, they can only inject a limited number of
characters. This leads to the second method of exploiting response
splitting, inserting new HTTP response headers, such as a �/�R�F�D�W�L�R�Q

header. Injecting a �/�R�F�D�W�L�R�Q header would allow an attacker to chain the

CRLF vulnerability with a redirect, sending a target to a malicious
website, or cross-site scripting (XSS), an attack we’ll cover in Chapter 7.

v.shopify.com Response Splitting

Difficulty: Medium

URL: v.shopify.com/last_shop?<YOURSITE>.myshopify.com

Source: https://hackerone.com/reports/106427/

Date reported: December 22, 2015

Bounty paid: $500

In December 2015, HackerOne user krankopwnz reported that Shopify
wasn’t validating the shop parameter passed into the URL
v.shopify.com/last_shop?<YOURSITE>.myshopify.com. Shopify sent a �*�(�7

request to this URL in order to set a cookie that recorded the last store
a user had logged in to. As a result, an attacker could include the CRLF
characters �����G�����D (capitalization doesn’t matter to encoding) in the URL
as part of the �O�D�V�W�B�V�K�R�S parameter. When these characters were
submitted, Shopify would use the full �O�D�V�W�B�V�K�R�S parameter to generate
new headers in the HTTP response. Here is the malicious code
krankopwnz injected as part of a shop name to test whether this exploit
would work:

�����G�����D�&�R�Q�W�H�Q�W���/�H�Q�J�W�K���������������G�����D�����G�����D�+�7�7�3���������������������������2�.�����G�����D�&�R�Q�W�H�Q�W��
�7�\�S�H��������
�W�H�[�W���K�W�P�O�����G�����D�&�R�Q�W�H�Q�W���/�H�Q�J�W�K�����������������G�����D�����G�����D���K�W�P�O�!�G�H�I�D�F�H�����K�W�P�O�!

Because Shopify used the unsanitized �O�D�V�W�B�V�K�R�S parameter to set a
cookie in the HTTP response, the response included content that the
browser interpreted as two responses. The ������ characters represent
encoded spaces, which are decoded when the response is received.

The response received by the browser was decoded to:

�º ���&�R�Q�W�H�Q�W���/�H�Q�J�W�K������
�{�{�{�+�7�7�3�������������������2�.
�{�{�{�&�R�Q�W�H�Q�W���7�\�S�H�����W�H�[�W���K�W�P�O

https://hackerone.com/reports/106427/

�{�{�{�&�R�Q�W�H�Q�W���/�H�Q�J�W�K��������
�»�����K�W�P�O�!�G�H�I�D�F�H�����K�W�P�O�!

The first part of the response would appear after the original HTTP

headers. The content length of the original response is declared as �� �º ,
which tells the browser no content is in the response body. Next, a
CRLF starts a new line and new headers. The text sets up the new
header information to tell the browser there is a second response that is
HTML and that its length is ����. Then the header information gives the

browser HTML to render at �». When a malicious attacker uses the
injected HTTP header, a variety of vulnerabilities are possible; these
include XSS, which we will cover in Chapter 7.

Takeaways

Be on the lookout for opportunities where a site accepts input that it
uses as part of its return headers, particularly when it’s setting cookies.
If you see this behavior on a site, try submitting �����' �����$ (or just �����$������ in
Internet Explorer) to check whether the site is properly protecting
against CRLF injections. If it isn’t, test to see whether you’re able to
add new headers or an entire additional HTTP response. This
vulnerability is best exploited when it occurs with little user
interaction, such as in a �*�(�7 request.

Twitter HTTP Response Splitting

Difficulty: High

URL: https://twitter.com/i/safety/report_story/

Source: https://hackerone.com/reports/52042/

Date reported: March 15, 2015

Bounty paid: $3,500

When you’re looking for vulnerabilities, remember to think outside the
box and submit encoded values to see how a site handles the input. In
some cases, sites will protect against CRLF injection by using a

https://hackerone.com/reports/52042/

blacklist. In other words, the site will check for any blacklisted
characters in inputs, then respond accordingly by removing those
characters or not allowing the HTTP request to be made. However, an
attacker can sometimes circumvent a blacklist by using character
encoding.

In March 2015, FileDescriptor manipulated how Twitter handled
character encoding to find a vulnerability that allowed him to set a
cookie through an HTTP request.

The HTTP request that FileDescriptor tested included a
�U�H�S�R�U�W�H�G�B�W�Z�H�H�W�B�L�G parameter when sent to
https://twitter.com/i/safety/report_story/ (a Twitter relic that allowed users
to report inappropriate ads). When responding, Twitter would also
return a cookie that included the parameter submitted with the HTTP
request. During his tests, FileDescriptor noted that the CR and LF
characters were blacklisted and sanitized. Twitter would replace any
LFs with a space and send back an HTTP 400 (Bad Request Error)
when it received any CRs, thus protecting against CRLF injections. But
FileDescriptor knew of a Firefox bug that incorrectly decoded cookies
and potentially could allow users to inject malicious payloads to a
website. The knowledge of this bug led him to test whether a similar
bug could exist on Twitter.

In the Firefox bug, Firefox would strip any Unicode characters in
cookies outside of the ASCII character range. However, Unicode
characters can consist of multiple bytes. If certain bytes in a multibyte
character were stripped, the remaining bytes could result in malicious
characters being rendered on a web page.

Inspired by the Firefox bug, FileDescriptor tested whether an
attacker could sneak a malicious character through Twitter’s blacklist
using the same multibyte character technique. So FileDescriptor found
a Unicode character whose encoding ended with �����$ (a LF) but whose
other bytes were not included in the HTTP character set. He used the
Unicode character , which is hex encoded as U+560A (������ ���$). But
when this character is used in a URL, it is URL encoded with UTF-8
as ���(�������������$. These three bytes, ���(��, ������, �����$, circumvented Twitter’s
blacklist because they are not malicious characters.

When FileDescriptor submitted this value, he found that Twitter
wouldn’t sanitize the URL-encoded character but would still decode
the UTF-8 ���(�������������$ value back to its Unicode value ������ ���$. Twitter
would drop the ���� as an invalid character, leaving the line feed
characters ���$ untouched. In addition, he found that the character
(which is encoded to ������ ���') could be used to insert the necessary
carriage return (�����') into the HTTP response as well.

Once he confirmed that the method worked, FileDescriptor passed
the value ���(�������������$���(�������������' �6�H�W���&�R�R�N�L�H���������W�H�V�W into Twitter’s URL
parameter. Twitter would decode the characters, strip the out-of-range
characters, and leave �����$ and �����' in the HTTP request, resulting in the
value �����$�����' �6�H�W���&�R�R�N�L�H���������W�H�V�W. The CRLF would split the HTTP
response into two so the second response would consist of just the �6�H�W��
�&�R�R�N�L�H�����W�H�V�W value, which is the HTTP header used to set cookies.

CRLF attacks can be even more dangerous when they allow for XSS
attacks. While the details of exploiting XSS aren’t important for this
example, it should be noted that FileDescriptor went further with this
proof of concept. He demonstrated to Twitter how this CRLF
vulnerability could be exploited to execute malicious JavaScript with
the following URL:

�K�W�W�S�V�������W�Z�L�W�W�H�U���F�R�P���O�R�J�L�Q�"�U�H�G�L�U�H�F�W�B�D�I�W�H�U�B�O�R�J�L�Q� �K�W�W�S�V�������W�Z�L�W�W�H�U���F�R�P�����������(��
�����������$���(�������������' �F�R�Q�W�H�Q�W��
�W�\�S�H���W�H�[�W���K�W�P�O���(�������������$���(�������������' �O�R�F�D�W�L�R�Q�����(�������������$���(��
�����������' ���(�������������$���(�������������' ���(�����������%�&�V�Y�J���R�Q�O�R�D�G� �D�O�H�U�W�������L�Q�Q�H�U�+�7�0�/���������(�����������%�(

The important details are the 3-byte values peppered throughout:
���(�������������$, ���(�������������', ���(�����������%�&, and ���(�����������%�(. After character stripping,
these values are decoded to �����$, �����', �����&, and �����(, respectively, all of
which are HTML special characters. The byte �����& is the left angle
bracket (��), and �����(is the right angle bracket (�!).

The other characters in the URL are included in the HTTP
response as written. Therefore, when the encoded byte characters are
decoded with line breaks, the header looks like this:

�K�W�W�S�V�������W�Z�L�W�W�H�U���F�R�P���O�R�J�L�Q�"�U�H�G�L�U�H�F�W�B�D�I�W�H�U�B�O�R�J�L�Q� �K�W�W�S�V�������W�Z�L�W�W�H�U���F�R�P��������
�F�R�Q�W�H�Q�W���W�\�S�H���W�H�[�W���K�W�P�O

�O�R�F�D�W�L�R�Q��
���V�Y�J���R�Q�O�R�D�G� �D�O�H�U�W���L�Q�Q�H�U�+�7�0�/���!

The payload is decoded to inject the header �F�R�Q�W�H�Q�W���W�\�S�H�� �W�H�[�W���K�W�P�O,
which tells the browser the response will contain HTML. The �/�R�F�D�W�L�R�Q
header uses a ���V�Y�J�! tag to execute the JavaScript code �D�O�H�U�W���L�Q�Q�H�U�+�7�0�/��.
The alert creates an alert box that contains the contents of the web page
using the DOM �L�Q�Q�H�U�+�7�0�/ property (the �L�Q�Q�H�U�+�7�0�/ property returns the
HTML of a given element). In this case, the alert would include the
logged-in user’s session and authentication cookies, demonstrating that
an attacker could steal these values. Stealing the authentication cookie
would have allowed an attacker to log into a target’s account, which
explains why FileDescriptor was awarded a $3,500 bounty for finding
this vulnerability.

Takeaways

If a server is somehow sanitizing the characters �����' �����$, think about how
the website might be doing that and whether you can circumvent its
efforts, such as through double encoding. You can test whether the site
is mishandling extra values by passing multibyte characters and
determining whether they are decoded into other characters.

Summary

CRLF vulnerabilities allow attackers to manipulate HTTP responses
by altering their headers. Exploiting CRLF vulnerabilities can lead to
cache poisoning, firewall evasion, request hijacking, or HTTP response
splitting. Because a CRLF vulnerability is caused by a site reflecting
back the unsanitized user input �����' �����$ in its headers, it’s important to
monitor and review all HTTP responses when hacking. Additionally, if
you do find input you can control being returned in HTTP headers,
but the characters �����' �����$ are being sanitized, try including multibyte-
encoded input as FileDescriptor did to determine how the site handles
decoding it.

